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Motivation:
Bugs are Bad



Bugs are Bad

● Bugs are Expensive
○ Modifying code, correcting defects, and evolving code account for as 

much as 90% of the total cost of software projects. 



Bugs are Bad

● Bugs are Expensive
● Bugs are Dangerous



Programming Languages to the Rescue!

  George Orwell (1984)



Presence of bugs
...is half the problem



Verification, Model Checking, and Type Systems

We can check the correctness of programs against formal 
specifications, which is information we can encode in Liquid Haskell 
type signatures. 

● We still have to find the bug after we know it exists
● What about missing parts of the specification?
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Our predicate discovery algorithm uses disjunctive interpolation to 
automatically expand the abstract domain by inferring predicate templates that 
serve as the refinement types of program expressions.
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Liquid Haskell



Well-typed (Haskell) programs can go very wrong!

Divide-by-zero

Keys missing in Maps

Pattern-match failures

Non-termination

Functional Correctness / Assertions...



Solution:
Refinement Types



Simple Refinement Types

Refinement Types = Types + Predicates



Refinement Types

Types

b := Int | Bool | ... -- primitives

     | a, b, c    -- variables

Refinements

t := {x:b | p}   -- refined base

   | x:t -> t    -- refined function



Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

    e := x, y, z, ...                    -- variables

       | 0, 1, 2, ...                    -- constants

       | e + e | c * e | ...             -- arithmetic

       | f e1 ... en                     -- uninterpreted function

Uninterpreted Functions



Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

Given a Verification Condition (VC)

 

SMT solvers can decide if VC is Valid ("always true")



An Example



Refinement Type 
Solving



Refinement Type Solving



Refinement Type Solving

Instantiate every element with a conjunction of the abstract domain
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Refinement Type Solving



Contributions
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Fault Localization



Fault Localization Overview



Constraint 
Minimization















What if neither half fails?
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Fault Localization Evaluation



Fault Localization Accuracy

● Every location reported by the algorithm that is in the ground truth set is a true 
positive.

● Every location reported by the algorithm that is not is a false positive.

● We measure false positives relative to some tolerance level n: if an algorithm 
returns fewer than n spurious bug locations for a file, then the algorithm is not 
counted as having a false positive for that file.



Fault Localization Accuracy



Fault Localization Efficiency

Runtimes do not necessarily correlate with program sizes: processed the largest 
benchmark, red black trees, at around 6 seconds.

These numbers indicate reasonable scaling for larger programs: the time taken 
relates to the relevant partitions of the constraint graph, not the program overall.
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Predicate Discovery



Craig's Interpolation Theorem

● If A, B mutually inconsistent, i.e., A ∧ B is unsatisfiable
● Exists an interpolant, I
● such that ⊨A → I and that I and B are mutually inconsistent
● where atoms(I) ⊆ atoms(A) ∩ atoms(B). 



Disjunctive Interpolation

● If A, B mutually inconsistent, i.e., A ∧ B is unsatisfiable
● Exists an interpolant, I
● such that ⊨A → I and that I and B are mutually inconsistent
● where atoms(I) ⊆ atoms(A) ∩ atoms(B). 

Rummer et al. generalize:

● Instead of pairs of formulas, one unsatisfiable formula
● Any number of labelled subformulas



Predicate Discovery Overview



Triangular numbers, again



Constraints



Constraint Generation



Horn Constraints



Horn Constraints



Horn Constraints

= ¬ (                 )



Unrolling Constraints



Unrolling Constraints



Unrolling Constraints



Unrolling Constraints



Interpolation



Interpolation



Interpolation



Interpolation



Predicate Discovery Evaluation



Predicate Discovery on k-bounded Programs

● Considered 21 microbenchmarks.
● All 21 successful 

○ including instances where Liquid Haskell alone would not have been able to verify the program.

● Median runtime of 0.1 seconds and a maximum of 7.1 seconds.



Predicate Discovery in General

● 23 microbenchmarks
○ programs that were not k-bounded for any
○ programs that were k-bounded, but for which we only permitted our algorithm i < k unrolling
○ Unroll depth of 2

● In 22 of 23 cases, enough predicates to prove correctness
● The one failing case involved a constraint that was not k-bounded for any k in 

an implementation of merge sort; in this case the domain expansion was 
missing only one qualifier (out of ~100).

● Our algorithm took a median of 0.1 seconds and a maximum of 7.2seconds.



Conclusion



Conclusion

Our fault localization algorithm produces minimal false positives (almost half of 
which are a single spurious location) and is efficient enough to be used at compile-
time. It is much more effective at fault localization than the Liquid Haskell type 
checker, localizing twice as many bugs overall and finding six times more “hard” 
bugs than the type checker.

Our predicate discovery algorithm is correct by construction on k-bounded 
instances, finding annotations that admit program verification. Together, our two 
algorithms significantly reduce the barrier to entry for using refinement types 
systems.



Questions?



Extra Slides



Key Insights

1. A bug captured at the type checking level can be seen as an inconsistency.
2. The locations reported to the user should be minimal to prevent implicating 

spurious program locations as faults.
3. Minimal explanations implicate relevant locations.



Central Insight

We can use the structure of type 
constraints to better localize faults and to 

fix incomplete specifications





Related Work

The SEMINAL tool by Lerner et al. [20] uses the OCaml type checker as an oracle in 
a search procedure to find well-typed programs that are syntactically similar to an 
input program that fails to type check, which are then used to construct helpful 
error messages. Our fault localization algorithm likewise uses the type checker as 
an oracle, but works on the set of constraints generated from the input program 
instead. Since the space of constraints is much smaller than the space of possible 
edits for a program, our algorithm can be more efficient than the SEMINAL tool 
without sacrificing the ability to find bugs.

Pavlinovic et al. [24] reduce fault localization into an instance of the MaxSAT 
problem by generating a set of assertions from the input program that are weighted 
by a ranking measure provided by the compiler. An SMT solver is used to find a 
minimum set of error clauses that can be mapped back to possible bug locations.

While the approach is successful in finding bugs in OCaml programs, it is unclear

how successfully it could be applied to more sophisticated type systems such as 
Liquid Haskell. Our algorithm avoids this problem by using the existing constraint 
set generated for type checking the input program.

Zhang and Myers [35] induce a labeled directed graph from a set of Hindley-Milner 
typing constraints and use Bayesian inference methods to analyze the graph and 
find likely bug locations. Our algorithm similarly constructs a graph from a set of 
Liquid Haskell typing constraints. While the approach is are effective for Hindley-
Milner type systems, it is not clear how to extend it to more expressive type 
systems.

There is also a significant literature related to predicate discovery [13]. Bjørner et al. 
[3] review techniques for reducing program verification to Horn clause constraints, 
and review the state of the art in solving systems of Horn clauses. Unno and 
Kobayashi [29] describe a procedure for inferring dependent intersection types 
using interpolants. Rümmer et al. [27] describes the theory of disjunctive 
interpolation in great detail. We show how to extend disjunctive interpolation to 
account for potentially recursive refinement typing constraints in order to 
automatically synthesize refinements for recursive, polymorphic and higher-order 
programs manipulating sophisticated data structures.
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Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

    e := x, y, z, ...                    -- variables

       | 0, 1, 2, ...                    -- constants

       | e + e | c * e | ...             -- arithmetic

       | f e1 ... en                     -- uninterpreted function



Find the bug

This code doesn't compile. At a glance, can you find why?

(actual code written by a student)



Find the "bug"

This code doesn't compile. At a glance, can you find why?

(actual code written by a student)


