
Finding and Fixing Bugs in
Liquid Haskell

Anish Tondwalkar

Overview

● Motivation
● Liquid Haskell
● Fault Localization
● Fault Localization Evaluation
● Predicate Discovery
● Predicate Discovery Evaluation
● Conclusion

Motivation:
Bugs are Bad

Bugs are Bad

● Bugs are Expensive
○ Modifying code, correcting defects, and evolving code account for as

much as 90% of the total cost of software projects.

Bugs are Bad

● Bugs are Expensive
● Bugs are Dangerous

Programming Languages to the Rescue!

 George Orwell (1984)

Presence of bugs
...is half the problem

Verification, Model Checking, and Type Systems

We can check the correctness of programs against formal
specifications, which is information we can encode in Liquid Haskell
type signatures.

● We still have to find the bug after we know it exists
● What about missing parts of the specification?

Contributions

● We still have to find the bug after we know it exists

Our fault localization algorithm searches for a minimal unsatisfiable constraint
set, whose constraints map to likely locations of the bug in the implementation.

● What about missing parts of the specification?

Our predicate discovery algorithm uses disjunctive interpolation to
automatically expand the abstract domain by inferring predicate templates that
serve as the refinement types of program expressions.

Contributions

● We still have to find the bug after we know it exists

A fault localization algorithm searches for a minimal unsatisfiable constraint
set, whose constraints map to likely locations of the bug in the implementation.

● What about missing parts of the specification?

Our predicate discovery algorithm uses disjunctive interpolation to
automatically expand the abstract domain by inferring predicate templates that
serve as the refinement types of program expressions.

Contributions

● We still have to find the bug after we know it exists

A fault localization algorithm searches for a minimal unsatisfiable constraint
set, whose constraints map to likely locations of the bug in the implementation.

● What about missing parts of the specification?

A predicate discovery algorithm uses disjunctive interpolation to automatically
expand the abstract domain by inferring predicate templates that serve as the
refinement types of program expressions.

Liquid Haskell

Well-typed (Haskell) programs can go very wrong!

Divide-by-zero

Keys missing in Maps

Pattern-match failures

Non-termination

Functional Correctness / Assertions...

Solution:
Refinement Types

Simple Refinement Types

Refinement Types = Types + Predicates

Refinement Types

Types

b := Int | Bool | ... -- primitives

 | a, b, c -- variables

Refinements

t := {x:b | p} -- refined base

 | x:t -> t -- refined function

Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

 e := x, y, z, ... -- variables

 | 0, 1, 2, ... -- constants

 | e + e | c * e | ... -- arithmetic

 | f e1 ... en -- uninterpreted function

Uninterpreted Functions

Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

Given a Verification Condition (VC)

SMT solvers can decide if VC is Valid ("always true")

An Example

Refinement Type
Solving

Refinement Type Solving

Refinement Type Solving

Instantiate every element with a conjunction of the abstract domain

Refinement Type Solving

Refinement Type Solving

Instantiate every element with a conjunction of the abstract domain

Refinement Type Solving

Refinement Type Solving

Refinement Type Solving

Refinement Type Solving

Refinement Type Solving

Contributions

● We still have to find the bug after we know it exists

Our fault localization algorithm searches for a minimal unsatisfiable constraint
set, whose constraints map to likely locations of the bug in the implementation.

● What about missing parts of the specification?

Our predicate discovery algorithm uses disjunctive interpolation to
automatically expand the abstract domain by inferring predicate templates that
serve as the refinement types of program expressions.

Fault Localization

Fault Localization Overview

Constraint
Minimization

What if neither half fails?

∪

Fault Localization Evaluation

Fault Localization Accuracy

● Every location reported by the algorithm that is in the ground truth set is a true
positive.

● Every location reported by the algorithm that is not is a false positive.

● We measure false positives relative to some tolerance level n: if an algorithm
returns fewer than n spurious bug locations for a file, then the algorithm is not
counted as having a false positive for that file.

Fault Localization Accuracy

Fault Localization Efficiency

Runtimes do not necessarily correlate with program sizes: processed the largest
benchmark, red black trees, at around 6 seconds.

These numbers indicate reasonable scaling for larger programs: the time taken
relates to the relevant partitions of the constraint graph, not the program overall.

s

s

s

s

s

s

Predicate Discovery

Craig's Interpolation Theorem

● If A, B mutually inconsistent, i.e., A ∧ B is unsatisfiable
● Exists an interpolant, I
● such that ⊨A → I and that I and B are mutually inconsistent
● where atoms(I) ⊆ atoms(A) ∩ atoms(B).

Disjunctive Interpolation

● If A, B mutually inconsistent, i.e., A ∧ B is unsatisfiable
● Exists an interpolant, I
● such that ⊨A → I and that I and B are mutually inconsistent
● where atoms(I) ⊆ atoms(A) ∩ atoms(B).

Rummer et al. generalize:

● Instead of pairs of formulas, one unsatisfiable formula
● Any number of labelled subformulas

Predicate Discovery Overview

Triangular numbers, again

Constraints

Constraint Generation

Horn Constraints

Horn Constraints

Horn Constraints

= ¬ ()

Unrolling Constraints

Unrolling Constraints

Unrolling Constraints

Unrolling Constraints

Interpolation

Interpolation

Interpolation

Interpolation

Predicate Discovery Evaluation

Predicate Discovery on k-bounded Programs

● Considered 21 microbenchmarks.
● All 21 successful

○ including instances where Liquid Haskell alone would not have been able to verify the program.

● Median runtime of 0.1 seconds and a maximum of 7.1 seconds.

Predicate Discovery in General

● 23 microbenchmarks
○ programs that were not k-bounded for any
○ programs that were k-bounded, but for which we only permitted our algorithm i < k unrolling
○ Unroll depth of 2

● In 22 of 23 cases, enough predicates to prove correctness
● The one failing case involved a constraint that was not k-bounded for any k in

an implementation of merge sort; in this case the domain expansion was
missing only one qualifier (out of ~100).

● Our algorithm took a median of 0.1 seconds and a maximum of 7.2seconds.

Conclusion

Conclusion

Our fault localization algorithm produces minimal false positives (almost half of
which are a single spurious location) and is efficient enough to be used at compile-
time. It is much more effective at fault localization than the Liquid Haskell type
checker, localizing twice as many bugs overall and finding six times more “hard”
bugs than the type checker.

Our predicate discovery algorithm is correct by construction on k-bounded
instances, finding annotations that admit program verification. Together, our two
algorithms significantly reduce the barrier to entry for using refinement types
systems.

Questions?

Extra Slides

Key Insights

1. A bug captured at the type checking level can be seen as an inconsistency.
2. The locations reported to the user should be minimal to prevent implicating

spurious program locations as faults.
3. Minimal explanations implicate relevant locations.

Central Insight

We can use the structure of type
constraints to better localize faults and to

fix incomplete specifications

Related Work

The SEMINAL tool by Lerner et al. [20] uses the OCaml type checker as an oracle in
a search procedure to find well-typed programs that are syntactically similar to an
input program that fails to type check, which are then used to construct helpful
error messages. Our fault localization algorithm likewise uses the type checker as
an oracle, but works on the set of constraints generated from the input program
instead. Since the space of constraints is much smaller than the space of possible
edits for a program, our algorithm can be more efficient than the SEMINAL tool
without sacrificing the ability to find bugs.

Pavlinovic et al. [24] reduce fault localization into an instance of the MaxSAT
problem by generating a set of assertions from the input program that are weighted
by a ranking measure provided by the compiler. An SMT solver is used to find a
minimum set of error clauses that can be mapped back to possible bug locations.

While the approach is successful in finding bugs in OCaml programs, it is unclear

how successfully it could be applied to more sophisticated type systems such as
Liquid Haskell. Our algorithm avoids this problem by using the existing constraint
set generated for type checking the input program.

Zhang and Myers [35] induce a labeled directed graph from a set of Hindley-Milner
typing constraints and use Bayesian inference methods to analyze the graph and
find likely bug locations. Our algorithm similarly constructs a graph from a set of
Liquid Haskell typing constraints. While the approach is are effective for Hindley-
Milner type systems, it is not clear how to extend it to more expressive type
systems.

There is also a significant literature related to predicate discovery [13]. Bjørner et al.
[3] review techniques for reducing program verification to Horn clause constraints,
and review the state of the art in solving systems of Horn clauses. Unno and
Kobayashi [29] describe a procedure for inferring dependent intersection types
using interpolants. Rümmer et al. [27] describes the theory of disjunctive
interpolation in great detail. We show how to extend disjunctive interpolation to
account for potentially recursive refinement typing constraints in order to
automatically synthesize refinements for recursive, polymorphic and higher-order
programs manipulating sophisticated data structures.

Thesis

We can use the structure of type
constraints to better localize faults and to

fix incomplete specifications

Thesis

We can use the structure of type
constraints to better localize faults and to

fix incomplete specifications

Thesis

We can use the structure of type
constraints to better localize faults and to

fix incomplete specifications

Bugs are Bad

● Bugs are Expensive
○ Modifying code, correcting defects, and evolving code account for as

much as 90% of the total cost of software projects.

Bugs are Bad

● Bugs are Expensive
○ Modifying code, correcting defects, and evolving code account for as

much as 90% of the total cost of software projects.

Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

 e := x, y, z, ... -- variables

 | 0, 1, 2, ... -- constants

 | e + e | c * e | ... -- arithmetic

 | f e1 ... en -- uninterpreted function

Find the bug

This code doesn't compile. At a glance, can you find why?

(actual code written by a student)

Find the "bug"

This code doesn't compile. At a glance, can you find why?

(actual code written by a student)

