Finding and Fixing Bugs in
Liquid Haskell

Anish Tondwalkar

Overview

Motivation

Liquid Haskell

Fault Localization

Fault Localization Evaluation
Predicate Discovery

Predicate Discovery Evaluation
Conclusion

Motivation:
Bugs are Bad

Bugs are Bad

® Bugs are Expensive
o Modifying code, correcting defects, and evolving code account for as
much as 90% of the total cost of software projects.

Google Application Security

Home Learning Reward Programs Hall of Fame Research

Google VRP Patch Rewards Research Grants Chrome Rewards Android Rewards

Chrome Reward Program Rules

The Chrome Reward Program was launched in January 2010 to help reward the contributions of security
make Chrome and Chrome OS5 more secure. Through this program we provide monetary awards and pu
Chrome project.

Scope of program

Any security bug in Chreme or Chrome OS5 may be considered. It's that simplel'

Bugs are Bad

® Bugs are Expensive
® Bugs are Dangerous

w I R E D GEAR SCIENCE ENTERTAINMEN

e B N e R

SCIENCE : DISCOVERIES E;I

Sunk by Windows NT

07.24.08

While Microsoft continues to trumpet the success of its NT op
systems, the US Navy is having second thoughts about putting

Programming Languages to the Rescue!

George Orwell (1984)

“We shall make thoughtcrime literally impossible,
because there will be no words to express it.”

Presence of bugs
...Is half the problem

Verification, Model Checking, and Type Systems

We can check the correctness of programs against formal
specifications, which is information we can encode in Liquid Haskell
type signatures.

® We still have to find the bug after we know it exists
® What about missing parts of the specification?

Contributions

® We still have to find the bug after we know it exists

® What about missing parts of the specification?

Contributions

® We still have to find the bug after we know it exists

A fault localization algorithm searches for a minimal unsatisfiable constraint
set, whose constraints map to likely locations of the bug in the implementation.

® What about missing parts of the specification?

Contributions

® We still have to find the bug after we know it exists

A fault localization algorithm searches for a minimal unsatisfiable constraint
set, whose constraints map to likely locations of the bug in the implementation.

® What about missing parts of the specification?

A predicate discovery algorithm uses disjunctive interpolation to automatically
expand the abstract domain by inferring predicate templates that serve as the
refinement types of program expressions.

Well-typed (Haskell) programs can go very wrong!

Divide-by-zero
Keys missing in Maps
Pattern-match failures

Non-termination

Functional Correctness / Assertions...

Solution:
Refinement Types

Simple Refinement Types

Refinement Types = Types + Predicates

Refinement Types

Types Refinements

b := Int | Bool | ... —-— primitives t := {x:b | p} -- refined base

| a, b, c —-- variables | x:t -> t -- refined function

Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

€ 1T X, YV, Z, 4. -— variables
| 0, 1, 2, ... -- constants
| e+ e | c xe -- arithmetic
| f el ... en —— uninterpreted function

Uninterpreted Functions

Vr,y. 7=y = flz) =1y

Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

Given a Verification Condition (VC)
P1 = P2

SMT solvers can decide if VC is Valid ("always true")

An Example

I sums :: k:Int -> { v:Int | k<= Vv }
2 sums 0
3 sums Kk

Q)
k + (sum (k-1))

Refinement Type
Solving

Refinement Type Solving

1 sum z: ka:lnt = { welne | k &= v)
2 sum = go
3 where
Osv,k=v
4 go k
) | k <= 0 =0
6 | otherwise = let s = go (k-1) in s + k

Refinement Type Solving

1 sum :: k:Int —> { v:Int | k <= v }
2 sum = go
3 where
go k

O<sv,k<v

| k <=0

0

= B

| otherwise let s = go (k-1) in s + k

Instantiate every element with a conjunction of the abstract domain

k:kp,k<OF{r=0}<: K
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Refinement Type Solving

1 sum 23 k:Ifit =>» 4 viInt | k <= v]

2 sum = go

3 where

4 go k

) | k <= 0 =0

6 | otherwise = let s = go (k-1) in s + k

k:kp,k <0F{r=0}<: Ky
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Refinement Type Solving

Instantiate every element with a conjunction of the abstract domain

k:kp,k<OF{r=0}<: K
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Refinement Type Solving

k:kp,k <0F{r=0}<: Ky
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Refinement Type Solving

‘ ‘ true = k<v x

k:kp,k <0F{r=0}<: Ky
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Refinement Type Solving

4

k:kp,k <0F{r=0}<: Ky
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Refinement Type Solving

[pu—
‘) ‘ k<0 Av=0 = k=v

k:kp,k <0F{r=0}<: Ky
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Refinement Type Solving

k:kp,k <0F{r=0}<: Ky
k: kg, (k <0),s:kslk/k =1 F{v=s+k} <: kg
0 Int <: Ky

k:kp b Ky <{v>k}

Contributions

® We still have to find the bug after we know it exists

Our fault localization algorithm searches for a minimal unsatisfiable constraint
set, whose constraints map to likely locations of the bug in the implementation.

® What about missing parts of the specification?

Our predicate discovery algorithm uses disjunctive interpolation to
automatically expand the abstract domain by inferring predicate templates that
serve as the refinement types of program expressions.

Fault Localization

Fault Localization Overview

Constraint
Partitioning

[

- y— Constra.mt
5 Generation
Am
s

Report Map_ to
i Locations
ik l

o

‘ Delta Type
Debugging Checker

]

Constraint
Minimization

What if neither half fails?

Fault Localization Evaluation

Fault Localization Accuracy

Every location reported by the algorithm that is in the ground truth set is a true
positive.
Every location reported by the algorithm that is not is a false positive.

We measure false positives relative to some tolerance level n: if an algorithm
returns fewer than n spurious bug locations for a file, then the algorithm is not
counted as having a false positive for that file.

Fault Localization Accuracy

False False False
True Positives Positives Positives
Ground Truth Positives (t=0) (t=1) (=2}
minimizeWCC seeded 18 25 14 9
Vanilla seeded 8 20 7 1
minimizeWCC expert 21 24 13 9

Vanilla expert, 10 19 § 1

Fault Localization Efficiency

Algorithm ~ Min Time Max Time Avg Time

minimizeWCC 0.004s 43.64 s 3.73 s

Runtimes do not necessarily correlate with program sizes: processed the largest
benchmark, red black trees, at around 6 seconds.

These numbers indicate reasonable scaling for larger programs: the time taken
relates to the relevant partitions of the constraint graph, not the program overall.

Predicate Discovery

Craig's Interpolation Theorem

If A, B mutually inconsistent, i.e., A A B is unsatisfiable

Exists an interpolant, |
such that ~FA — | and that | and B are mutually inconsistent

where atoms(l) & atoms(A) N atoms(B).

Disjunctive Interpolation

If A, B mutually inconsistent, i.e., A A B is unsatisfiable
Exists an interpolant, |

such that ~FA — | and that | and B are mutually inconsistent
where atoms(l) & atoms(A) N atoms(B).

Rummer et al. generalize:

e Instead of pairs of formulas, one unsatisfiable formula
e Any number of labelled subformulas

Predicate Discovery Overview

Constraints

Unrolling

—elily

Body-disjoint
Constraints

Interpolation

e il

Predicates

Triangular numbers, again

1

L S L - A

sum
sum = g
where
go

|

|

keTiit =» 4 %:Int |

O

k

k <= 0

otherwise

let s

k <= v }

(k—1) 1 B + K

Constraints

Constraint Generation
kK:kp,k<O0F{r=0}<: ks

k: kg, (k <0),s:Kslk/k =1 F{r=s+k} <: Ky

DF Int <: Kk

1 mum 22 k:THit =% { 3T | k &= %)

2 sum = go

k:iﬁ:kl—iis<:{l/2k}

3 where
4 go k
) | k <= 0 = 0

6 | otherwise = let s = go (k-1) in s + k

Horn Constraints kikp,k <0F =0} <: ks
k: kg, (k<0),s:kslk/k —1]F{r=s+k} <: K

0F Int <: Ky

ki Re - Kg <:{I/Zk}
ke(K) ANk <O0Av=0— ks(v)
ki(k) ANk > 0Aks(s)k/k —1]Av=s+%k — Kks(v)
true — Ki(v)

ks(V) > v >k

Ke(K) ANk <0Av=0— Ks(v)

Horn Constralnts H‘,k(lﬂ) ANk >0A HJS(S)[k/k —]_] ANVv=s+k— HJS(V)

true — kp(v)

ks(V) > v >k

k<O0Avr=20 k>0Av=s+k

Ke(K) ANk <0Av=0— Ks(v)

Horn Constraints kr(k) Ak > 0AKs(s)lk/k —1]Av=s+k = ks(v)
true — kp(v)
ks(V) > v >k

v<k=-(v>k)

R

k<OAr=20 k>0Arvr=s-+k

Unrolling Constraints

Unrolling Constraints

v <k

R

k<OAr=20 k>0Av=s-+k

Unrolling Constraints
v <k

Unrolling Constraints

v <k

k<OAvr=20 k>0Arv=s+k%k
k—1<0 k—1>0
ANs=0 ANs=s’"+(k—-1)

|
(k—1)—1<0As’" =0

Interpolation

Interpolation

v <k

k<OAvr=20 k>0Arv=s+k%k
k—1<0 k—1>0
ANs=0 ANs=s’"+(k—-1)

|
(k—1)—1<0As’" =0

Interpolation

v <k
I
k<OAvr=20 k>0Arv=s+k%k
L,
k—1<0 k—1>0
Ns=0 As=s’+(k-1)

L

|
(k—1)—1<0As’" =0

Interpolation

v <k
L, I(Ll)—uzk/\kgo
/\ [(Ly)=5>k—1
k<OAvr=20 k>0Arv=s+k%k
I, I(Lg):S':()
k—1<0 k—1>0
Ns=0 ANs=s"+(k—1)
Ls

|
(k—1)—1<0As’" =0

Predicate Discovery Evaluation

Predicate Discovery on k-bounded Programs

® Considered 21 microbenchmarks.

® All 21 successful
o including instances where Liquid Haskell alone would not have been able to verify the program.

® Median runtime of 0.1 seconds and a maximum of 7.1 seconds.

Predicate Discovery in General

23 microbenchmarks

o programs that were not k-bounded for any
o programs that were k-bounded, but for which we only permitted our algorithm i < k unrolling
o Unroll depth of 2

In 22 of 23 cases, enough predicates to prove correctness

The one failing case involved a constraint that was not k-bounded for any k in
an implementation of merge sort; in this case the domain expansion was
missing only one qualifier (out of ¥100).

Our algorithm took a median of 0.1 seconds and a maximum of 7.2seconds.

Conclusion

Conclusion

Our fault localization algorithm produces minimal false positives (almost half of
which are a single spurious location) and is efficient enough to be used at compile-
time. It is much more effective at fault localization than the Liquid Haskell type
checker, localizing twice as many bugs overall and finding six times more “hard”
bugs than the type checker.

Our predicate discovery algorithm is correct by construction on k-bounded
instances, finding annotations that admit program verification. Together, our two
algorithms significantly reduce the barrier to entry for using refinement types
systems.

Questions?

Extra Slides

Key Insights

1. A bug captured at the type checking level can be seen as an inconsistency.
2. The locations reported to the user should be minimal to prevent implicating
spurious program locations as faults.

3. Minimal explanations implicate relevant locations.

Central Insight

We can use the structure of type
constraints to better localize faults and to
fix incomplete specifications

Related Work

The SEMINAL tool by Lerner et al. [20] uses the OCaml type checker as an oracle in
a search procedure to find well-typed programs that are syntactically similar to an
input program that fails to type check, which are then used to construct helpful
error messages. Our fault localization algorithm likewise uses the type checker as
an oracle, but works on the set of constraints generated from the input program
instead. Since the space of constraints is much smaller than the space of possible
edits for a program, our algorithm can be more efficient than the SEMINAL tool
without sacrificing the ability to find bugs.

Pavlinovic et al. [24] reduce fault localization into an instance of the MaxSAT
problem by generating a set of assertions from the input program that are weighted
by a ranking measure provided by the compiler. An SMT solver is used to find a

- of | hat | | backd bl ocai

Thesis

We can use the structure of type
constraints to better localize faults and to
fix incomplete specifications

Thesis

We can use the structure of type
constraints to better localize faults and to
fix incomplete specifications

Thesis

We can use the structure of type
constraints to better localize faults and to
fix incomplete specifications

Bugs are Bad

® Bugs are Expensive
o Modifying code, correcting defects, and evolving code account for as

much as 90% of the total cost of software projects.

ill
moz‘ a About Lls Lommunity Map Our P'lIl]'E'IILi

Bug Bounty Program

Introduction

Tha Maorilla Security Bug Bounty Program is designed to encourage secunity research in Maozilla softy
and to reward those who help us craate the safest Internet clients in existence

Many thanks to Linspire and Mark Shuttleworth, who provided start-up fonding for this endeavor.

General Bounty Guidelines

Bugs are Bad

® Bugs are Expensive
o Modifying code, correcting defects, and evolving code account for as
much as 90% of the total cost of software projects.

Predicates

Quantifier-Free Logic of Uninterpreted Functions & Linear Arithmetic

e 1= X, Y, Z, -— variables
| 0, 1, 2, ... -- constants
| e+ e | cxe -- arithmetic
| f el ... en —— uninterpreted function

Find the bug

This code doesn't compile. At a glance, can you find why?

(actual code written by a student)

randomE]lt Vector a Rand StdGen (Maybe a)
randomkElt vector case (V.length vector) of

% SRR EN Nothing) (getRandom)
] 1iftM (vector) (getRandomR (B, (1-1)))

Find the "bug"

This code doesn't compile. At a glance, can you find why?

(actual code written by a student)

randomkElt Vector a Rand StdGen (Maybe a)
randombElt vector case (V.length vector) of

% Beds W08 Nothing) (getRandom Inﬂ)
| l1iftM (vector) (getRandomR (B, (1-1)))

