Improving Programming Support
for Hardware Accelerators Through
Automata Processing Abstractions

Kevin Angstadt
angstadt@umich.edu

M 10. March 2020

COMPUTER SCIENCE
& ENGINEERING

UNIVERSITY OF MICHIGAN

Annual Size of the Global Datasphere 175 ZB

I THE RAPID GROWTH OF GLOBAL DATA

The production of data iz expanding at an astonishing pace. Experts
MORE THAN

now point to a 4300% Increase In annual data generatlon by 2020, rasdiiabiln
Drivers include the switch from analog to digital technologies and the WILL LIVE IN OR PAS
rapld Increase In data generation by Individuals and cotporations alike THROUGH e I I
Size of Toutal Data Enterprise Created Data = - - - . . l
Enterprise Managed Data
7

INSTAGRAM

~—— USERS POST ——

2 2 _’US‘H)HEQS WILL
T STORING 1 §B ——

OF INFORMATION, _ RECEIVES

8683

——— USERS SEND

120

By 2020, there will be 40x more
pytes of data than there aré&stars

IN the observable universe,
DOMO, "“Data Never Sleeps 7.0". 2019

—— RIDES:

Physical Limits Spark Creativity

y 0 B
A 00
Carbon Al A ¢ 2lelratc Al E
nanotubes

» h D3
8 h (] = () = o L)
'G.‘) ' d 0
5]
e (] [= U e o
=]
[
m v
§ T 4 | e
3 perconc 0 :9"'4" ' Q —
=) s % .
= | com—
[<5) B
= S —

New architectures and packaging

J. M. Shalf and R. Leland, “Computing Beyond Moore’s Law”. IEEE Computer, 2015.

New Kinds of Processors

amazon
web services™

AMDZ1

amazn (intel)
GRAPHICS
CPU GPU

General Purpose

Co-Processors

(|@ amazon M

webservices”

A{O’} Google
TPU

AP

Highly Specialized

FPGA
(inteD I

Microsoft

New Kinds of Processors

FORTUNE | All you need to know about Automata,
onrcown | Mlicron's revolutionary processor
Official At Last: Intel Con sy pesire Athow March 28,2014 World of tech
Billion Buy e - — :
Wh Mi " Google makes Cloud TPU Pods publicly a
Y MICI0501 avaiiable in beta

Composed of racks of Google's custom silicon chips, TPU Pods can take
FPGAS to I nfu just minutes to complete ML workloads that would take days on other

systems, G appie crirs

WithAl Everything you need to know
S about Apple’s Al chip

Reconfigurable chipsenmance eVe| ey v cesgon - september 2, 207
Azure SDN to Bing

Lack of [Good] Programming Models

« Akin to "assembly-level” programming on CPU
architectures

« HDLs are not an emphasis of CS curricula

* Require low-level knowledge of architectural
design to produce performant code

» Difficult to debug and maintain: oscilloscopes and
logic analyzers

* Many efforts to improve
 OpenCL, Xilinx SDAccel, etc.
« High-level language + annotations + decent performance
« Rarely compiles out of the box

« Non-intuitive impact of high-level implementation on
performance

Successftul Programming Models

« Performance and Scalability: minimize overhead
Introduced by high-level programming models and tools.

« Ease of Use: provide familiar abstractions and a shallow
learning curve.

« Expressive Power: support the applications that
developers wish to accelerate with dedicated hardware.

* Legacy Support: support the adaptation of existing
software to execute efficiently on hardware accelerators
while placing a minimal burden on developers.

Hardware/Software Co-Design

=] X 3 @ ¥ HE YO v QR @S F il o~ v its O - -
S
45 Debug = K & ¥ =0 |- Variables 5 | % Breakpoints HB Y= 8
~[31 CPAchecker PredicateAnalysis — Kevin [Java Applicg*==1 ‘
~@ org.sosy_lab.cpachecker.cmdline.CPAMainatlocd ® © ® » W W pciec2) @ Myuac Snming broctt s erojests LARad) B .
¥ read [main] (Suspende (=] 2 Q = ¥ < [project2 | o planet.cop | No Selection
o Thread S ded|
= CPAMain.main(String[]) line: 98 v [projectz D 22176 o Jelote dep; dep =
/usr/lib/jvm/java-8-oracle/bin/java (Feb 28,2019, & coy o ’ > s
54w
2ot 11conductBattles(iong long id, Commsnd_ta flags, long longk
) {
= [Disk Zoro K8/ wnile lesPossinle()) {
_) >) - N et numBattleses; 1
[3] Z3stringFormula [J] Z3Str.java [J) Z3Filejavi @ wetwork Zoro Kajs int troopsLost = min(jodiSattalions.topl)->nusTroons,
— t tte «topl)->numTroons);
. 94 Set<SpecificationProperty> properties v @ Thesd 1 Oueus: coma thead (s
tre L - — - . = - No Selection
[] - DevTools - dijkstraeecs.umich, 2 lopt)=>generalla 1]
= Q Bloments Console Sources Network Performance Memory Application Security Audits i B«
1d
JPaoo » i [[§ debuggerss x Bt ot P D Bt
| 5 var diffkeys = astl.filter(functi L
[*Owp e return 1(conans
v O dijistacecs.s 3 astilx]. 1d ast2(k]. id 54 =
g k). kind === ast2(k].kind &6 (anomymous)
v I projects/rapl K).type === ast2(k].type & s
[y mainPage 42 astifk].value ast2[k].value
‘ i) printProgramState
prism-ine- return diffkeys, length === 9 SR
» (aronynous)
prism_rapi keys_sase(astl,ast2) { asti s (4) | Yo {31, s 2
surveyct j BT var diffkeys = poBject. fieys(astd).nfi nte) { Glepatch

:] B 4 Feturn Object.keys(0st2).indexdf(e] =
pesm-ine 4 W
SLCOUSORN | o ol , T diffheys.length == 8 5
CPAchecker » O canjs.cloudfiar
» © maxcdn.boots!

functicn eqllel, el) {
(1 keys_same(l e, et))) {

™, Kind-

1, oel 1)) {

}
£ (1 vals_same(l
al

return 890", kind-

) > 4
return true; » t Array(®)
“ ' }), 3)= y - ,
o by s eys: undefined . oo ALY BN e T Automata®
P : Window - y - 8
- i ! essor
: {} Une 48, Coumn 37 2 » Closure (contains) | .
| Console .
1- © wp v e

I

Finite automata provide a suitable
abstraction for bridging the gap
between high-level programming
models and maintenance tools familiar
to developers and the low-level
representations that execute efficiently
on hardware accelerators.

10. March 2020 K. Angstadt — PhD Dissertat ion

Automata Processing in the

World

Detecting Intrusion
Attempts in
Network Packets

~

-

Looking for Virus
Signatures in
Binary Data

~

-

\

Learning
Association Rules
with an a priori
approach

~

=][e

)

Detecting Higgs
Events in Particle
Collider Data

~

Data

a N

Detecting incorrect
POS tags in NLP

)

_

4 .
Aligning DNA

Fragments to the

Human Genome

Finite Automata: 10,000ft View

(Automata) o
A / ~ Q.

/Key \
Q Active ‘ w@ O
= — Searches
o QU

G C T G A C C A T A C G

trigger
reports

Incoming Data " ->®\-
Matching
patterns /

Homogeneous Finite Automata

* Finite set of states with
transitions operating over a Sl
finite alphabet

* |Input data processed by
repeatedly applying

transition rules
 Non-determinism: multiple SR

transitions on single input
« Homogeneity: all incoming

transitions occur on the
same Input character start—

Homogeneous Finite Automata

4 .. N a
b

State Transition
Element (STE): a

N C
state in a

homogeneous NFA

- . _/

 Non-determinism: multiple start—
transitions on single input

« Homogeneity: all incoming Gj

transitions occur on the
same Input character start—

start—

Automata/RegEx Processing Platforms

Spatial-Reconfigurable

Existing Architecture Custom ASIC

Von Neumann

Automata/RegEx Processing Platforms

PAP @ Micron AP@
® Cache Automaton

Spatial-Reconfigurable

Existing Architecture

CPU-Based GPU-Based

® VASIM ® DFAGE
@ Becchi, et I @ INFANL

® PCRE IBM PowerEN@®

Custom ASIC

Von Neumann

Dissertation Overview

» Research Contributions
» Acceleration of Legacy Code
« High-Level Programming Language: RAPID
 High-Speed, Interactive Debugger for Hardware Accelerators

 Hardware Support for New Application Domains:

» In-Cache Accelerator for Parsing
* In-Cache Hardware Unit for Detecting Security Attacks

* Broader Impact and Mentorship
 Conclusions / Discussion

Acceleration of Legacy
Code (String Functions)

10. March 2020 K. Angstadt — PhD Dissertation

Legacy Code In the Age of Hardware
Accelerators

* Legacy code typically cannot be directly compiled for
accelerators

* Learning a new programming model is costly and slows rate
of adoption of new accelerators

 May want to “try out” new hardware with existing software
* No training on new hardware
 Limited time or resources to allocate

AutomataSynth at a Glance

 Framework for executing code (legacy software) on FPGAs
and other hardware accelerators

 Dynamically observe and statically analyze program
behavior to synthesize a functionally-equivalent
hardware design

* Novel combination of model learning (learning theory),
software model checking (software engineering), string
decision procedures (PL/theory), and high-performance
automata architectures (hardware)

Problem Statement

* Input: function kernel : string -> bool
 Assumptions:

* Function decides a regular language

e Source code for function is available

* Qutput: finite automaton with the same behavior on “all”
Inputs as kernel

Angluin-Style Learning (L¥)

pershie Quety — Teacher

M

Automaton

Yes or ¢
M ountereXamp/e Oracle

Automaton

M

Oracle

I Minimally Adequate Teacher !

Membership Queries are Direct
s € L(Kernel)

« Check if kernel accepts input by running the code
 Return value of the kernel is the answer from the MAT

» Caution: take care with ASCIlI encoding and null terminators
(not all functions assume C-style strings)

Understanding Termination Queries
L(M) L L(Kernel)
* Don’t have held-out automaton for comparison

» Test inputs generally do not suffice
» Coverage, generation, etc. difficult challenges

» Constraint over string inputs
* No inputs that are accepted by the kernel are rejected by the

candidate machine (and vice versa)
* "The symmetric difference is empty”

* Allows for formulation as a software Candidate
verification query Automaton

-quality Checking as Software
Verification

» Explores control flow graph looking for property violations

. Suc;:ess finding variety of bugs (e.g., double-free, locking violations,
etc.

« Used in industry for driver verification

 Bounded Model Checking suitable for this domain

« Verifies that property holds for all program execution up to length k (i.e.,
fixed number of loop unrollings)

* Incremental unrolling to check longer and longer executions
« Use theorem prover to identify executions that violate property

* Wrapper program to encode the “symmetric difference”
property
« Add in string solver to generate counterexamples

AutomataSynth System Architecture

?
s € L(Kernel)
Membership Query
True or False

SMT > String
Solver <+ Solver

vl

CPAvV

Software Verifier

[
/

<

L* Learner L(M) = L(Kernel)

Termination Query

True or
Counterexample

<

Learned
Automaton

Synthesis >

Caveats

Theorem provers are relatively
complete.

« Software verification will
occasionally return an unknown
result

 No counterexample is
produced, so L* cannot continue

« Implication: resulting
automaton is approximate, but
correct for all inputs shorter
than some fixed bound

BMC with incremental unrolling
is a semi-algorithm.

« Unrolling of program with infinite
loops could continue indefinitely

* Termination query might never
terminate

« For regular languages finite
unrolling suffices (See §3.2.4)

* Implication: BMC+string solver

will terminate and satisfies
requirements for Termination

Queries

Guiding Research Questions

 How many real-world string kernels can AutomataSynth
correctly learn? With approximation?

 Does AutomataSynth learn automata that fit within the
design constraints of modern, automata-derived,
reconfigurable architectures?

Experimental Methodology

* Mine GitHub for string functions in top C repositories

» Use Cil framework to iteratively parse each source file and
extract all string functions

 Filter for duplicates and manual analysis to filter on Boolean
return type

» Considered 26 repositories, 973 separate string functions,
18 meaningfully-distinct real-world benchmarks

« AutomataSynth did not support 3 due to functionality of underlying
string solver (e.g., no math on characters)

Benchmark Project

git offset 1st component Git: Revision control

checkerrormsg

. jg: Command-line
SulSELaiell JSON processor
skipline
end_line

start_1line Linux: OS kernel

is_mcounted section_name

is_numeric_index MASSCAN: IP port
is_comment scanner
AMF_DecodeBoolean

cf_is_comment S
— OBS Studio: Live

streaming and
recording software

cf _is splice
is_reserved name

has start code

Openpilot: Open-

stbtt isfont ..
— source driving agent

LOC

14
17
11
11
54
17
11

28
22
i)
18

24

Member
Queries

4,090
32,664
189,013
7,663
510,623
206,613
672,041
10,727
4,090
2,557
4,599
1,913
240,705
10,213

RS EE

Term.
Queries

N 0O N N NI N W N DD AP O W NN

o1

States

2
15
35

3
44
46
57

B NN DA

42

19

Runtime
(min)

0.12
1436.58
1438.47

4.90
491.88
80.22
1439.98

4.95

0.23

0.07

5.00

0.05
1424.48

0.08

0.22

Correct

Approx.
Approx.

<

LSS SO U SO S R S

Member Term. Runtime

LOC States Correct

Benchmark Project

git offset 1st component Git: Revision control

checkerrormsg

. jg: Command-line
SulSELaiell JSON processor
skipline

end_line

start_1line Linux: OS kernel

is_mcounted section_name

is_numeric_index MASSCAN: IP port
is_comment scanner
AMF_DecodeBoolean

cf_is_comment .
— OBS Studio: Live

streaming and
recording software

cf _is splice
is_reserved name

has start code

Openpilot: Open-

stbtt isfont .
— source driving agent

Queries Queries (min)

6 4,090 2 2

AutomataSynth learns
13/18 kernels correctly
and a further 2
approximately

10,727 3 4

1 4,090 2 2 0.2

2 2,557 2 2 0.0
28 4,599 2 4 5.0
22 1,913 2 4 0.0
39 240,705 8 42 1424.4
18 10,213 2 7 0.0
24 79,598 5 19 0.2

Benchmark Project LOC
git offset 1st component Git: Revision control 6
checkerrormsg 4

. jg: Command-line
checkfail JSON processor 4
skipline 17
end line 11
start_1line Linux: OS kerne 11

is_mcounted section_name

is_numeric_index MASSCA

is_comment scan

AMF_DecodeBoolean

cf _is_comment

OBS Stuo
cf _is splice streaminy
: recording software
is _reserved name 39
has_start _code 18

Openpilot: Open-

- 24
source driving agent

stbtt isfont

Member
Queries

4,090
32,664
189,013
7,663
510,623
206,613

Learning took an average
of 7 hours. More than
half take fewer than 5

minutes

240,705
10,213

RS EE

Term.

. States
Queries

2
2
3
3 3
4
2

b/
4
2
2
4
4
8 42
2 7
S 19

Runtime
(min)

0.12
1436.58
1438.47

4.90
491.88
80.22
1439.98

4.95

0.23

0.07

5.00

0.05
1424.48

0.08

0.22

Correct

Benchmark Project

git offset 1st component Git: Revision control

checkerrormsg

. jg: Command-line
SulSELaiell JSON processor
skipline
end_line

start_1line Linux: OS kernel
is_mcounted section_name
is_numeric_index MASSCAN: IP port
is_comment

AMF_DecodeBoolean

cf _is_comment

LOC

14
17
11
11
54
17

Member
Queries

4,090
32,664
189,013
7,663
510,623
206,613
672,041
10,727

within resource

cf _is splice
is_reserved name

has start code

stbtt isfont ,
— sou

Term.

Queries

Learned automata fall

constraints of FPGA-
based architectures

States

2
15
35
3
44
46
57

untime
(min)

0.12
1436.58
1438.47

4.90

491.88
80.22
1439.98

4.95

0.23

0.07

5.00

0.05
1424.48

0.08

0.22

Correct

AutomataSynth Summary

* Framework for accelerating legacy Boolean string kernel
functions using FPGAs

» Constructs a behaviorally-equivalent automaton that can be
accelerated with an FPGA

* Novel combination of Angluin-style learning with software
model checking and string solvers

» Successfully construct equivalent (or near equivalent) FPGA

designs for more than 80% of real-world benchmarks mined
from GitHub

* Provides legacy support and performance

RAPID: A High-Level
Language for Portable
Automata Processing

10. March 2020 K. Angstadt — PhD Dissertation

RAPID at a Glance

* Provides concise, maintainable, and efficient
representations for pattern-identification algorithms

* Conventional, C- or Java-style language with
domain-specific parallel control structures

* Excels in applications where patterns are best
represented as a combination of text and
computation

 Compilation to automata supports execution on AP,
FPGAs, CPUs, and GPUs

Parallel Control Structures

* Concise specification of multiple, simultaneous
comparisons against a single data stream

» Support common pattern search paradigms

» Static and dynamic thread spawning for massive
parallelism support

* Explicit support for sliding window computations

ONITBDELGMVUDBQZZDWIEFHPTG@ZBGEXDGHXSVCMKADSKF JOKLGJADSKGOWESIOHGADHYCBGOASDGRAEGKQEYKPREBN...
L

Multi-Architecture System Overview

(Hyperscan)
| e { CPU Engine } |
____________ — Appendix A |
\ ————————————— /
RAPID RAPID : :
Program }* Compiler —> Automata VASIm = INFANt2 GPU Output}

Focus of this contribution _{

—_—— e —— — — — — — REAPR — Xilinx PAR RER J
Engine
Micron AP .
) AP Binar
Compiler y J

Experimental Results (Summary)

» Successfully ported benchmarks from real-world
applications (expressiveness)
 Demonstrated RAPID can implement regular expressions

» 2-8x more compact than scripts generating automata and
13-71x more compact than defining automata (scalability)

* RAPID size remains constant or grows sublinearly with application
instance size

* Overheads of compiled RAPID on FPGA and AP are within
15% of hand-optimized automata (performance)

« Automata optimizations supports more stable porting of
applications across architectures than OpenCL
(performance)

RAPID Summary

RAPID allows developers to write new pattern-searching
programs for hardware accelerators

 Programs compile to a set of finite automata

 Domain-specific parallel control structures support common tasks

* Programs are significantly more concise than hand-crafted
automata

RAPID programs can execute on a wide variety of hardware
platforms (FPGA, AP, CPU, GPU, etc.)

» Portability of automata provides more stable performance across
architectures

* Provides scalability and performance

INnteractive Debugging for
High-Level Languages and
Accelerators

10. March 2020 K. Angstadt — PhD Dissertation

Houston, we have a problem!

Unexpected output deep in
data processing

—{T)- o
Bug in corner case
infrequently activated by —>Q,.

input

G C T G A C C A T

Incoming Data

CPU too slow to debug full application, 00
e —>
but may be difficult to extract subset of

input

!
Jo
‘

Where do we stop?

« Breakpoints annotate expressions/statements to specify
locations to pause execution for inspection
* Traditional notion relies on instruction streams

 Mechanism does not apply directly to architectures with no
instructions (e.g., FPGAs, AP)

« Key Insight: Automata computation driven by input
« Set breakpoints on input data, not instructions

» Supports use case of stopping computation at abnormal behavior
« Can also provide abstraction of traditional breakpoints

Capturing State

* Process input data up to
breakpoint

» State of automata is compact

* O(n) in the number of states of the
NFA

» Repurpose existing hardware to
capture
« AP: State vector cache

 FPGA: Integrated Logic Analyzers
(ILAs) and Virtual 1/O pins (VIOs)
allow for probing of activation bits

 Cache state vectors to decrease
latency

[RAPID Program }

Virtual 10 (FPGA)

State Vector Cache
(AP)

Bridging the Gap

* Developer can set breakpoint in program or data
« Automatically translate this location to automaton states

 Use hardware test equipment to monitor and read state
Information in the circuit

« Automatically translate HW information back to program
source code

Devieos

Experimental Results Summary

« Using server-class FPGA and standard ANMLZoo
benchmarks, we found debugging required 3x logic
elements and 6x register elements of baseline designs
(scalability)

* Debugging of ANMLZoo benchmarks can occur at ~80% of
baseline clock frequencies (performance)

« Human study of 61 undergraduate and graduate
orogrammers found statistically significant increase in fault
ocation accuracy (ease of use)

« Debugger aided novices and relative experts alike

Debugging Summary

» Developers are now able to debug on FPGAs using high-
level languages (e.g., RAPID)

* Bridge the semantic gap by storing mappings between
program expressions and low-level hardware resources

» Leverage Virtual I/O on FPGAs to capture state
« Automata abstraction produces minimal state to capture

* Provides performance, scalability, and ease of use

Architectural Support for
New Application Domains

10. March 2020 K. Angstadt — PhD Dissertation

Hardware/Software Co-Design

=] X 3 @ ¥ HE YO v QR @S F il o~ v its O - -
S
45 Debug = K & ¥ =0 |- Variables 5 | % Breakpoints HB Y= 8
~[31 CPAchecker PredicateAnalysis — Kevin [Java Applicg*==1 ‘
~@ org.sosy_lab.cpachecker.cmdline.CPAMainatlocd ® © ® » W W pciec2) @ Myuac Snming broctt s erojests LARad) B .
¥ read [main] (Suspende (=] 2 Q = ¥ < [project2 | o planet.cop | No Selection
o Thread S ded|
= CPAMain.main(String[]) line: 98 v [projectz D 22176 o Jelote dep; dep =
/usr/lib/jvm/java-8-oracle/bin/java (Feb 28,2019, & coy o ’ > s
54w
2ot 11conductBattles(iong long id, Commsnd_ta flags, long longk
) {
= [Disk Zoro K8/ wnile lesPossinle()) {
_) >) - N et numBattleses; 1
[3] Z3stringFormula [J] Z3Str.java [J) Z3Filejavi @ wetwork Zoro Kajs int troopsLost = min(jodiSattalions.topl)->nusTroons,
— t tte «topl)->numTroons);
. 94 Set<SpecificationProperty> properties v @ Thesd 1 Oueus: coma thead (s
tre L - — - . = - No Selection
[] - DevTools - dijkstraeecs.umich, 2 lopt)=>generalla 1]
= Q Bloments Console Sources Network Performance Memory Application Security Audits i B«
1d
JPaoo » i [[§ debuggerss x Bt ot P D Bt
| 5 var diffkeys = astl.filter(functi L
[*Owp e return 1(conans
v O dijistacecs.s 3 astilx]. 1d ast2(k]. id 54 =
g k). kind === ast2(k].kind &6 (anomymous)
v I projects/rapl K).type === ast2(k].type & s
[y mainPage 42 astifk].value ast2[k].value
‘ i) printProgramState
prism-ine- return diffkeys, length === 9 SR
» (aronynous)
prism_rapi keys_sase(astl,ast2) { asti s (4) | Yo {31, s 2
surveyct j BT var diffkeys = poBject. fieys(astd).nfi nte) { Glepatch

:] B 4 Feturn Object.keys(0st2).indexdf(e] =
pesm-ine 4 W
SLCOUSORN | o ol , T diffheys.length == 8 5
CPAchecker » O canjs.cloudfiar
» © maxcdn.boots!

functicn eqllel, el) {
(1 keys_same(l e, et))) {

™, Kind-

1, oel 1)) {

}
£ (1 vals_same(l
al

return 890", kind-

) > 4
return true; » t Array(®)
“ ' }), 3)= y - ,
o by s eys: undefined . oo ALY BN e T Automata®
P : Window - y - 8
- i ! essor
: {} Une 48, Coumn 37 2 » Closure (contains) | .
| Console .
1- © wp v e

I

Two New Application Domains

XML Parsing

» Parsing of data central to
most (all?) data processing
pipelines

« XML is one of the most
common formats

 Parsing notoriously difficult
to accelerate

Detecting Security Attacks

e Continual cat and mouse
game

« Recent discoveries of
hardware bugs leave billions
of devices vulnerable

* Current fixes are costly
and/or ineffectual

<course>
<footnote></footnote>
<sln>10637</sln>
<prefix>ACCTG</prefix>
<crs>230</crs>
<lab></1ab>
<sect>01</sect>
<title>INT FIN ACCT</title>
<credit>3.0</credit>
<days>TU, TH</days>
<times>
<start>7:45</start>
<end>9</end>
</times>
<place>
<b1ldg>TODD</bldg>
<room>230</room>
</place>
<instructor>
B. MCELDOWNEY
</1instructor>
<limit>0112</1imit>
<enrolled>0108</enrolled>
</course>

XML Nesting

S > Exp -
Exp - Term + Exp

| Term
Term = int * Term

| CExp)
| int

Parsing

* 0
Pop O Pop 1
Push ‘O’ c No Push =
* 1
Pop O Pop O
1 No Push 1 No Push
* 1
Pop O Pop 1
Push ‘1’ No Push

Pushdown Automata Refresher4s

10. March 2020 K. Angstadt — PhD Dissertation

52

. Input Symbol Match

*k

0
i Top of Stack Match :

1

. Pop O
: Stack Actions : e
* 1
Pop O Pop 1
Push ‘1’ No Push

Finite State
Control
Pushdown Automata Refresher

10. March 2020 K. Angstadt — PhD Dissertation

o)
~
O
0
Q
<
@
3
o
)
<

45

ASPEN Supports Richer Analyses

* Accelerated in-SRAM Pushdown ENgine

« Scalable processing engine that uses LLC slices to
accelerate Pushdown Automata computation

* Custom five-stage datapath using SRAM lookups can
process up to one byte per cycle

« Optimizing compiler supports existing grammars, packs
states efficiently, and reduces the number processing stalls

* Provides additional cache when not in use

Where Is ASPEN?

,,,,,,,,,, g) 0 ASPEN G-switch [ASPEN G-stack « ASPEN uses 2
o [| - arrays per
bank

« 240 states per
bank

* Full o
vee connectivity
within bank

* Global switch
=== and stack in
CBOX for large

N Way way2way1 DPDA
20

XML Parsing Experimental Results

25

_ m Xerces mExpat m ASPEN m ASPEN-MP Benchmarks: Parabix,
0 Ximpleware, UW XML
g 20 - ASPEN is 13-18x
o faster (on average)
T 15 than popular CPU
% Parsers
= e Performance did not
(@) . oo .
< vary significantly with
o complexity of XML
8 S » Optimizations and
2 tokenization hide e-

o mHE m . m B m stalls

Low (< 0.3) Medium (0.3-0.7) High (>0.7) Average

Markup Density

Maximum Stack Depth (chars)

_— =

N B OO 00 O

—_—
N B O
O O O O o O O o o

00¢

yida Yoei1s wnuwiixen

0

arw
dew

jaw

po
roads-2
soap
321gone
customer
dblp

ebay
lineitem
mondial-3.0
nasa
nation
orders
partsupp
part
psd7003
reed
region
SigmodRecord
supplier
SwissProt
treebank_e
ubid

uwm

wsu
yahoo
address
bioinfo_big
bioinfo
blog
book-order
book
cd_big
cd_catalog
cd

form
nav_48_0
nav_50_0
nav_63_0
nav_78_0
OfficeOrder
ORTCA
poTm

po

soap?2
soap_mid
soap_small
soap
SUAS

yidaQ oeis s
Yibua 1nduj

O+dl
L+3dl
¢t+dl
c+dl
7an=1"
G+dl
O+dl
[+l
g+dl
o+dl

Processor Designs are Flawed

TECHNOLOGY

The New Wav Your Computer Can Be Attacked

umSpectre and Meltdown explained: What they
“'are, how they work, what's at risk

BRU

Spectre and Meltdown are the names given to a trio of variations on a vulnerability that affects
nearly every computer chip manufactured in the last 20 years. The flaws are so fundamental
and widespread that security researchers are calling them catastrophic.

O0DO OO0

é‘» sysosn rrunil [Nt@l Performance Hit 5x Harder Than
- AMD After Spectre Meltdown Patches

By Joel Hruska on May 20, 2019 at 1:46 pm 255 Co:

Processor Designs are Flawed

TECHNOLOGY

T’le N EDITOEE-PTCK | 4:92-7 views | @/13, 2019, 09:18am — —

unSpel : : [the

ot a|I-Je Intel Confirms ‘ZombieLoad 2’ y

~ 7 Security Threat i
Spectre ility that affects
nearly S) oT Davey Winder Senior Contributor ® D fundamental
and widg | Cybersecurity
O ﬁ I report and analyse breaking cybersecurity and privacy stories

sysosn rrunil [Nt@l Performance Hit 5x Harder Than
= 71 AMD After Spectre, Meltdown Patches

255 Cc¢
e ¥ S

(€

By Joel Hruska on May 20, 2019 at 1:46 pm

Understanding Spectre and Meltdown

« Conditional branches (if statements) are slow
* Time needed to determine next instruction to execute

« Modern processors use speculation to guess the next
Instruction to execute

 When the processor guesses wrong, it can "undo” running the
speculated instruction

 Modern computers use caches to speed up access to data

* Processors do not “undo” changes made to cache data as a result
of speculation

« Careful programming combines misprediction and caching to
steal information

Anomaly Intrusion Detection

- Fixing hardware takes time and has significant cost

* |n the meantime, can we detect attacks with minimal
modifications?

« Key Idea: Run known good programs many times to learn
correct behavior of the software

« Use this model to categorize other running programs

« What do we monitor?

* Previous work monitored sequences of system (0OS) calls
« Does not capture the speculative behavior we want to monitor
* Instead, monitor sequence of memory accesses

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training. AABACCBBC

Memory

B C D E

A

A B C D E

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training. AABACCBBC

Memory

I_'_l

A B C D E

™

A B C D E

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Trainng AABACCBBC
A B CDE

Memory
—

A B C D E

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary

« Can be encoded using finite automata

Training AABACCBBC
A B CDE

Memory
—

A B C D E

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Ha‘”‘r‘g AABACCBBC
emory

B C D E

A

A B C D E

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training. AABACCBBC

Memory

A B C D E

Testing AAECD
)

Memory

A B C D E

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training. AABACCBBC

Memory

Testing AAECD
Memory
.

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training AABACCBBC

Memory

Testing AAECD
Memory

Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training. AABACCBBC

Memory

Testing. AAECD
emory
e

MARTINI: Detecting Attacks

* For real-time monitoring, use a small hardware accelerator
that executes automata
« Embedded in the cache of the processor

* Dictionaries need simplification to embed in processor
* Improve interaction with other security and system abstractions
 Fit within hardware resource constraints

* Three primary techniques

MARTINI: Detecting Attacks

« A-windows: to mitigate overfitting due to ASLR, we store
the difference between subsequent memory accesses

* Truncation: to mitigate difference between physical and
virtual addresses, we truncate all deltas to 8 bits

« Mask selectable
* Lower 7 + sign bit worked well in our experiments

« Compression: to reduce state space (hardware utilization),
we represent windows with unordered sets

 More permissive but smaller

Where is MARTINI?

——_—_—_—_—_—_—_—~

D T e e e e R e = 1
(' . \
/ y 1
iudiiaaiiy sgidadisddal TR ’ e e e = — | Connected Component (C'Cy) iCCl CC3q |
[| ~] | S HHHHHHH H
gt I.-p [Addres I I : 0 0 1 11 _i' I
= g ” ress 1
; > L ™ | I Input Address) I 8-Bit B : o a2 o - a L | _:_ I
; 248 - COR Delta Unit I address _8 : | i 1 | | i 1 :
o 3 3 | I | delta |8 : T |
1 e 7 A ' '
e i e o 1 I oy e
» 0 5 é Ay I MARTINI I I = : _E' I
i o ey] I !
ageail o 1 ' L u o - | | | | !]
]| | i : : .
i S & |g<jj;if: o s s s e e I
¥3 | 1T H 1gger 1
' L B g ; —F Arbitgrition - I I — : :
SR ey 3 I e | | Routing ' : I
§ i nm il - ‘ ! I
Ty - .; | 4 iy ?-fm‘ and : 4 I
qoanomeemngl - %] N I | l activation : : I
i DRI RiTERELT i \. . A bit ! : I
(RN e Y o dh N—————— - | i - . .
(S <t To trigger !
arbitration
| L] | | L] | L] | L] | L] | ’

Simplified routing

because automata are
chains of 8 STEs

Experimental Methodology

 Benchmark suite of real-world applications and exploits

 GNU Coreutils programs
« PARSEC benchmarks
« Exploits: Spectre, Meltdown, Objdump CVE, DNSTracer CVE

» Use instrumented QEMU and Pin tools to collect traces
« 2,400 program traces and over 13 billion memory accesses

* Simulate MARTINI with custom version of VASIm
« Simulate address delta, automata core, and trigger arbitration units

Guliding Research Questions

* Do sequences of memory accesses differentiate programs?

* |s MARTINI able to detect malicious inputs to trained
programs?

» Can MARTINI detect anomalous programs, including recent
hardware attacks?

MARTINI can Detect Attacks
ROC

== ==

Dictionary trained on 60% of Coreutils
traces

« Testing on held out Coreutils traces,
Spectre, Meltdown, Objdump CVE,
DNSTracer CVE

« AUC = 0.9954

 100% true positive = 4.4% false positives

0.9~

0.8

0.7

True Positive Rate

0.6

0.5

0 002 004 008 008 01 012 014 016 0.18
False Positive Rate

0.2

Architectural Support Summary

« Extend expressive power of current automata-derived
architectures to support DPDA (and parsing)

« Custom b5-stage datapath for executing DPDA
» 18.5x faster for parsing XML than state-of-the-art parsers

« Custom datapath for detecting security attacks
» Based on sliding windows of abstracted memory accesses
« Can detect recent hardware exploits (e.g., Spectre, and Meltdown)

« Architectures provide scalability, and performance for
new application domains

Dissertation Overview

* Research Contributions
» Acceleration of Legacy Code
« High-Level Programming Language: RAPID
 High-Speed, Interactive Debugger for Hardware Accelerators

 Hardware Support for New Application Domains:

 In-Cache Accelerator for Parsing
* In-Cache Hardware Unit for Detecting Security Attacks

* Broader Impact and Mentorship
 Conclusions / Discussion

Broader Impact

* Tools to Promote Adoption: prototype tools used in this
dissertation are (being) released as part of MNCaRT, an
end-to-end automata processing ecosystem

« AutomataSynth, RAPID Compiler, DPDA compiler, MNRL state
machine language, VASIim (+DPDA)

* Appendix A

« Undergraduate Mentorship and Teaching: training the
next generation of researchers and introducing students to
the beauty of automata

Teaching and Mentorship

« Automata-based Instruction: lecture on string algorithms
(regex) in DS+A; lecture on language design in grad/undergrad
PL; guest lecture on automata processing in grad architecture;
guest lecture on accelerator debugging in grad PL

- Undergraduate Research Projects:

*MARTINI (Yujun Qin, Samuel Gonzalez, Linh Le)

TDebugging (Matthew Casias, UVA)

*Automata-based file carving and disk damage modeling (lan Bertram,
Michael Flanagan, Aniruddh Agarwal)

Automata-based surface detection (Emma Fass, Luke Merrick, Joe
Tidwell, UVA)

*Diversity in undergrad CS (Fee Christoph)

tQuadcopter Security (Kate Highnam, UVA) IlF;e_eFr“‘thetV;)eu"gﬁgaFt’;a'ication

Proposed Research (2018)

Four components to improve programming support for
hardware accelerators using automata abstractions

» High-level programming language (RAPID)

» High-speed, interactive debugging for RAPID on AP and FPGA

* In-cache accelerators
* For pushdown automata (ASPEN)
* For detection of security attacks

« Adapt legacy kernels for execution on hardware accelerators

Evaluation w.r.t. Performance & scalability, ease of use,
expressive power, and legacy support

Publications Supporting Contributions

1. Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer. Accelerating Legacy String Kernels via Bounded Automata
Learning. In Proceedings of the 25th International Conference on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 2020. ACM, to appear.

2. Matthew Casias, Kevin Angstadt, Tommy Tracy |l, Kevin Skadron, and Westley Weimer. Debugging Support for Pattern-
Matching Languages and Accelerators. In Proceedings of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems, Providence, Rhode Island, 2019. ACM. (21% acceptance rate)

3. Kevin Angstadt, Jack Wadden, Westley Weimer, and Kevin Skadron. Portable Programming with RAPID. In Transactions on
Parallel and Distributed Systems, to appear. IEEE. (4.181 journal impact factor)

4. Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi, Kevin Skadron, Westley Weimer, Reetuparna Das. ASPEN:
A Scalable In-SRAM Architecture for Pushdown Automata. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture, Fukuoka, Japan. 2018. IEEE. (21% acceptance rate)

5. Kevin Angstadt, Jack Wadden, Vinh Dang, Ted Xie, Dan Kramp, Westley Weimer, Mircea Stan, and Kevin Skadron. MNCaRT: An
Open-Source, Multi-Architecture Automata-Processing Research and Execution Ecosystem. In Computer Architecture Letters,
vol. 17, no. 1, pp. 84-87, Jan.-June 1 2018. IEEE. (~24% acceptance rate)

6. Kevin Angstadt, Westley Weimer, and Kevin Skadron. RAPID Programming of Pattern-Recognition Processors. In Proceedings
of the 21st International Conference on Architectural Support for programming Languages and Operating Systems, Atlanta,
Georgia, 2016. ACM. (22% acceptance rate)

7. (Under review) Yujun Qin, Samuel Gonzalez, Kevin Angstadt, Xiaowei Wang, Stephanie Forrest, Reetuparna Das, Kevin Leach,
and Westley Weimer. MARTINI: Memory Access Traces to Detect Attacks.

Undergraduate collaborators are underlined

Additional Publications

8.

10.

11.

12.

11

Jack Wadden, Kevin Angstadt, and Kevin Skadron. Characterizing and Mitigating Output Reporting Bottlenecks in Spatial Automata
Processing Architectures. In Proceedings of the 24th IEEE International Symposium on High-Performance Computer Architecture,
Vienna, Austria, 2018. IEEE. (21% acceptance rate)

Kevin Angstadt and Ed Harcourt. A Virtual Machine Model for Accelerating Relational Database Joins using a General Purpose GPU. In
Proceedings of the High Performance Computing Symposium, Alexandria, VA, 2015. Society for Computer Simulation International.

Yu Huang, Kevin Angstadt, Kevin Leach, and Westley Weimer. Selective Symbolic Type-Guided Checkpointing and Restoration for
Autonomous Vehicle Repair. In Proceedings of the 1st International Workshop on Automated Program Repair, Seoul, South Korea, 2020.
To appear.

Sihang Liu, Kevin Angstadt, Mike Ferdman, Samira Khan. ARMOR: Towards Restricted Approximation with a Worst-Case Guarantee. In:
Proceedings of the 2018 Workshop on Approximate Computing Across the Stack, Williamsburg, VA, 2018.

Kate Highnam, Kevin Angstadt, Kevin Leach, Westley Weimer, Aaron Paulos, and Patrick Hurley. An Uncrewed Aerial Vehicle Attack

Scenario and Trustworthy Repair Architecture. In Proceedings of the 46th International Conference on Dependable Systems and
Networks, Industrial Track, Toulouse, France, 2016. IEEE.

(In Preparation) Kevin Leach, Kevin Angstadt, Anh Nguyen-Tuong, Christopher S. Timperley, Aaron Paulos, Zech Bertilson, Partha Pal,
Christopher Hall, Jacob Wende, Padraic Cashin, Stephanie Forrest, Claire Le Goues, Jack W. Davidson, Westley Weimer, Patrick Hurley,
and Carl Thomas. A Framework for Trusted and Resilient Autonomous Vehicles.

Invited Papers and Tech Reports

14.

15.

Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini, Tommy Tracy, I, Jack Wadden, Mircea Stan, and Kevin
Skadron. An overview of Micron’s Automata Processor. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, 2016. ACM.

Kevin Angstadt, Jack Wadden, Westley Weimer, and Kevin Skadron. MNRL and MNCaRT: An Open-Source, Multi-Architecture State
Machine Research and Execution Ecosystem. Technical Report CS-2017-01, Department of Computer Science, University of Virginia,

May 2017. Undergraduate collaborators are underlined

Dissertation Summary

 Hardware accelerators more commonplace—need for
programming models and maintenance tools

» Using finite automata as an abstraction, we developed a
programming model that provides performance &
scalability, ease of use, expressive power, and legacy
support

« AutomataSynth: porting legacy code to FPGAs

 RAPID: writing new pattern-searching programs for hardware
accelerators

* High-speed, FPGA-based debugger for RAPID programs

 Two in-cache accelerators for new applications
» Parsing of XML and detecting security attacks

Bonus Slides

10. March 2020 K. Angstadt — PhD Dissertation

68

Start

Start H ' !

10. March 2020 K. Angstadt — PhD Dissertation

70

What is a Program??
Task: Blink a lightbulb

CPU (Python) FPGA (Circuit)

import gpiozero Clock
import time

A 4

led = gpiozero.LED(14) > cnt
..j'j
while True:

led.on() 1 20000 — out To nght
time.sleep(1)

led.off () 0

time.sleep (1) 0|4

Generally written in Verilog or VHDL language

Why Automata(Synth)?

 FPGA designs are often described in terms of state
machines

 Automata a versatile and broadly-applicable

« Can build on significant research effort accelerating state
machine execution

* Other high-level approaches (cf. HLS) generally fail to
abstract low-level architectural details

* Our approach decouples high-level program and low-level
Implementation

Reasoning About Strings

Mirrors low-
level string

String solver should support the following:
* Unbounded string length . Y
. Regular expression-based constraints over strings [RACIISYENclaRly
» Access to individual characters of strings C
« Comparison of individual characters and strings
« Reasoning about the length of strings

« Comparison between strings and bitvectors (treat characters as
numbers)***

« Ability to generate strings that satisfy a set of constraints

***Not currently supported

Example RAPID Program

macro frequent (String set, Counter cnt) {
[foreach(char c : set) {
while(input() != c);

+

_ cnt.count();

network (String[] set) {
some(String s : set) {
Counter cnt;
— whenever (START_OF_INPUT == input())
frequent (s, cnt) ;
if (cnt > 128)
report,

Putting It all together

Standard Program Execution

g\g;:aelerator processes Abnormal behavior
______________________________________ observed _ __________ __ _____________.

Debugging Execution

v

Ler /> \))
Accelerator processes "\ N User-defined breakpoint

data System-calculated
breakpoint

data

4 ‘ o
..... > I cooo[> __*
*~ ~
. Ma,o \ » ey
Accelerator Simulator Simulator Ping =
state vector processes state vector .

Traditional Breakpoints

RAPID Program

macro helloWorld() {
whenever(ALL_INPUT == input()) {
foreach(char ¢ : "Hello") {
c == input();
}
‘input() = ' '
foreach(char ¢ : "world") {
c == input();
}
report;
}
3

network() {
helloWorld();

3

®) Machine
A
RAPID O—0O—0O—0O—-0
Compiler
% Machine
(oo °

§ l 4

4

Accelerator processes data with Machine B

Reports occur when
line is executed

>

Accelerator processes data with Machine A

Input breakpoints
inserted at reports

Five Steps of DPDA Execution Per
Cycle

. Input Matché 5 ;
. Stack Match pop 0 Pop
. Action .y ¥ yay L
Lookup : R 1 o D
. Stack Update 0 o
. State Push 1" No Push

Transition

ASPEN

o bk Wbh =

Input Matchs
Stack Match

Action Lookup
Stack Update

State
Transition

B

0

SRAM ArrayO

255

8-bit
Inpu

]

Row Decoder

255

E

P4

Matching

One
Column
per State

O
>
)]
Y
©)
2
L®)
D
—
wn
—~
Q
—
()

e
o))
—
©
o)
2
>
0
o
@)
S
7

\

4:1 column mux /

240by

8by 8by

Active State Vector

— 256b
IM Vector ‘|
Push Pop

Sym.

10. March 2020

#

SRAM Array1

255

Datapath — 240 States in 2 SRAM Arrays

256b

K. Angstadt — PhD Dissertation

o[\ Stack
Pointer
O
Matching D 9 =
— s 9 g L]
One o O o [—
C o)
Column m 0 Q
~ D
per State 3 | =
{ S
= 255|
Y
____4:1column mux /
| 240bv 86}
256b SM Vector S, Local TOS
J | TOS+1 TOS
2560
N
113

Optimizations

Epsilon Merging e Goal: Reduce N
[A-Z] £ [A-Z] the number of
S S > S stalls while
No Push Push ‘a’ Push ‘a’ processing
. Input
Multipop < 4
€ € € € €
Pop 1 Pop 1 Pop 1 Pop 1 =) Pop 4
No Push No Push No Push No Push No Push

« Average of 65% reduction in epsilon states

/

- - - .- — . .- 23

I Tdt.
L TRILTIIE T LT et
P LS

B e e

dmesg — displays system
message buffer

Iale

displays a calendar

cal

Programs
t represents a sequence of three addresses

accessed by the program

Differentiat

@)
O
L
O
(©
L]

Compression Example

Dictionary contains: (c,a,t), (c,o,t), (c,o,w), and (d,0,9)

@

:
@

« Sacrifices accuracy for space
 Now accepts (c,a,w)
O to 6 states
* |In limit, reduces 2%4 states to
2,048 states

(=)

MARTINI can Differentiate Programs

objdump
® 1 — T
©
o 0.9
=
: : 0.8
’ > ‘. X R
;& Rg® &'{; o boééa e Q,: S & ® & & Rg® &1{:@ & e,ogz e Q‘; S < & Rg® S °°<§”Q R Q,,; S < & & Rg® &'{; o &»&‘,,Q R Qe'b S &
& R & B R & S R & & S € X
date ps readelf

1I—

e
-

2 (] Q
© ‘6 E
& 0.9 .4 & 0.9
s T T8
S Rg® SHOREL @ P ® S Rg® SHOREL P P ® S REL OISR R P P S Rg® LHORELR P P @
& Y » & & & T & & ¥ Y & & & & Y &» & &
) s @ > & & @ > S & & > & S & >
diff ; dmesg sed tar
2 ! T T T T . 2 o e] CT T e -
@© © © ©
0.9 T 0.9 & 0.9 @ 0.9
— :E = =
Tos N " 0.87% Tos Tos N
S RE$ DER R P L FFRESLOOR L P é& L& E PP REL LR L P bé* L& E S RS DOR L@ &,,\'* L& E
& & S o & o7 S S o & &7 ¥ ¢ & &7 O S o &
& o'°\ & 3 kS 6°\ & >) 6°\ g 3 [6°\ @ N
grep uname

Hit Rate
=)
©

N D ®
PR

& & GQgi@ 6‘(\ 090" b\g@Q ¢
S & &

8 .

\QQ&Q Qb&{\ r}b \"‘06‘0 &S OQgi& 6& SR \G"Q@Q er@{\ q,?'é \'b‘é& & & OQbé@ 6\’(\ DO R \QQQQ
O & & £ > &2 K & S
60\ 60\ < 6@\

MARTINI can Detect Anomalous
Inputs

Pass rate vs. threshold (Interval size: 20000, decay: 0.50)

Tr |
- -‘
0.81 |
.
50.6]
” i
20.4 4 i
o !
0.2L i objdump
(= G\/E-2018-6323
O | | | | ; | | | | |

0 0.01 0.02 003 004 005 0.06 0.07 0.08 0.09 0.1
Threshold

Meta-Evaluation: System Performance

 Both ASPEN and MARTINI consume a portion of LLC

 What does this do to total system performance?

 Platform: Ubuntu 16.04, 192 GB RAM, 2 Intel Xeon Platinum
8275CL CPUs (36 cores, each) @ 3 GHz, 36 MB LLC per
processor, subdivided into 11 ways

« Experiment: execute PARSEC benchmarks 40 times and
measure wall clock time (20 with full cache, 20 with
reduced cache)

 Reduce by 1 way to simulate MARTINI footprint

Runtime Comparison with Reduced Cache

o m Full Cache

Reduced Cache

10000
1000
100
10 |
1
Qf’\

Runtime (ms)

% > £ <
AN N O o @ - Q 5 <& N N ‘&
9 N} ? Q N 9 % 9 L
NG *ooé ¢ Q@ -\brb N\ & ¥ S < ~ °
\@ N AN N
© <5 S

Runtime Comparison with Reduced Cache

o m Full Cache

Reduced Cache
10000

1000 Runtime was reduced by 1.42% in the
worst case. The differences were not
statistically significant.

100

Runtime (ms)

10

