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Physical Limits Spark Creativity
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New architectures and packaging

J. M. Shalf and R. Leland, “Computing Beyond Moore’s Law”. IEEE Computer, 2015.




New Kinds of Processors
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New Kinds of Processors
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Lack of [Good] Programming Models

« Akin to "assembly-level” programming on CPU
architectures

« HDLs are not an emphasis of CS curricula

* Require low-level knowledge of architectural
design to produce performant code

» Difficult to debug and maintain: oscilloscopes and
logic analyzers

* Many efforts to improve
 OpenCL, Xilinx SDAccel, etc.
« High-level language + annotations + decent performance
« Rarely compiles out of the box

« Non-intuitive impact of high-level implementation on
performance




Successftul Programming Models

« Performance and Scalability: minimize overhead
Introduced by high-level programming models and tools.

« Ease of Use: provide familiar abstractions and a shallow
learning curve.

« Expressive Power: support the applications that
developers wish to accelerate with dedicated hardware.

* Legacy Support: support the adaptation of existing
software to execute efficiently on hardware accelerators
while placing a minimal burden on developers.



Hardware/Software Co-Design
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Finite automata provide a suitable
abstraction for bridging the gap
between high-level programming
models and maintenance tools familiar
to developers and the low-level
representations that execute efficiently
on hardware accelerators.
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Automata Processing in the

World
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Finite Automata: 10,000ft View
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Homogeneous Finite Automata

* Finite set of states with
transitions operating over a Sl
finite alphabet

* |Input data processed by
repeatedly applying

transition rules
 Non-determinism: multiple SR

transitions on single input
« Homogeneity: all incoming

transitions occur on the
same Input character start—



Homogeneous Finite Automata
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Automata/RegEx Processing Platforms
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Automata/RegEx Processing Platforms

PAP @ Micron AP@
® Cache Automaton

Spatial-Reconfigurable

Existing Architecture

CPU-Based GPU-Based

® VASIM ® DFAGE
@ Becchi, et I @ INFANL

® PCRE IBM PowerEN@®

Custom ASIC

Von Neumann




Dissertation Overview

» Research Contributions
» Acceleration of Legacy Code
« High-Level Programming Language: RAPID
 High-Speed, Interactive Debugger for Hardware Accelerators

 Hardware Support for New Application Domains:

» In-Cache Accelerator for Parsing
* In-Cache Hardware Unit for Detecting Security Attacks

* Broader Impact and Mentorship
 Conclusions / Discussion




Acceleration of Legacy
Code (String Functions)
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Legacy Code In the Age of Hardware
Accelerators

* Legacy code typically cannot be directly compiled for
accelerators

* Learning a new programming model is costly and slows rate
of adoption of new accelerators

 May want to “try out” new hardware with existing software
* No training on new hardware
 Limited time or resources to allocate




AutomataSynth at a Glance

 Framework for executing code (legacy software) on FPGAs
and other hardware accelerators

 Dynamically observe and statically analyze program
behavior to synthesize a functionally-equivalent
hardware design

* Novel combination of model learning (learning theory),
software model checking (software engineering), string
decision procedures (PL/theory), and high-performance
automata architectures (hardware)



Problem Statement

* Input: function kernel : string -> bool
 Assumptions:

* Function decides a regular language

e Source code for function is available

* Qutput: finite automaton with the same behavior on “all”
Inputs as kernel




Angluin-Style Learning (L¥)
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Membership Queries are Direct
s € L(Kernel)

« Check if kernel accepts input by running the code
 Return value of the kernel is the answer from the MAT

» Caution: take care with ASCIlI encoding and null terminators
(not all functions assume C-style strings)




Understanding Termination Queries
L(M) L L(Kernel)
* Don’t have held-out automaton for comparison

» Test inputs generally do not suffice
» Coverage, generation, etc. difficult challenges

» Constraint over string inputs
* No inputs that are accepted by the kernel are rejected by the

candidate machine (and vice versa)
* "The symmetric difference is empty”

* Allows for formulation as a software Candidate
verification query Automaton




-quality Checking as Software
Verification

» Explores control flow graph looking for property violations

. Suc;:ess finding variety of bugs (e.g., double-free, locking violations,
etc.

« Used in industry for driver verification

 Bounded Model Checking suitable for this domain

« Verifies that property holds for all program execution up to length k (i.e.,
fixed number of loop unrollings)

* Incremental unrolling to check longer and longer executions
« Use theorem prover to identify executions that violate property

* Wrapper program to encode the “symmetric difference”
property
« Add in string solver to generate counterexamples




AutomataSynth System Architecture
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Caveats

Theorem provers are relatively
complete.

« Software verification will
occasionally return an unknown
result

 No counterexample is
produced, so L* cannot continue

« Implication: resulting
automaton is approximate, but
correct for all inputs shorter
than some fixed bound

BMC with incremental unrolling
is a semi-algorithm.

« Unrolling of program with infinite
loops could continue indefinitely

* Termination query might never
terminate

« For regular languages finite
unrolling suffices (See §3.2.4)

* Implication: BMC+string solver

will terminate and satisfies
requirements for Termination

Queries



Guiding Research Questions

 How many real-world string kernels can AutomataSynth
correctly learn? With approximation?

 Does AutomataSynth learn automata that fit within the
design constraints of modern, automata-derived,
reconfigurable architectures?




Experimental Methodology

* Mine GitHub for string functions in top C repositories

» Use Cil framework to iteratively parse each source file and
extract all string functions

 Filter for duplicates and manual analysis to filter on Boolean
return type

» Considered 26 repositories, 973 separate string functions,
18 meaningfully-distinct real-world benchmarks

« AutomataSynth did not support 3 due to functionality of underlying
string solver (e.g., no math on characters)




Benchmark Project

git offset 1st component Git: Revision control

checkerrormsg

. jg: Command-line
SulSELaiell JSON processor
skipline
end_line

start_1line Linux: OS kernel

is_mcounted section_name

is_numeric_index MASSCAN: IP port
is_comment scanner
AMF_DecodeBoolean

cf_is_comment S
— OBS Studio: Live

streaming and
recording software

cf _is splice
is_reserved name

has start code

Openpilot: Open-

stbtt isfont ..
— source driving agent

LOC

14
17
11
11
54
17
11

28
22
i)
18

24

Member
Queries

4,090
32,664
189,013
7,663
510,623
206,613
672,041
10,727
4,090
2,557
4,599
1,913
240,705
10,213

RS EE

Term.
Queries

N 0O N N NI N W N DD AP O W NN

o1

States

2
15
35

3
44
46
57

B NN DA

42

19

Runtime
(min)

0.12
1436.58
1438.47

4.90
491.88
80.22
1439.98

4.95

0.23

0.07

5.00

0.05
1424.48

0.08

0.22

Correct

Approx.
Approx.

<

LSS SO U SO S R S



Member Term. Runtime
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AutomataSynth Summary

* Framework for accelerating legacy Boolean string kernel
functions using FPGAs

» Constructs a behaviorally-equivalent automaton that can be
accelerated with an FPGA

* Novel combination of Angluin-style learning with software
model checking and string solvers

» Successfully construct equivalent (or near equivalent) FPGA

designs for more than 80% of real-world benchmarks mined
from GitHub

* Provides legacy support and performance



RAPID: A High-Level
Language for Portable
Automata Processing
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RAPID at a Glance

* Provides concise, maintainable, and efficient
representations for pattern-identification algorithms

* Conventional, C- or Java-style language with
domain-specific parallel control structures

* Excels in applications where patterns are best
represented as a combination of text and
computation

 Compilation to automata supports execution on AP,
FPGAs, CPUs, and GPUs




Parallel Control Structures

* Concise specification of multiple, simultaneous
comparisons against a single data stream

» Support common pattern search paradigms

» Static and dynamic thread spawning for massive
parallelism support

* Explicit support for sliding window computations

ONITBDELGMVUDBQZZDWIEFHPTG@ZBGEXDGHXSVCMKADSKF JOKLGJADSKGOWESIOHGADHYCBGOASDGRAEGKQEYKPREBN...
L



Multi-Architecture System Overview
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Experimental Results (Summary)

» Successfully ported benchmarks from real-world
applications (expressiveness)
 Demonstrated RAPID can implement regular expressions

» 2-8x more compact than scripts generating automata and
13-71x more compact than defining automata (scalability)

* RAPID size remains constant or grows sublinearly with application
instance size

* Overheads of compiled RAPID on FPGA and AP are within
15% of hand-optimized automata (performance)

« Automata optimizations supports more stable porting of
applications across architectures than OpenCL
(performance)




RAPID Summary

RAPID allows developers to write new pattern-searching
programs for hardware accelerators

 Programs compile to a set of finite automata

 Domain-specific parallel control structures support common tasks

* Programs are significantly more concise than hand-crafted
automata

RAPID programs can execute on a wide variety of hardware
platforms (FPGA, AP, CPU, GPU, etc.)

» Portability of automata provides more stable performance across
architectures

* Provides scalability and performance




INnteractive Debugging for
High-Level Languages and
Accelerators
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Where do we stop?

« Breakpoints annotate expressions/statements to specify
locations to pause execution for inspection
* Traditional notion relies on instruction streams

 Mechanism does not apply directly to architectures with no
instructions (e.g., FPGAs, AP)

« Key Insight: Automata computation driven by input
« Set breakpoints on input data, not instructions

» Supports use case of stopping computation at abnormal behavior
« Can also provide abstraction of traditional breakpoints




Capturing State

* Process input data up to
breakpoint

» State of automata is compact

* O(n) in the number of states of the
NFA

» Repurpose existing hardware to
capture
« AP: State vector cache

 FPGA: Integrated Logic Analyzers
(ILAs) and Virtual 1/O pins (VIOs)
allow for probing of activation bits

 Cache state vectors to decrease
latency

[ RAPID Program }

Virtual 10 (FPGA)

State Vector Cache
(AP)




Bridging the Gap

* Developer can set breakpoint in program or data
« Automatically translate this location to automaton states

 Use hardware test equipment to monitor and read state
Information in the circuit

« Automatically translate HW information back to program
source code

Devieos




Experimental Results Summary

« Using server-class FPGA and standard ANMLZoo
benchmarks, we found debugging required 3x logic
elements and 6x register elements of baseline designs
(scalability)

* Debugging of ANMLZoo benchmarks can occur at ~80% of
baseline clock frequencies (performance)

« Human study of 61 undergraduate and graduate
orogrammers found statistically significant increase in fault
ocation accuracy (ease of use)

« Debugger aided novices and relative experts alike




Debugging Summary

» Developers are now able to debug on FPGAs using high-
level languages (e.g., RAPID)

* Bridge the semantic gap by storing mappings between
program expressions and low-level hardware resources

» Leverage Virtual I/O on FPGAs to capture state
« Automata abstraction produces minimal state to capture

* Provides performance, scalability, and ease of use




Architectural Support for
New Application Domains

10. March 2020 K. Angstadt — PhD Dissertation



Hardware/Software Co-Design
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Two New Application Domains

XML Parsing

» Parsing of data central to
most (all?) data processing
pipelines

« XML is one of the most
common formats

 Parsing notoriously difficult
to accelerate

Detecting Security Attacks

e Continual cat and mouse
game

« Recent discoveries of
hardware bugs leave billions
of devices vulnerable

* Current fixes are costly
and/or ineffectual
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ASPEN Supports Richer Analyses

* Accelerated in-SRAM Pushdown ENgine

« Scalable processing engine that uses LLC slices to
accelerate Pushdown Automata computation

* Custom five-stage datapath using SRAM lookups can
process up to one byte per cycle

« Optimizing compiler supports existing grammars, packs
states efficiently, and reduces the number processing stalls

* Provides additional cache when not in use



Where Is ASPEN?
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XML Parsing Experimental Results
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Processor Designs are Flawed

TECHNOLOGY

The New Wav Your Computer Can Be Attacked

umSpectre and Meltdown explained: What they
“'are, how they work, what's at risk

BRU

Spectre and Meltdown are the names given to a trio of variations on a vulnerability that affects
nearly every computer chip manufactured in the last 20 years. The flaws are so fundamental
and widespread that security researchers are calling them catastrophic.
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Understanding Spectre and Meltdown

« Conditional branches (if statements) are slow
* Time needed to determine next instruction to execute

« Modern processors use speculation to guess the next
Instruction to execute

 When the processor guesses wrong, it can "undo” running the
speculated instruction

 Modern computers use caches to speed up access to data

* Processors do not “undo” changes made to cache data as a result
of speculation

« Careful programming combines misprediction and caching to
steal information



Anomaly Intrusion Detection

- Fixing hardware takes time and has significant cost

* |n the meantime, can we detect attacks with minimal
modifications?

« Key Idea: Run known good programs many times to learn
correct behavior of the software

« Use this model to categorize other running programs

« What do we monitor?

* Previous work monitored sequences of system (0OS) calls
« Does not capture the speculative behavior we want to monitor
* Instead, monitor sequence of memory accesses



Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata
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Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training. AABACCBBC

Memory

A B C D E

Testing AAECD
)

Memory

A B C D E




Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training. AABACCBBC

Memory

Testing AAECD
Memory
.




Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata

Training AABACCBBC

Memory

Testing AAECD
Memory




Basic Approach: Sliding Windows

* Record sequences of memory addresses accessed by a
program during execution

- Sliding windows captures order in the sequences
« Windows from training stored in a dictionary
« Can be encoded using finite automata
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MARTINI: Detecting Attacks

* For real-time monitoring, use a small hardware accelerator
that executes automata
« Embedded in the cache of the processor

* Dictionaries need simplification to embed in processor
* Improve interaction with other security and system abstractions
 Fit within hardware resource constraints

* Three primary techniques




MARTINI: Detecting Attacks

« A-windows: to mitigate overfitting due to ASLR, we store
the difference between subsequent memory accesses

* Truncation: to mitigate difference between physical and
virtual addresses, we truncate all deltas to 8 bits

« Mask selectable
* Lower 7 + sign bit worked well in our experiments

« Compression: to reduce state space (hardware utilization),
we represent windows with unordered sets

 More permissive but smaller




Where is MARTINI?
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Experimental Methodology

 Benchmark suite of real-world applications and exploits

 GNU Coreutils programs
« PARSEC benchmarks
« Exploits: Spectre, Meltdown, Objdump CVE, DNSTracer CVE

» Use instrumented QEMU and Pin tools to collect traces
« 2,400 program traces and over 13 billion memory accesses

* Simulate MARTINI with custom version of VASIm
« Simulate address delta, automata core, and trigger arbitration units




Guliding Research Questions

* Do sequences of memory accesses differentiate programs?

* |s MARTINI able to detect malicious inputs to trained
programs?

» Can MARTINI detect anomalous programs, including recent
hardware attacks?




MARTINI can Detect Attacks
ROC
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Dictionary trained on 60% of Coreutils
traces

« Testing on held out Coreutils traces,
Spectre, Meltdown, Objdump CVE,
DNSTracer CVE

« AUC = 0.9954

 100% true positive = 4.4% false positives
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Architectural Support Summary

« Extend expressive power of current automata-derived
architectures to support DPDA (and parsing)

« Custom b5-stage datapath for executing DPDA
» 18.5x faster for parsing XML than state-of-the-art parsers

« Custom datapath for detecting security attacks
» Based on sliding windows of abstracted memory accesses
« Can detect recent hardware exploits (e.g., Spectre, and Meltdown)

« Architectures provide scalability, and performance for
new application domains



Dissertation Overview

* Research Contributions
» Acceleration of Legacy Code
« High-Level Programming Language: RAPID
 High-Speed, Interactive Debugger for Hardware Accelerators

 Hardware Support for New Application Domains:

 In-Cache Accelerator for Parsing
* In-Cache Hardware Unit for Detecting Security Attacks

* Broader Impact and Mentorship
 Conclusions / Discussion




Broader Impact

* Tools to Promote Adoption: prototype tools used in this
dissertation are (being) released as part of MNCaRT, an
end-to-end automata processing ecosystem

« AutomataSynth, RAPID Compiler, DPDA compiler, MNRL state
machine language, VASIim (+DPDA)

* Appendix A

« Undergraduate Mentorship and Teaching: training the
next generation of researchers and introducing students to
the beauty of automata



Teaching and Mentorship

« Automata-based Instruction: lecture on string algorithms
(regex) in DS+A; lecture on language design in grad/undergrad
PL; guest lecture on automata processing in grad architecture;
guest lecture on accelerator debugging in grad PL

- Undergraduate Research Projects:

*MARTINI (Yujun Qin, Samuel Gonzalez, Linh Le)

TDebugging (Matthew Casias, UVA)

*Automata-based file carving and disk damage modeling (lan Bertram,
Michael Flanagan, Aniruddh Agarwal)

Automata-based surface detection (Emma Fass, Luke Merrick, Joe
Tidwell, UVA)

*Diversity in undergrad CS (Fee Christoph)

tQuadcopter Security (Kate Highnam, UVA) IlF;e_eFr“‘thetV;)eu"gﬁgaFt’;a'ication




Proposed Research (2018)

Four components to improve programming support for
hardware accelerators using automata abstractions

» High-level programming language (RAPID)

» High-speed, interactive debugging for RAPID on AP and FPGA

* In-cache accelerators
* For pushdown automata (ASPEN)
* For detection of security attacks

« Adapt legacy kernels for execution on hardware accelerators

Evaluation w.r.t. Performance & scalability, ease of use,
expressive power, and legacy support
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Dissertation Summary

 Hardware accelerators more commonplace—need for
programming models and maintenance tools

» Using finite automata as an abstraction, we developed a
programming model that provides performance &
scalability, ease of use, expressive power, and legacy
support

« AutomataSynth: porting legacy code to FPGAs

 RAPID: writing new pattern-searching programs for hardware
accelerators

* High-speed, FPGA-based debugger for RAPID programs

 Two in-cache accelerators for new applications
» Parsing of XML and detecting security attacks
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What is a Program??
Task: Blink a lightbulb

CPU (Python) FPGA (Circuit)

import gpiozero Clock
import time

A 4

led = gpiozero.LED(14) > cnt
..j'j
while True:

led.on() 1 20000 — out To nght
time.sleep(1)

led.off () 0

time.sleep (1) 0|4

Generally written in Verilog or VHDL language




Why Automata(Synth)?

 FPGA designs are often described in terms of state
machines

 Automata a versatile and broadly-applicable

« Can build on significant research effort accelerating state
machine execution

* Other high-level approaches (cf. HLS) generally fail to
abstract low-level architectural details

* Our approach decouples high-level program and low-level
Implementation




Reasoning About Strings

Mirrors low-
level string

String solver should support the following:
* Unbounded string length . Y
. Regular expression-based constraints over strings [RACIISYENclaRly
» Access to individual characters of strings C
« Comparison of individual characters and strings
« Reasoning about the length of strings

« Comparison between strings and bitvectors (treat characters as
numbers)***

« Ability to generate strings that satisfy a set of constraints

***Not currently supported




Example RAPID Program

macro frequent (String set, Counter cnt) {
[ foreach(char c : set) {
while(input() != c);

+

_ cnt.count();

network (String[] set) {
some(String s : set) {
Counter cnt;
— whenever (START_OF_INPUT == input())
frequent (s, cnt) ;
if (cnt > 128)
report,




Putting It all together

Standard Program Execution

g\g;:aelerator processes Abnormal behavior
______________________________________ observed _ __________ __ _____________.

Debugging Execution

v

Ler /> \ ) )
Accelerator processes "\ N User-defined breakpoint

data System-calculated
breakpoint

data

4 ‘ o
..... > I cooo[> __*
*~ ~
. Ma,o \ » ey
Accelerator Simulator Simulator Ping =
state vector processes state vector .




Traditional Breakpoints

RAPID Program

macro helloWorld() {
whenever( ALL_INPUT == input() ) {
foreach(char ¢ : "Hello") {
c == input();
}
‘input() = ' '
foreach(char ¢ : "world") {
c == input();
}
report;
}
3

network() {
helloWorld();

3

® ) Machine
A
RAPID O—0O—0O—0O—-0
Compiler
% Machine
(oo °

§ l 4

4

Accelerator processes data with Machine B

Reports occur when
line is executed

>

Accelerator processes data with Machine A

Input breakpoints
inserted at reports



Five Steps of DPDA Execution Per
Cycle

. Input Matché 5 ;
. Stack Match pop 0 Pop
. Action .y ¥ yay L
Lookup : R 1 o D
. Stack Update 0 o
. State Push 1" No Push

Transition




ASPEN
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Optimizations

Epsilon Merging e Goal: Reduce N
[A-Z] £ [A-Z] the number of
S S > S stalls while
No Push Push ‘a’ Push ‘a’ processing
. Input
Multipop < 4
€ € € € €
Pop 1 Pop 1 Pop 1 Pop 1 =) Pop 4
No Push No Push No Push No Push No Push

« Average of 65% reduction in epsilon states
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Compression Example

Dictionary contains: (c,a,t), (c,o,t), (c,o,w), and (d,0,9)

@

:
@

« Sacrifices accuracy for space
 Now accepts (c,a,w)
O to 6 states
* |In limit, reduces 2%4 states to
2,048 states

(=)



MARTINI can Differentiate Programs
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MARTINI can Detect Anomalous
Inputs

Pass rate vs. threshold (Interval size: 20000, decay: 0.50)
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Meta-Evaluation: System Performance

 Both ASPEN and MARTINI consume a portion of LLC

 What does this do to total system performance?

 Platform: Ubuntu 16.04, 192 GB RAM, 2 Intel Xeon Platinum
8275CL CPUs (36 cores, each) @ 3 GHz, 36 MB LLC per
processor, subdivided into 11 ways

« Experiment: execute PARSEC benchmarks 40 times and
measure wall clock time (20 with full cache, 20 with
reduced cache)

 Reduce by 1 way to simulate MARTINI footprint




Runtime Comparison with Reduced Cache
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Runtime Comparison with Reduced Cache

o m Full Cache

Reduced Cache
10000

1000 Runtime was reduced by 1.42% in the
worst case. The differences were not
statistically significant.
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