
LEVERAGING
LIGHTWEIGHT
ANALYSES TO AID
SOFTWARE
MAINTENANCE
ZACHARY P. FRY

PHD PROPOSAL

MAINTENANCE COSTS

For persistent systems, software
maintenance can account for up to 90%
of the software lifecycle costs.

90%

Requirements

Design

Implementation

Verification

Maintenance R.C. Seacord, D. Plakosh, and G. A.
Lewis. Modernizing Legacy Systems:
Software Technologies, Engineering
Process and Business Practices.
Addison-Wesley Longman Publishing
Co. Inc., Boston, MA, USA, 2003. 2

KEY PARTS OF THE MAINTENANCE PROCESS

Bug Reporting

3

File: …

Lines: …

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 keys.remove(s);!
 }!
}!

Bug Fixing

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

Update Documentation

MAINTENANCE PROCESSES IN PRACTICE

•  Manual bug reporting is costly
•  Reputation
•  Human effort

•  Automatic bug finders yield thousands
of bugs, requiring verification and
triage.

4

MAINTENANCE PROCESSES IN PRACTICE

5

1

10

100

1000

10000

D
ef

ec
t R

ep
or

ts

Benchmark Programs

Number of Automatically
Reported Defects by Program

MAINTENANCE PROCESSES IN PRACTICE

Bug reports come
in at an alarming
rate, humans
simply cannot
triage and fix
them all.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Confirmed New Bugs

Confirmed Resolved Bugs

2000 2012

OpenOffice bugs: 2000-2012

Automatic program repair

6

/* A reporter reporting
the number of page
faults since startup
should have units
UNITS_COUNT. */

MAINTENANCE PROCESSES IN PRACTICE

Fixing bugs means lots of code changes.

Comments are often overlooked
•  Out-of-date documentation

/* The number of tabs
currently open would
have UNITS_COUNT.
*/

7

MAINTENANCE PROCESSES IN PRACTICE

Automated techniques have helped to
facilitate the maintenance process.
However, the process remains costly.

Research question: Can we reduce the
effort necessary for specific parts of the
maintenance process, thereby reducing
the overall cost?

8

PROPOSAL THESIS

By using lightweight analyses to extract
and use latent information encoded by
humans in software development
artifacts we can reduce the costs of
software maintenance by relieving
bottlenecks in various stages
throughout the process.

9

RESEARCH CONSIDERATIONS

Overall Goal:
•  Reduce maintenance costs
Design Constraint:
•  Minimize additional human effort
•  Ease of incremental adoption
Overall Intuition:
•  Leverage information often overlooked

by existing techniques

10

THE REST OF THIS PRESENTATION

•  An overview of the proposed thrusts
•  Clustering Duplicate Automatically-

Generated Defect Reports
•  Improved Fitness Functions for Automatic

Program Repair
•  Ensuring Documentation Consistency

•  Proposed research timeline
•  Conclusion and Questions

11

Improved Fitness
Functions for Automatic
Program Repair

PROJECT OUTLINE

Clustering Duplicate
Automatically-Generated
Defect Reports

Ensuring
Documentation
Quality

12

File: …

Lines: …

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 keys.remove(s);!
 }!
}!

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

CLUSTERING DUPLICATE DEFECT REPORTS

Automatic bug finders successfully report
many bugs with little developer effort

Defect Reports

Verification and Triage

False
Positives

Actual
Defects

13

Bug Finder

CLUSTERING DUPLICATE DEFECT REPORTS

Automatic bug finders successfully report
many bugs with little developer effort
However…

Defect Reports

Verification and Triage

False
Positives

Actual
Defects

x 1000s

14

Bug Finder

CLUSTERING DUPLICATE DEFECT REPORTS

Intuitions: Duplicates are detrimental in
related fields.

15

Manual
Reports

Source
Code Code Clone

Detectors

Duplicate
Report

Detector

CLUSTERING DUPLICATE DEFECT REPORTS

Intuitions: Duplicates are detrimental in
related fields.

Manual
Reports

Source
Code

16

Code Clone
Detectors

Duplicate
Report

Detector

CLUSTERING DUPLICATE DEFECT REPORTS

Hypothesis: By exploiting the special
structure of automatic defect detection
tools’ output we can accurately cluster
defect reports to save effort by handling
similar defect reports aggregately.
 Success depends on:

•  Internal accuracy of the produced clusters
•  Amount of effort saved from clustering

defect reports

17

CLUSTERING DUPLICATE DEFECT REPORTS

18

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

CLUSTERING DUPLICATE DEFECT REPORTS

19

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

CLUSTERING DUPLICATE DEFECT REPORTS

20

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

CLUSTERING DUPLICATE DEFECT REPORTS

21

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

CLUSTERING DUPLICATE DEFECT REPORTS

Clustering technique:

R3

R5

R7

R4 R6

R9

R8
R10

R1 R11

R2

22

R12

CLUSTERING DUPLICATE DEFECT REPORTS

Clustering technique:

R3

R5

R7

R4 R6

R9

R8
R10

R1 R11

R2

23

R12

CLUSTERING DUPLICATE DEFECT REPORTS

Preliminary Cluster Accuracy vs. Effort Savings

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Ef
fo

rt
Sa

ve
d

(%
 o

f d
ef

ec
ts

 c
ol

la
ps

ed
)

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All Java Benchmark Programs

Our Technique
ConQAT

PMD
Checkstyle

24

CLUSTERING DUPLICATE DEFECT REPORTS

Preliminary Cluster Accuracy vs. Effort Savings

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Ef
fo

rt
Sa

ve
d

(%
 o

f d
ef

ec
ts

 c
ol

la
ps

ed
)

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All Java Benchmark Programs

Our Technique
ConQAT

PMD
Checkstyle

25

Saving more
effort at all levels

of accuracy

CLUSTERING DUPLICATE DEFECT REPORTS

Preliminary Cluster Accuracy vs. Effort Savings

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Ef
fo

rt
Sa

ve
d

(%
 o

f d
ef

ec
ts

 c
ol

la
ps

ed
)

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All Java Benchmark Programs

Our Technique
ConQAT

PMD
Checkstyle

26

Capable of
perfect accuracy

Improved Fitness
Functions for Automatic
Program Repair

PROJECT OUTLINE

Clustering Duplicate
Automatically-Generated
Defect Reports

Ensuring
Documentation
Quality

27

File: …

Lines: …

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 keys.remove(s);!
 }!
}!

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

IMPROVED FITNESS FUNCTIONS

Automatic program repair

GenProg

Bugs

?
28

IMPROVED FITNESS FUNCTIONS

Automatic program repair can fix bugs.

Bugs

Fixes

29

GenProg

IMPROVED FITNESS FUNCTIONS

Automatic program repair can fix bugs.

Bugs

Fixes

30

GenProg

IMPROVED FITNESS FUNCTIONS

•  Measuring proximity to a fix
•  Insert, delete, and swapping lines in the program

31

d(135)

NO FIX

FIX
i(251,205) i(774,111) s(598,324)

IMPROVED FITNESS FUNCTIONS

•  Measuring proximity to a fix
•  Insert, delete, and swapping lines in the program

32

d(135)

NO FIX

FIX
i(251,205) i(774,111) s(598,324)

i(251,205) i(774,111) s(598,324) d(63) ✓ ✓ ✓ ✗ 75%

IMPROVED FITNESS FUNCTIONS

•  Measuring proximity to a fix
•  Insert, delete, and swapping lines in the program

33

d(135)

NO FIX

FIX
i(251,205) i(774,111) s(598,324)

i(251,205) i(774,111) s(598,324) d(63) ✓ ✓ ✓ ✗ 75%

d(84) s(844,265) i(774,111) i(735,431) ✓ ✗ ✗ 25% ✗

IMPROVED FITNESS FUNCTIONS

•  The current model of fitness does not
correlate well with proximity to a fix.

Intuitions:
•  Not all test cases are created equal.
•  Not all bugs are created equal.
•  Not all fixes are created equal.
We propose to address the naivety of the
current fitness representation.

34

IMPROVED FITNESS FUNCTIONS

Hypothesis: By taking into account
previously unused information about test
cases, bugs, and fixes we can better
inform the evolutionary bug fixing
process to fix bugs faster and more often.
Success depends on:

•  Increase the number of bugs fixed
•  For bugs that can currently be fixed, shorten

the time it takes to fix them

35

IMPROVED FITNESS FUNCTIONS

Approach: weight test
cases based on known fixes

36

Test
Case 1

Test
Case 2

FIX NO FIX

IMPROVED FITNESS FUNCTIONS

Approach: weight test
cases based on known fixes

37

Test
Case 1

Test
Case 2

FIX NO FIX

IMPROVED FITNESS FUNCTIONS

Approach: weight test
cases based on known fixes

38

Test
Case 1

Test
Case 2

FIX NO FIX

0.8 0.2

IMPROVED FITNESS FUNCTIONS

Evaluation:
•  How many more bugs can we fix?

•  55 out of 105 bugs fixed in the most recently
published work1

•  How much can we speed up fixes?
•  Computational time and monetary cost

1.  Claire Le Goues, Westley Weimer, Stephanie Forrest: Representations and Operators for Improving
 Evolutionary Software Repair. Genetic and Evolutionary Computing Conference (GECCO) 2012

39

Improved Fitness
Functions for Automatic
Program Repair

PROJECT OUTLINE

Clustering Duplicate
Automatically-Generated
Defect Reports

Ensuring
Documentation
Quality

40

File: …

Lines: …

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 keys.remove(s);!
 }!
}!

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

•  “The documentation becomes
increasingly inaccurate thereby
making future changes even more
difficult.” (Parnas)

•  Real developers:
•  76% agree documentation is crucial to

understanding
•  But poorly executed in practice (27%

complete, 33% consistent)

41

ENSURING DOCUMENTATION QUALITY

42

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

43

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
HashMap validMap = new HashMap();!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isValid()){!
 validMap.put(s,map.get(s));!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

44

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
HashMap validMap = new HashMap();!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isValid()){!
 validMap.put(s,map.get(s));!
 map.remove(s);!
 }!
}!

INCONSISTENT!
Comment incorrectly describes
the functionality

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

45

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 if(s.equals(“Primary”))!
 printf(“debug: %s\n”, !
 map.get(s).toString());!
 map.remove(s);!
 }!
}!

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

46

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 if(s.equals(“Primary”))!
 printf(“debug: %s\n”, !
 map.get(s).toString());!
 map.remove(s);!
 }!
}!

INCOMPLETE!
Comment fails to describe
all relevant functionality

ENSURING DOCUMENTATION QUALITY

•  Reduce understandability over time
Intuitions:
•  Existing tools can accurately extract

concepts from code and generate
comments about those concepts.

•  There should be natural language
overlap in a high quality comments and
the associated code.

47

ENSURING DOCUMENTATION QUALITY

Hypothesis: By comparing concepts
extracted from the code with the existing
comments, we can accurately identify
inconsistent and incomplete
documentation.
Success depends on:

•  The accuracy of our incomplete and
inconsistent comment identification technique

•  The ease with which humans update and
understand comments when using our tool

48

ENSURING DOCUMENTATION QUALITY

Approach:

49

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 if(s.equals(“Primary”))!
 printf(“debug: %s\n”, !
 map.get(s).toString());!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

Approach:

50

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 if(s.equals(“Primary”))!
 printf(“debug: %s\n”, !
 map.get(s).toString());!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

Approach:

51

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 if(s.equals(“Primary”))!
 printf(“debug: %s\n”, !
 map.get(s).toString());!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

Approach:

52

Generated Documentation (DeltaDoc):

Now call printf if s is “Primary” !

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 if(s.equals(“Primary”))!
 printf(“debug: %s\n”, !
 map.get(s).toString());!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

Approach:

53

Existing comment
lacks this info, thus
is incomplete.

Generated Documentation (DeltaDoc):

Now call printf if s is “Primary” !

/*loop through all keys, removing !
 corrupted values from ‘map’*/!
Vector keys = !
 new Vector(map.keySet());!
for(String s : keys){!
 if(map.get(s).isCorrupted()){!
 if(s.equals(“Primary”))!
 printf(“debug: %s\n”, !
 map.get(s).toString());!
 map.remove(s);!
 }!
}!

ENSURING DOCUMENTATION QUALITY

54

Evaluation: Human studies
Study 1 – (FIX) – Humans identify and fix
low-quality comments with and without
our tool
Study 2 – (RATE) – Using the resulting
data set, have different humans identify
and rate the modified comments

ENSURING DOCUMENTATION QUALITY

Evaluation:
•  Compare our tool’s accuracy when

identifying low-quality comments with
humans’ abilities to do the same task
•  Use identification data from both

 FIX and RATE
•  Inter-annotator agreement vs. tool-human

agreement

55

ENSURING DOCUMENTATION QUALITY

Evaluation:
•  Measure our tools’ effectiveness in

helping humans identify and fix low
quality comments
•  Effort (time) in FIX
•  Use ratings from RATE to compare data from

groups in FIX

56

SUMMARY

We propose work that will specifically target
three parts of the maintenance process to
reduce the overall cost:
1.  Cluster automatically-generated defect

reports to facilitate triage and bug fixing
2.  Improve fitness functions to aid in

automatic program repair to fix more
bugs, faster

3.  Identify incomplete and inconsistent
comments to promote continued
documentation quality and foster
program understanding

57

COMPREHENSIVE GOALS - REVISITED

We desire techniques that add minimal
human effort
•  Techniques work “off the shelf”
•  Encourages incremental adoption

Use latent, often-overlooked information
•  Syntactic, semantic defect report fields
•  Test case quality, types of bugs/fixes
•  Natural language in code and comments

58

RESEARCH TIMELINE

59

Publications to date:
•  E. Schulte, Z. Fry, E. Fast, W. Weimer, S. Forrest. Software Mutational Robustness.

Genetic Programming and Evolvable Machines 2013. (under submission)
•  Z. Fry, W. Weimer. Clustering Static Analysis Defect Reports to Reduce Maintenance

Costs. International Conference on Tools and Algorithms for the Construction and
Analysis of Systems 2013 (TACAS). (under submission)

•  Z. Fry, B. Landau, W. Weimer. A Human Study of Patch Maintainability. International
Symposium on Software Testing and Analysis 2012 (ISSTA). (Acc Rate: 29%)

•  Z. Fry, W. Weimer. A Human Study of Fault Localization Accuracy. International
Conference on Software Maintenance 2010 (ICSM). (Acc. Rate: 26%)

Patch&Quality&[ISSTA&'12]&

Duplicate&Defect&Detec9on&

Enhanced&Fitness&Func9ons&

Documenta9on&Quality&

Op9onal&Documenta9on&Quality&
Journal&Submission&

Research&Period&

Publica9on&Lag&

2012&2011& 2013& 2014&

to
da

y&

ex
pe

ct
ed

&
gr
ad

ua
9o

n&

QUESTIONS?

60

