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Abstract

Software maintenance can account for up to 90% of a system’s life cycle cost. As a result, many
automated techniques have been developed to reduce the overall effort necessary to sustain software over
time. While many of these tools work well under certain circumstances, we believe that they could be
improved by taking advantage of large untapped sources of unstructured information that result from
natural software development. As the size and complexity of systems increases, taking advantage of such
previously-overlooked information is of paramount importance.

The proposed research will design lightweight analyses to extract latent information encoded by
humans in software development artifacts and thereby reduce the costs of software maintenance. We will
design analyses that apply throughout the maintenance process, focusing on three areas: (1) triaging
large collections of exposed defects; (2) guiding the search for automatic defect repairs; and (3) ensuring
the continued consistency of system documentation over time.

For each area of proposed research we aim to improve upon existing approaches to reduce the total
cost of software maintenance while requiring minimal additional developer effort. We will evaluate the
proposed work using these criteria on a diverse set of real world programs totaling millions of lines of
code to concretely show the reduction of maintenance cost and improvement upon existing processes.

1 Introduction

Software maintenance is the dominant cost in the life cycle of modern systems [10, 56]. In response, many
tools have been developed to reduce the overwhelming cost of finding and fixing bugs (e.g. [4, 15, 20, 23,
30, 31, 45, 47, 53, 71]) and to ensure long-term system understandability and evolvability (e.g. [11, 12, 13,
41, 55, 58, 59]). Despite these advancements, developers still struggle to handle the volume of maintenance
tasks that arise in practice [31].

While tools designed to facilitate the maintenance process are effective under certain circumstances,
many remain impractical in the face of real world constraints. For example, certain formal techniques may
not scale well to large programs with complex and diverse maintenance tasks [4, 53]. By contrast, some
techniques require wide-spread adoption and a large user base to be effective [45]. There is a conceptual
gap between the state-of-the-art work in many of these areas and full practical adoption. We aim to close
that gap by using light-weight analyses to develop generalizable techniques that can leverage unstructured
developer-created information and ease the maintenance burden from beginning to end.

Our key technical insight lies in the exploitation of human-centric sources of information in software arti-
facts and the application of lightweight analyses to find generic solutions for known problems throughout the
maintenance process. Previous work has shown that human factors (whether process- or information-based)
can greatly affect the maintenance process [27, 26]; we plan to improve maintenance tasks by analyzing this
latent human-created information. We also propose techniques that purposely require very little additional
time or developer effort; we hypothesize these will be broadly applicable to a variety of tasks and systems.

Specifically, we aim to reduce maintenance costs at multiple stages in the software maintenance lifecycle.
First, we will expedite the bug triage and verification process by clustering highly related, automatically-
generated defect reports using structured document comparison. Next, we will incorporate domain-specific
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knowledge into an existing automatic program repair framework to evolve quick and compelling bug fixes.
Finally, to foster persistent and proactive system quality, we will use concept recognition techniques to
identify incomplete and inconsistent code documentation and suggest high-level corrections.

For each research thrust we propose to evaluate our technique against state-of-the-art processes and
approaches to get a concrete idea of how much effort can be saved or how much additional work could be
done. Additionally, each technique should be broadly applicable — we propose to cluster defects produced by
a variety of tools, to help fix diverse bugs from various domains, and to identify several types of low-quality
comments in many languages. By better informing the maintenance process overall, we hope to reduce the
maintenance burden and ensure higher quality systems over time.

2 Research Overview and Challenges

We propose to reduce the cost of software maintenance by designing lightweight analyses to extract and
analyze latent information encoded by humans in software development artifacts. Many existing software
maintenance techniques have proven effective but remain infeasible for applications of a certain size or com-
plexity. We aim to alleviate three such bottlenecks via lightweight analyses and machine learning techniques.

One over-arching intuition we have is that code inherently contains actionable artifacts left by humans
that many existing techniques fail to recognize or use. Programmers encode their domain knowledge in the
code they write and we hypothesize that extracting and using such information can yield a useful source of
additional knowledge when performing software maintenance tasks.

2.1 Clustering Duplicate Automatically-Generated Defect Reports

Software defects are notoriously hard to expose and locate. In-house testing and formal verification methods
can both be quite expensive. Similarly, relying on end-users to find and report bugs is both costly and
detrimental to consumer perception and product quality. As a result, there are many techniques designed to
automatically find such defects to aid the software maintenance process [5, 6, 7, 30, 45, 48]. However, such
tools can suffer from false positives, spurious warnings, and duplicate reports, all of which negate potential
savings in maintenance effort [2, 67]. While previous work has examined the problem of false positives, the
issue of identifying duplicate automatically-generated defect reports remains largely unexplored.

Previous work has shown that code clones are prevalent in practice and that they can lead to defects when
changes are not made universally across all instances of copied and pasted code [8]. Static analysis-based
defect detection techniques can produce thousands of reports for a single project — all of which have to be
manually examined and triaged. Large classes of related reports are often produced by static analysis defect
location techniques because of the patterned-based nature of their search methods and the prevalence of
code clones in real systems. In an examination of the output of two popular static bug finders when run on
14 large open-source programs, we found that over 30% of defect reports (over 2,600 actual reports) could
be clustered in an effort to save time by handling similar defect reports aggregately.

Explicitly targeting both real and spurious reports, we desire a method for accurately clustering related
defect reports to facilitate the maintenance process. In practice, such clusters could be triaged and even
fixed or discarded aggregately, thus reducing the overall developer effort necessary to process automatically-
produced defect reports. We know of no existing work specifically tailored to this problem and find that
existing code clone detection techniques are ineffective because the types of information inherent in an
automatically-generated defect report are sufficiently different than those expected by such tools.

2.2 Improved Fitness Functions for Automatic Program Repair

The topic of automated program repair has gained popularity as a viable defect fixing strategy in recent
years [35, 50, 70, 71]. Despite ample progress in the area, evolving quick and easy repairs for complex bugs
in large systems remains difficult in practice because of large search spaces and the complicated nature of
some bugs and their respective fixes.
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One state-of-the-art program repair technique, GenProg, exploits observed biological and genetic princi-
ples to evolve bug fixes from existing code [71]. A key component of this algorithm is the fitness function
(i.e., relative correctness) of any individual candidate fix (i.e., program variant) throughout the process.
GenProg’s current fitness representation is based on the number of regression test cases a given program
variant passes. By promoting program variants with desirable qualities (e.g. correct functionality), bug fixes
are evolved over time. While previous work has examined the possibility of improving fitness functions to
speed up the process and elicit more fixes in practice [1, 24, 36, 73], there are still many bugs that GenProg
fails to fix in a practical amount of time given ample resources [42].

The existing model of variant fitness in the GenProg framework assumes that all test cases are equally
representative of the desired program behavior. We investigated the validity of this assumption by examining
the mutants created when fixing 10 bugs from a previous study [42]. Using 6,675 mutants created by
GenProg as a part of the bug fixing process, we found significant variation in the correlations (using the
Pearson product moment coefficient) between the outcome of any single test case and the mutants’ measured
similarity with an eventual fix. Specifically, some test cases exhibit over 4.5 time more correlation with edits
indicative of a future fix than others. This would suggest that the current scheme of using all test cases
with equal weights may not be the optimal method of measuring fitness. Additionally, the existing notion of
variant fitness does not universally exhibit high fitness-distance correlation [38]. That is, for a given variant,
a higher measured fitness value does not necessarily indicate code changes that are closer to a fix for the
defect in question. Using data collected from 20 bugs fixed in previous experiments [42], we calculated the
current fitness-distance correlation of the GenProg tool to be 0.145 (in previous work, values between -0.15
and 0.15 are commonly considered “uncorrelated” [38]). We thus aim to design a new fitness function
that more closely correlates with this notion of how close a given mutant is to a valid fix without a priori
knowledge of what such a fix looks like.

2.3 Ensuring Documentation Completeness and Consistency

Software documentation, specifically in the form of code commenting, is essential to program understand-
ing [21, 62, 65, 72]. Consistent documentation changes should coincide with code changes (such as patches
to fix bugs) to ensure the continued quality and understandability of a code base. However, previous work
has shown that comments very rarely co-evolve with code in real-world systems [25]. Even when specific
documentation requirements are implemented, developers fail to also maintain documentation at all levels
of granularity [40]. In previous work, we have found that humans overwhelming identify high quality docu-
mentation as one of the most important aspect of code maintainability [26]. Siy et al. similarly found that
a non-trivial portion of the issues that arise during industrial code inspection concern the quality of docu-
mentation [57]. Recently, there has been preliminary work examining both the completeness of comments
and the consistency of comment updates with respect to future defects [32, 41, 55]. In all cases, low-quality
and inconsistently updated comments correlated with higher defect density.

Figure 1 and Figure 2 illustrate the types of documentation we propose to identify. These examples of
inconsistent and incomplete comments, respectively, are taken directly from the Mozilla code base. Humans
happened to notice both of these low quality comments and change them to better reflect the code being
documented, but previous work suggests many such comments go unnoticed in practice [55]. Additionally,
these examples are from an interface definition and a solitary method call, respectively. In both cases
the associated code offers little information to aid in understanding, which makes complete and consistent
documentation even more important. Low quality documentation like that depicted can lead to a lack of
understanding and thus cause developers to introduce bugs. For this reason, we desire a way to automatically
detect such comments to ensure persistent system quality.

Many tools have been developed to aid in maintenance tasks relating to editing code but relatively few
exist to aid in documentation. Such tools have generally focused on automatically generating documentation
where none exists [12, 13, 58, 59]. Preliminary studies have focused on very specific classes of incomplete or
inconsistent comments (specifically, only for Javadoc elements [55] and less than 30 comments each in large,
open source programs [63, 64]), but there exists no general approach for identifying low-quality comments
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/* - COUNT: The amount contains the cumulative number of times some event

* has occurred since the application started up. For instance, a

* reporter reporting the number of page faults since startup should have

* units UNITS COUNT. */

* - COUNT: The amount is an instantaneous count of things currently in

* existence. For instance, the number of tabs currently open would have

* units COUNT. */

...

1 const int32_t UNITS_BYTES = 0;
2 const int32_t UNITS_COUNT = 1;

Figure 1: An example of an inconsistent comment taken from the nsIMemoryReporter.idl file in the Mozilla
project. The old, inconsistent comment appears highlighted in red while the human-corrected, consistent
comment appears in blue. The commit message associated with change was “Update the comment for
UNITS COUNT in nsIMemoryReporter.” The two comments give conflicting explanations of the variable
UNITS COUNT.

of arbitrary types. While these techniques apply formal, strict models of completeness and consistency, they
mostly overlook the idea of “concept similarity” which could be used compare the language in the source
code with that of the comments. Unlike existing techniques, this approach does not require the presence
language-specific commenting paradigms or the existence of specific natural language patterns and can be
used generically on any code or comment. Previous work suggest that up to 34% of comments may be
incomplete and up to 67% may be inconsistent with respect to their associated code in practice [55] and thus
we aim to develop more precise models of documentation quality.

3 Proposed Research

We propose three main research thrusts related to improving parts of the software maintenance process:

1. To cluster related automatically-generated defect reports.

2. To develop a better fitness function for evolutionary program repair.

3. To create a generic model of comment completeness and consistency.

In the rest of this section we describe our approach to each problem in detail and in Section 4 we lay out
our experimental design and evaluation for each research thrust.

3.1 Analysis and Characterization

Despite attempts to automate software maintenance tasks, the overall process remains costly in practice.
Automatic bug finders can greatly reduce the number of post-release defects in software, but can also produce
thousands of defects that have to be manually inspected and triaged. Automatic program repair can evolve
fixes for some of these defects, but fails to fix a substantial percentage of real-world bugs in practice. In such
a time-constrained environment, developers often focus on fixing more bugs or adding new features in favor
of ensuring persistent documentation and overall continued code quality.

Many existing automated maintenance processes favor absolute correctness over overall cost and total
gain in system quality. Human-centric information may be under-utilized because it is mistakenly viewed as
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// Reset currentURI.

// Reset currentURI. This creates a new session history entry with a new

// doc identifier, so we need to explicitly save and restore the old doc

// identifier (corresponding to the SHEntry at activeIndex) below.

1 browser.webNavigation.setCurrentURI(this._getURIFromString("about:blank
"));

Figure 2: An example of an incomplete comment taken from the nsSessionStore.js file in the Mozilla
project. The old, incomplete comment appears highlighted in red above while the human-corrected, complete
comment appears in blue below. The commit message associated with this change was “Bug 647028 -
Followup: Add comment.” The additional information in the updated comment explains the method call’s
effect on the program state.

unreliable or too system-specific. We propose to develop light-weight techniques for extracting such informa-
tion and using them to inform the maintenance process. By inferring structured representations for various
software artifacts and drawing inspiration from areas like natural language processing and machine learning,
we plan to augment existing automatic maintenance techniques to make them more effective at ensuring
long-term system quality. More specifically, by streamlining various parts of the process we hope to triage
bugs faster and more effectively, fix more of the resulting defects, and ensure post-change documentation
consistency, which we hypothesize will result in higher long-term system quality.

3.1.1 Research: Clustering Duplicate Automatically-Generated Defect Reports

While automatic bug finding techniques are effective at identifying pre-release defects, the pattern-based
nature of many such tools leads to large classes of highly related defect reports. When faced with thousands
of such reports, triaging and possibly even fixing related reports aggregately can save considerable developer
effort. Existing duplicate detection techniques (targeting either code clones or similar manually-created
defect reports) take either whole contiguous code segments [14, 18, 51] or unstructured natural language
text [33, 60, 68] as input. By contrast, static analysis-based defect finders output fragmented code lines in
addition to contextual and semantic information related to the defect in question. Thus, we hypothesize
that by exploiting the special structure of such tools’ output we can accurately cluster defect reports to save
effort.

We propose to construct a model of defect report similarity that compares individual document sub-
parts using various lightweight similarity metrics. In previous work we have successfully measured aggregate
document similarity by comparing document sup-parts and experimentally learning the relative importance
of each sub-comparison. This divided approach admits the use of specific types of similarity metrics given
the type of information present and helps to promote generality — the technique can accept a wide array
of defect report formats as input, handling missing sub-components gracefully. While existing code clone or
duplicate defect report detection techniques generally only focus on syntactic information, our approach will
also consider semantic information. We thus hope to identify not only obviously similar clusters of defect
reports but also those containing syntactically-unique but semantically-related defect reports.

3.1.2 Research: Improved Fitness Functions for Automatic Program Repair

Accurately evaluating the relative correctness or fitness of a given program variant is crucial to evolving
repairs through genetically-inspired processes. The state-of-the-art method for measuring fitness simply
counts the number of regression tests a given program variant passes to quantify repair suitability. This
notion of fitness does not, however, take into account how close a given variant is to fixing the bug in
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question. We hypothesize that by weighting test cases according to both their ability to guard existing
desired program behavior and also their relative importance when fixing previous bugs, we can better inform
the evolutionary bug fixing process.

We propose to use a bug fix dataset published in previous work [42] to develop and evaluate our more
effective fitness function. First, we propose to overturn that work’s assumption that all test cases are created
equal. We will measure the relative importance of various test cases using the measured “strength” of a given
variant (i.e. its actual, post hoc fitness). Any test case that is passed by variants with high measured fitness
but fails on less-strong variants could then be weighted highly in our proposed fitness function (i.e, because of
its high discriminatory power). In addition to identifying important test cases, we also propose to identifying
fit variants directly based on their characteristics. We propose several possible plans for accomplishing this
goal:

1. We will measure how many of a variant’s structural mutations are part of any eventual successful
minimized patch. Put another way, this measures the number of code changes shared by both the
variant and any known fix for the associated bug. Thus, we can use knowledge of bugs that we can fix
in the present to try to learn better fitness functions for fixing bugs discovered in the future (or any
bug GenProg currently fails to find a patch for).

2. We plan to explore the possibility that neutral mutations (those that do not change program variant’s
performance on test cases when the mutation is applied) may add functional diversity and thus be
beneficial. We hypothesize that bugs with complex fixes may benefit from larger, more sweeping
functional changes like those made possible by neutral mutations. Applying many neutral mutations
by definition does not degrade the program behavior as outlined by the regression test suite, but could
introduce unspecified behavioral changes that, when combined over time, may eventually steer a genetic
search towards fixes for complex bugs.

3. If we find that there is an intrinsic difference between the strategies needed to fix the bugs presented in
previous work and those currently eluding state-of-the-art techniques, we plan to cast known correct
human-crafted fixes in the format used by GenProg and similarly use these fixes to measure the subset
of shared mutations as described above in item (1). That is, we plan to use human-written fixes as a
ground truth for what it means to be close to a repair.

4. A more speculative strategy would be to examine human fixes, specifically noting desirable traits with
respect to code changes that lead to patches. It is possible, for instance, that moving contiguous
statements is beneficial when trying to evolve patches and thus groups of mutations that are locally
close should be rewarded. Conversely, it is conceivable that moving certain types of statements (e.g.
variable assignments) does not often coincide with bug fixes in real world patches and should thus be
discounted as part of a fitness function. While it is difficult to enumerate all possible features in this
scenario, we hypothesize that rigorous examination of many real world patches may bring such trends
to light. While similar notions have previously been considered locally when selecting mutations [43]
they have not been considered globally for evaluating fitness.

In addition to learning weights for test cases, we hypothesize that run-time program invariants may be
learned to further inform a more effective fitness function. Such invariants have been successfully used to
inform fault localization [17, 46], expose incorrect interface usage [5], and guide the development of high-
coverage test suites [3] in the past. For a given program, we can mine run-time invariants with values that
correlate with the measured strength of established variants from bugs previously fixed in the system. Thus,
any program variant that establishes an invariant known to be crucial when fixing similar bugs previously
could be rewarded by our new fitness function.

Finally, the previously mentioned hypotheses assume that test cases and invariants found to be related
to fixing a given bug will be similarly helpful in fixing similar future bugs in the same program. We will
explicitly evaluate this hypothesis to ensure that these properties are generalizable across different bugs. We
hypothesize that a combination of these insights will allow us to evolve patches for bugs that GenProg was
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previously unable to fix while also speeding up existing fixes by more effectively measuring the fitness of
program variants throughout the evolutionary process.

3.1.3 Research: Ensuring Documentation Consistency

Ensuring that documentation completely and consistently describes its associated code amidst a high volume
of code changes is paramount to ensuring the long-term quality of a system [21, 32, 41, 55, 62]. We propose
to develop a concept-based method for identifying incomplete and inconsistent comments, leveraging both
automatic documentation techniques and lightweight similarity metrics. A concept-based method takes
into account the frequency, specificity, and locality of the language used in documentation or source code to
identify an arbitrary number of high-level, abstract concepts (comprised of both objects and actions) relevant
to the text in question. This differs from existing approaches that attempt to describe a predetermined set of
concepts based on code structure in that it can automatically infer important, abstract concepts that should
be documented (rather than simply require documentation for all function arguments and return types, for
instance). Established automatic documentation techniques necessarily identify concepts in code that are
deemed relevant to its functionality. We will first use these tools to obtain an “oracle” set of important
concepts for each function. We can thus compare existing comments with this comprehensive notion of what
information an ideal comment would contain to determine if the existing documentation adequately and
correctly describe the associated code.

Both existing comments and automatically generated documentation can be viewed as documents for
which we will measure similarity. We hypothesize that a combination of established language similarity
metrics (e.g. latent semantic analysis (LSA) [22], latent Dirichlet allocation (LDA) [9], TF-IDF [37], etc.)
can adequately identify incomplete and inconsistent comments by comparing them with the ideal generated
documentation. While a single metric may prove sufficient, the problem might require a weighted combination
of multiple metrics [54]. By using an annotated set of high-quality, incomplete, and inconsistent comments
we can experimentally determine a similarity cutoff for which our technique achieves the highest accuracy
when attempting to identify low-quality comments.

In the event that we cannot accurately identify inconsistent comments by comparing oracle documentation
with existing documentation, we plan to investigate a more abstract, concept-oriented approach with respect
to the code itself. While we hypothesize that automatic documentation generation techniques are sufficiently
accurate when describing code, it is possible that they will fail to adequately identify the underlying concepts,
thus hindering our ability to identify low-quality comments. However, our previous work suggests that
the aforementioned natural language similarity techniques can be effective at comparing human-written
documents with source code if care is taken to systematically extract the relevant information from the
code [28].

Finally, there are two distinct types of low-quality comments: those that offer incomplete descriptions
of the code [41] and those that incorrectly describe the functionality of the code [34]. We hypothesize that
incorrect comments may be more detrimental to the overall understandability of a system than comments
that are incomplete. Differentiating between the two groups is simple; conceptually, the first type of comment
would have a subset of the concepts that the code exhibits while the second type of comment would have
a disjoint set of concepts when compared with those present in the code. We propose to study the relative
frequency and severity of both types of comments to get a better understanding of the current state of
real-world systems and the problems they face with respect to documentation.

4 Proposed Experiments

In this section, we outline our proposed experimental methodology for each of the three proposed research
areas. While each area of research directly investigates and improves upon a distinct maintenance task,
success in all areas will help to reduce the overall cost of the entire maintenance process.
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Figure 3: Pareto frontier plotting our technique’s
accuracy when clustering defect reports as well
as the aggregate “effort savings” resulting from
clustering for C benchmark programs.
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Figure 4: Pareto frontier plotting our technique’s
accuracy when clustering defect reports as well
as the aggregate “effort savings” resulting from
clustering for Java benchmark programs.

4.1 Experiments: Clustering Duplicate Automatically-Generated Defects

The goal of clustering duplicate automatically-generated defect reports is to reduce the cost of report triage
and bug fixing by allowing related defects to be handled in similar ways. Clustering duplicate defects thus
has two incomparable goals: cluster accuracy (the internal relatedness of the defect reports in the produced
clusters) and the maintenance effort saved from triaging and even fixing clustered defects in similar manners.
Enforcing high levels of accuracy will necessarily decrease the size of the resulting clusters and thus reduce
the time savings. We thus use both cluster accuracy and effort saved as evaluation metrics and define success
as achieving higher effort savings, at 75% accuracy, than existing techniques. Additionally, we hope to be
able to output perfectly accurate clusters, regardless of effort savings, to show that our similarity model
adequately identifies related automatically-generated defect reports.

Figure 3 and Figure 4 present our preliminary results in terms of Pareto frontiers showing the tradeoff
between cluster accuracy (on the x axis) and maintenance effort saved (on the y axis). We ran two state-
of-the-art static bug finding tools, Coverity Static Analysis [7] and Finbugs [30], on 14 programs using both
C and Java, comprising more than 14 million lines of code. We compare a preliminary implementation of
our technique with the most closely related state-of-the-art duplicate detection: code clone detectors. By
using the implicated defective code for each report as input to these tools, they can be used to measure
defect report similarity and ultimately cluster similar reports in the same fashion as our technique. Our
preliminary work outperforms all baseline code clone techniques at almost all levels of cluster accuracy for
both C and Java programs.

We also wish to test the quality of clusters produced by our tool with respect to human opinions. Defect
report similarity is an inherently human judgment intended to inform a human process. As such, we wish
to verify that developers do, in fact, agree with our clusters and would thus benefit from being provided
such information. We performed a preliminary investigation by presenting 12 developers with examples of
clusters produced by our tool when using a cutoff of 90% internal cluster accuracy. We found that humans
found our technique’s clusters to be sufficiently related 99% of the time, suggesting that such an approach
would be useful in practice.

4.2 Experiments: Facilitating Program Repair

We hypothesize that by developing a fitness function with high fitness-distance correlation we will be able
to evolve repairs for more bugs and do so more efficiently. We will evaluate the new fitness function on the
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largest, most recent set of established real-world bugs used to test automatic program repair techniques [42].
GenProg was previously able to fix 55 bugs out of a total of 105, given a set period of time and resources.
Using our newly developed fitness function as part of GenProg with the same experimental criteria as in
previously published work, we hypothesize we will be able to not only fix more than the previously-repaired
55 bugs, but may take fewer generations (or fitness evaluations) on average to evolve existing fixes. The
evaluation metrics for this line of research are thus the number of additional bug fixes realized by our
technique and the reduction in time required to find all generated fixes. Additionally, for any bugs fixed
in both evaluations, we will qualitatively compare patches evolved using both fitness functions to examine
trends in the types or number of mutations used by each.

We further hypothesize that there may be a conceptual divide between bugs that were easily fixed in
the past (i.e. those fixed by previous instantiations of GenProg) and those that we were previously unable
to fix given ample time and resources. Humans employ different strategies to fix different types of bugs:
simple bugs can often be fixed quickly with a single code change, while more complex bugs often require
larger fixes and additional tools like run-time debuggers or static analysis tools. This conceptual split in
bug fixing strategies could conceivably extend to automatically-generated patches as well. We will explicitly
test for such a situation by building a model using separate data sets comprised of both types of bug and
measuring the relative difference in the statistical importance (using an ANOVA, for instance) of test cases
and invariants across different types of defects.

This line of reasoning admits an even finer granularity of investigation into the generality of various
features (e.g. test cases and invariants) as they relate to different bugs. We hypothesize that for a given
program, such features will generalize across bugs — that is, a test case that is instrumental in fixing one
bug will also be important when fixing another. While ultimately this hypothesis can be implicitly tested by
the tool’s ability to fix additional bugs in practice (generality of features across bugs is crucial to the success
of our proposed fitness function), we also plan to explicitly measure the variance in the test cases passed for
various program variants across different bugs. Ongoing work in this area is attempting to generalize fixes by
developing and enforcing templates for similar classes of bugs. Similarly, gaining a better understanding of
how different programs and types of bugs relate with respect to fitness functions may help to inform future
improvements to the GenProg framework.

4.3 Experiments: Ensuring Documentation Consistency

We wish to identify inconsistent and incomplete comments to ensure long term system quality through
accurate documentation. We will first characterize the extent and nature of the problem by manually
annotating comments found in large, industrial programs. Others have previous studied the frequency with
which code and documentation changes are submitted simultaneously [25, 40], but we know of no efforts to
quantify inconsistent and incomplete comments in practice.

To evaluate the effectiveness of our identification technique we will employ the F-measure metric, com-
monly used to evaluate information retrieval tasks, that favors simultaneously high precision and recall [66].
The main criteria for success for such a technique is an F-measure of over 0.75 when attempting to identify
both inconsistent and incomplete comments.

We also propose a pair of human studies designed to both validate our categorization of real world
comments and test the effects of different comments in practice. Each study is explained in detail below.

1. We first wish to test our technique’s ability to identify incomplete or inconsistent comments by inves-
tigating the overlap between the concepts identified by our technique and those identified by humans.
To this end, we will split human participants into two groups, asking both to identify incomplete or
inconsistent comments and to manually fix them. One group will be given suggestions, produced by
our technique, of incomplete or inconsistent concepts to guide them while the other will have to rely
only on their intuitions. We hypothesize that the treatment group aided by our technique will identify
at least as many missing and inconsistent concepts as the control participants do (i.e. those in the
group that do not receive our suggestions).
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2. The second proposed human study will attempt to show (1) that our tool is as accurate as humans when
identifying incomplete or inconsistent comments while also showing (2) that humans find comments
that are updated using suggestions from our technique to be of higher quality than those updated
using only human intuition. We will present participants with snippets of code and their associated
comments that fall in to the following categories:

(a) An original, consistent, and complete comment as it appears in actual source code.

(b) An incomplete original comment, as it appears in the actual source code, that fails to adequately
describe all relevant concepts in the associated code.

(c) An inconsistent original comment, as it appears in the actual source code, that incorrectly de-
scribes the concepts in the associated code.

(d) An incomplete comment that has been manually annotated by a participant in the first human
study with the help of our technique’s suggestions.

(e) An incomplete comment that has been manually annotated by a participant in the first human
study using only their own intuitions.

(f) An inconsistent comment that has been manually annotated by a participant in the first human
study with the help of our technique’s suggestions.

(g) An inconsistent comment that has been manually annotated by a participant in the first human
study using only their own intuitions.

Participants will be asked to first classify each comment as satisfactory, incomplete, inconsistent, or
both incomplete and inconsistent. Additionally, they will be asked to rate the quality of each comment
on a 5-point “Likert” scale [61].

The controlled nature of this second human study permits us to to test several hypotheses. First,
we hypothesize that the use of our tool and the missing or inconsistent concepts it identifies when
updating comments will lead to more satisfactory and high-quality comments overall. Testing this
hypothesis requires comparing participants’ answers for categories (d) and (f) with those from (e) and
(g). Additionally, we wish to test the hypothesis that our technique agrees with humans’ judgments
about inconsistent and incomplete comments as often as they agree with one another. We will compare
our technique’s output with the human classifications from the first human study as well as those from
categories (a), (b), and (c) from this study.

Through the two proposed human studies we hope to meet two specific success criteria: (1) that our
comment quality identification technique is at least as accurate as humans at identifying low-quality com-
ments and (2) can also aid in the process of manually updating comments by suggesting inadequately or
incorrectly described relevant concepts.

5 Background and Related Work

Clustering Duplicate Automatically-Generated Defect Reports. The large and complex nature of
contemporary software systems causes products to be shipped with unknown defects. Many bug finding
tools have been developed in recent years to attempt to alleviate this problem [5, 6, 7, 30, 45, 48]. These
tools effectively reduce the time it takes to expose defects, but the problem of then triaging and fixing the
resulting defects remains a largely manual process. Additionally, several of the projects we ran the Coverity
Static Analysis and Findbugs tools on yielded thousands of defect reports, which presents a substantial
maintenance cost given previous evidence that developers for real world systems struggle to keep up with
even hundreds of defect reports in practice [29].

Duplicate manual defect reports and duplicate code have long been recognized as important issues in
software engineering (e.g., [8]). While spurious manual defect reports are an obvious hindrance to the devel-
opment process, it has been shown that duplicated or semantically related source code also leads to higher
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defect densities and thus additional developer effort throughout the maintenance process [39]. There are many
tools designed to find code clones for the purpose of removing or refactoring them to aid in future develop-
ment [14, 18, 51]. Automatic techniques have also been developed to eliminate duplicated human-created
bug reports, thus saving developers effort throughout the maintenance process [33, 60, 68]. Human-reported
defects often contain a natural language description of the defect in question and optionally a stack trace or
automated error output. By contrast, automatic defect detection tools generally produce mostly semantic,
code-centric data when identifying potentially buggy statements in the code directly. Techniques attempting
to detect manually-created duplicate reports generally focus on matching natural language information while
our technique focuses more on the semantic similarities between different pieces of code and thus they are
not directly comparable. While duplicate detection has been studied comprehensively as it relates to both
source code and manual defect reports, there is a notable lack of research in this area with respect to static
analysis results.

Facilitating Program Repair. Localizing and fixing defects is a notoriously difficult and time consum-
ing part of the software maintenance process. Many forms of automated program repair have been developed
to reduce this cost [35, 50, 70, 71]. Evolutionary approaches, like the GenProg tool, have proven effective
at cheaply fixing real world bugs, taking as input only the source code and a test suite that characterizes
both the desired program behavior and the bug in question [42]. Borrowing from genetic principles, this
technique evolves repairs by making systematic changes over time and promoting only those changes that
exhibit desirable qualities with respect to functionality (measured as fitness). Previous work has examined
the concept of fitness-distance correlation, noting that while such a concept is easily observable for problems
with known solutions, it may not generalize across problems and is very difficult to measure for unsolved
problems [38]. This work also concludes that measuring the distance between two program variants is most
effective if it is based on the types of mutations being used by the search algorithm. This insight inspired the
proposed solution of measuring program variant edit distances based on the mutations they encompass. The
proposed work further attempts to better define which qualities should contribute to a program variant’s
fitness to increase fitness-distance correlation and thus fix more bugs, more efficiently.

The GenProg framework was recently redesigned to minimize memory usage by shifting the way in which
program variants and patches are represented [43]. This shift in implementation consequently resulted in
a shift in how fitness is viewed. Specifically, the new patch representation describes a program variant in
terms of the statement-level changes exhibited when compared with the original program. In this sense, an
arbitrary program variant can be described simply by a string of mutations. This representation naturally
lends itself to measuring the fitness-distance by computing some notion of edit distance between the string
representation of a given program variant and that of known fixes.

Fitness functions have been studied extensively in an effort to improve evolutionary search tasks. Most
efforts have focused on reducing the time it takes to evaluate the fitness of a given mutant, either by favoring
speed over accuracy [36, 52] or using sampling [24, 73]. While the speed of fitness evaluation is a concern
for systems with constrained resources, we instead focus on crafting a more precise fitness function to fix
previously unpatched bugs. In the area of fitness function precision, Arcuri et al. have explored the use of
co-evolution to mutate a program and its test suite simultaneously when attempting to fix bugs, effectively
strengthening the fitness function throughout the evolutionary process [1]. Very recent work examined the
efficacy of using formal specifications to better inform the accuracy of fitness functions in a single-program
case study. The conclusion was that using only run-time predicates to guide fitness evaluation yielded a
smoother signal that, when used as input to an evolutionary search, could potentially aid in fixing more
complex bugs for the one small program evaluated [24]. We propose a unified fitness function that combines
and improves upon several of these insights with the end goal of fixing more bugs than was previously possible
using the existing GenProg framework.

Ensuring Documentation Consistency. Adequate documentation is of paramount importance when
attempting to understand a software system [21, 49, 62, 72]. One study specifically examining human
readability found that the presence of comments caused humans to report extremely high readability while
the lack of documentation caused humans to report the most extreme levels of low readability [65]. More
recent studies echoed this finding, noting that humans both explicitly and implicitly find that comments
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are strongly tied to understandability [11, 26]. Studies suggest that only around half of all methods in real-
world systems are commented in practice [34]. Several tools have been developed to generate documentation
where none exists [12, 13, 58, 59]. While research suggests that up to 34% of existing comments may fail
to completely document the associated code, relatively little work has been done to identify or remedy such
situations [55]. The proposed work will specifically tackle this problem by identifying concepts in source
code that the associated documentation does not adequately or correctly explain.

A related maintenance concern is the process by which documentation co-evolves with source code.
Previous work has shown that, in practice, developers often fail to update comments when making meaningful
code changes, even after having been specifically instructed to do so and given tools to aid in the co-evolution
process [25, 40]. While the problem of comment consistency throughout the software life cycle has been
established, there has only been preliminary work in identifying “inconsistent” comments. Tan et al. have
proposed two tools, iComment and @tComment, that infer strict rules from both comments and method
parameters and use both static analysis and automatically generated test cases, respectively, to check that
the associated code matches the encoded assertions. These heavy-weight techniques correctly identify very
small and specific classes of inconsistent comments, but fail to generalize to the majority of inconsistent
documentation. By contrast, the proposed work takes a light-weight, generic approach to identifying the set
of all inconsistent comments.

Identifying both incomplete and inconsistent comments are tasks related to the overall issue of docu-
mentation quality, which has been studied in various ways. Schreck et al. measure Javadoc documentation
quality in terms of both readability and completeness, where a complete comment is defined as one that
mentions all semantic entities for which Javadoc has capabilities to describe (e.g. @param, @return, and
@throws statements) [55]. Another tool, JavadocMiner [41], is concerned mostly with measuring quality in
terms of how well-formed and complete the documentation’s English prose is. We believe issues of readability
and natural language quality are adequately measured by the aforementioned tools and thus explicitly do
not cover it in the proposed work. We do, however, take a more broad definition of comment completeness
than previous tools and thus target a more generic notion of low-quality comments.

The presence and quality of documentation in source code has been found to affect defect density. Several
studies have shown that lower quality documentation is linked to higher numbers of defects in the related
code [32, 41, 55]. Ibrahim et al. note that taking into account inconsistent code and comment changes
(where a piece of code is modified without updating the corresponding comment) when predicting bugs
improves prediction accuracy with statistical significance [32]. Thus, identifying low-quality comments has
the potential to decrease defect density thereby increasing system quality over time.

6 Research Impact

We believe that a particular strength of the proposed research is that it can help to address multiple segments
of the software maintenance process. We hope to improve both the bug finding and fixing processes while
also ensuring long-term system quality through continued automatic documentation maintenance.

6.1 Leveraging Encoded Domain Knowledge

Humans encode specific domain knowledge in the software artifacts they produce by choosing identifier
names, writing comments, or using particular coding patterns and structures. This rich source of information
is largely overlooked by many existing maintenance processes. For instance, the process of naming functions
and variables requires a human to understand the task at hand and then concisely summarize the related
entities to describe parts of the code such that other developers can later understand and update the system.
The knowledge gained by understanding both the underlying task and related entities in the code is encoded
in the resulting identifiers.

Many software maintenance tasks are related to reverse engineering [16, 19, 44, 69] — as an example, bug
finding and fixing can be described as the process of understanding and adhering to program specifications
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retroactively. The process of reverse engineering can be defined as the act of trying to rediscover the
process by which something was created to gain a better understanding of it as a whole. In the context of
software engineering, the process describes how the software was written and thus understanding this process
necessarily requires understanding the human decisions that were made throughout. The domain knowledge
encoded in source code is a great source of information about these decisions.

Many formal methods reject the use of human-centric information in favor of more provably-correct pro-
cesses. While such information is less structured and not universally-standardized in practice (i.e. developers
are not forced to pick descriptive identifiers), it can still inform maintenance processes when care is taken
to extract and process it properly. The proposed work hopes to effectively extract and use human-centric
information, showing its utility by improving maintenance tasks.

6.2 Supporting Existing Processes without Adding Complexity

The goal of the proposed work is to reduce the cost of the maintenance process overall. Processes designed
to facilitate software development often impose some amount of additional effort; adding a step to the
process necessarily incurs a cost. The goal in designing such processes is to ensure that the intended savings
outweighs any additional costs with respect to developer efficiency and overall maintenance effort.

Each of the three research thrusts presented in this document is specifically designed to add minimal
complexity (both in terms of time-based, algorithmic costs and logistical, developer-based effort) to the
existing maintenance processes. In each case, we employ light-weight analyses specifically designed to reduce
the burden on the developer. For example, our approach to clustering duplicate defect reports takes as input
exactly the output produced by existing static bug finders, requiring no additionally developer effort.

Even when care is taken not to add superfluous costs when attempting to facilitate maintenance tasks,
quantitatively measuring such a tradeoff is often difficult because of the amount of variability inherent in
existing maintenance tasks. Consider the task of automatic program repair — to precisely compare such a
technique with existing processes one has to know how long it takes to manually fix a bug, on average [42].
While some bugs can be located and fixed in a matter of minutes, others can persist through several releases
of a product. Comparatively, consider an interactive code search tool designed to quickly locate concepts in
source code based on iterative user feedback. While some users may effectively speed up their task through-
put using such a tool, others may find that the complexity such a technique adds to their existing toolkit is
prohibitive in terms of increasing productivity. Both of these examples show that concretely measuring the
cost benefits of maintenance tools is difficult when baselines are not well established.

To address this ambiguity we specifically ensured each area of proposed work is directly comparable
to a known or explicitly measurable baseline. When clustering defect reports, we propose to compare the
“collapsed” set of defect reports (where each cluster conceptually corresponds to the effort it would take to
triage and fix a single defect) with the set of reports originally produced by the static bug finder. Thus, we
circumvent the problem of having to quantify the maintenance effort associated with a single defect report
by making an argument for the percent reduction of effort overall. Considering our proposed improvements
to automatic program repair (which require no additional developer effort) we can compare against existing
automatically-generated patches with respect to time and cost. Finally, we will conduct a human study
to directly measure the effort and quality implications our low-quality comment identification technique
poses when manually updating documentation (see Section 4.3 for more detail). The existence of grounded
and direct baselines from which to evaluate our proposed work allows for higher confidence in the resulting
conclusions about the effects our techniques have on the maintenance process.

6.3 Summary

By systematically extracting and using latent human-centric information present in software artifacts we
propose improvements to three crucial maintenance tasks. Existing techniques often favor provably trust-
worthy sources of information (e.g. code structure or control flow) over more speculative, but knowledge-rich,
forms of information (such as identifier names and natural language comments). The proposed techniques
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Figure 5: Proposed research schedule.

focus on these often-ignored sources of information to facilitate maintenance tasks and improve the overall
maintenance process in practice.

Additionally, the proposed techniques are specifically designed to be lightweight so as to require minimal
additional time or developer effort. A theoretically-effective but practically-laborious technique may not gain
wide adoption. The maintenance process is already prohibitively expensive when trying to find and fix all
bugs — adding additional complexity can yield diminishing returns. By design, our techniques require little
or no additional developer effort and aim to save more human and computational time than they consume
in practice.

7 Research Plan

The proposed work comprises three main research thrusts for which we hope to publish at least three papers.
In the past we have targeted conferences related to software maintenance and software analysis including
The International Conference on Software Maintenance (ICSM), The International Symposium on Software
Testing and Analysis (ISSTA), and more broadly The International Conference on Software Engineering
(ICSE). For the proposed papers we will again consider these venues in addition to The International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) and The Genetic
and Evolutionary Computation Conference (GECCO).

Figure 5 outlines the proposed schedule for the work outlined in this document. Uncertainty in the
schedule includes the possibility of an additional journal paper on the subject of documentation quality
that includes additional evaluations based on further human studies as well as the potential revision and
resubmission of previous papers currently submitted for publication but not directly related this Ph.D.
proposal.

8 Summary and Long-Term Vision

The long term goal of our work is to reduce the cost of the maintenance process by developing light-weight,
generic analyses that leverage unstructured developer information to improve three crucial processes: bug
finding and triage, defect fixing, and persistent system quality assurance. We will evaluate the proposed
techniques directly, either against existing state-of-the-art tools or using human studies to measure actual
developers’ intuitions.

Current maintenance processes are not sufficient to find and fix all bugs efficiently and effectively in
practice. To ease part of this maintenance burden we propose improvements to three specific tasks:
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• Clustering automatically-generated defects to facilitate bug triage and repair (Section 3.1.1)

• Improving fitness functions to aid in automatic program repair (Section 3.1.2)

• Identifying inconsistent and incomplete comments to ensure long-term system quality (Section 3.1.3)

As the dominant cost throughout the software life cycle, software maintenance plays a crucial role in the
success and longevity of a piece of software. We hope to ease the maintenance burden by producing techniques
that produce high-quality results (by leveraging under-exploited human-centric information) that can be
easily and incrementally adopted (because they are implemented using lightweight analyses).
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