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Overview: We propose a series of algorithms and theoretically-grounded interventions to enhance program-
mer productivity. By combining large-scale exploratory empirical investigations and controlled human-
focused experimental design, we propose to both build mathematical models of the impact of understudied
features on programmer productivity and to also provide actionable and evidence-backed interventions that
improve productivity in practice for targeted diverse programmer groups. We propose three primary lenses:
developing efficient and usable bug-fixing tools for non-traditional novices, designing effective program-
ming training informed by objective measures of programming cognition, and understanding the impact of
external factors, such as psychoactive substance use.

Intellectual Merit: In this proposal, we argue not only that varied external support can improve developer
productivity, but we also specify which support can best do so. We contend that understudied factors and
potential interventions can be identified through large-scale exploratory analyses. In addition, the impact of
targeted interventions can be measured via causal experimental designs and large-scale human evaluations,
even for factors impacting diverse populations that have previously only been considered anecdotally. We
propose three research lenses into improving programmer productivity, each targeting a different type of
support and programmer population.

1. Developing Efficient and Usable Programming Tools: We propose two novel methods of bug-
fixing support targeting parse-errors and input-related bugs. Both are error types that we identify
as commonly-encountered by non-traditional novice programmers (e.g., those learning without the
support of the traditional classroom) but are overlooked by existing program-repair tools.

2. Designing Effective Developer Training: To help novice programmers become more like experts
faster, we propose both developing a model of novice programming expertise using neuroimaging
(fNIRS) and also leveraging our cognitive findings in the development and evaluation of a novel
supplemental reading training for programming.

3. Understanding External Productivity Barriers: We argue that external factors also impact soft-
ware productivity, including those anecdotally-reported but understudied by the scientific literature.
We propose studying the impact of one such factor: psychoactive substance use. We propose both
conducting the first survey of the prevalence of such substances in software and also developing a
mathematical model of the true impact of one such substance, cannabis, on programming ability.

Broader Impact: Our proposed bug-fixing support for non-traditional novices could lower frustration faced
by new programmers and thus lead to higher computing retention, especially for those without the support
of the traditional classroom. Our proposed supplemental cognitive training could also broaden participa-
tion in computing; should our training transfer to improved programming outcomes, adding such training
to computer science courses could decrease performance gaps for students with less incoming preparation
in relevant cognitive skills, a preparation gap often correlated with factors including gender and socioeco-
nomic status. Our proposed investigation of the intersection of psychoactive substances and programming,
especially any findings related to hiring or retention, has the potential to influence drug-related policies
in software. Outside of anecdote, little is known about the prevalence of such substances in software, let
alone the accuracy of any perceived benefits. The proposed work has the potential to replace anecdote with
evidence, enabling both companies and individual developers to make more informed decisions.



1 Introduction

Even as programming becomes increasingly integral to modern society, building software remains a chal-
lenging endeavor for both novice and expert programmers alike [54, 70, 85]. Understanding and supporting
programmer productivity is key to the efficacy and efficiency of software development [80, 109]. Fac-
tors such as a lack of usable tool support [78, 113], inadequate training [1, 113], a negative non-technical
environment [80], or even social biases in the workplace [37] can decrease developer productivity.

Many ways to improve developer productivity have been proposed and implemented (see Wagner and
Ruhe for a review [117]). However, companies can struggle to identify what productivity factors and in-
terventions best support their developers [80, 113]. For example, most proposed approaches focus on im-
proving productivity through additional technical support, but the top productivity factors are often non-
technical [80]. In addition, large productivity differences between software developers have long been
observed [2, 99], even when controlling for common quantitative [99] or environmental [43] factors, sug-
gesting that some developer populations are currently not well supported by existing techniques. Finally,
companies may not be willing to take the risk to implement suggested productivity support (technical or
not) until they know that it will work in practice: Adoption of new tools is low unless an explicit business
case is presented [5] and trust is established with both managers and engineers [84].

This reluctance may in part be due to a history of suggested productivity support being overturned by
later human-focused empirical evaluation. For example, in the automated debugging literature, a series of
approaches provided developers with ranked lists of the possible code locations that were most likely to
contain the error (see [55] as an indicative example). Once provided the faulty program line, the implicit
assumption was that the developer could immediately identify and fix the issue, thus leading to increased
productivity through faster bug finding and fixing. In practice, however, this turned out not to be the case:
A human evaluation found that developers, when provided with this support, did not gain perfect bug un-
derstanding, instead skipping around the provided ranked list and wasting 61% of their time inspecting
irrelevant statements [89]. Although this is but one example, we believe it to be indicative of a more general
trend: that without considering the nuanced ways developers interact with their environment, even well-
intentioned productivity interventions may fail to deliver their intended benefits in practice.

We propose a set of systematic studies that first identify previously-understudied but important fac-
tors that influence software productivity, and second provide rigorous human-focused evidence about the
magnitude of their impacts, leading to actionable insights that generalize across programming populations.
We argue that effective human-focused research on improving software productivity requires the following
properties:

• Provides Theoretically-Grounded and Actionable Insights: We desire grounded mathematical
models that capture practical aspects of developer productivity. Based on those models, we want
to propose and evaluate specific interventions that can help programmers in practice.

• Includes Empirical or Objective Measures: Many existing approaches for studying developer pro-
ductivity and well-being rely primarily on programmer self-reporting. While valuable, research from
both Psychology and Software has found subjective self-reporting to be unreliable [26, 45]. When
possible, we prefer augmenting self-reported data with more objective measures.

• Minimizes Scientific Bias to Support Generalizability: Studying humans can be challenging due
to individual differences and sample bias. When possible, we favor leveraging techniques such as for-
mal reasoning regarding theoretical outcomes, pre-registering hypotheses, and rigorous experimental
control structures to minimize bias and promote generalizability.
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• Supports Diverse Developers: Incoming preparation varies widely for software developers, lead-
ing to large productivity variance even between new developers who have the same undergraduate
test scores or grades [99]. We want solutions that consider programmers from a diverse set of back-
grounds, from non-traditional novices trying to learn programming outside of the classroom to those
with different incoming cognitive abilities.

While previous research has considered factors that influence developer productivity and proposed de-
veloper support, it often lacks one or more of the listed elements. For example, one prominent line of work
identifies and ranks the importance of various productivity factors, often using a combination of surveys and
interviews [80, 109]. While helpful for prioritizing various factors for future study, such approaches both
rely on subjective self-reporting [26] and also typically do not test the relations between such factors and
productivity in a causal manner. Thus, this work does not itself propose specific testable interventions. We
prefer approaches that use more objective human-focused measures, such as biometric data or behavioral
programming logs. Another line of work seeks to improve productivity through proposing better devel-
oper tools including those that support debugging [65, 77]. While this work is important for advancing
the state-of-the-art, most tool evaluations are entirely empirical, and do not explicitly consider the user (cf.
[58]). Those studies that do evaluate their tool often assume unrealistic user properties or focus participant
recruitment on a different population than the one the tool is designed for (e.g., students vs. professional
developers), an oversight that can lead to tools not being useful in practice [40,89]. We prefer solutions that
explicitly consider human preferences via human studies with the target populations to include the likelihood
of supporting diverse groups of programmers in practice.

We leverage three primary insights to conduct a set of studies that meet the aforementioned criteria of
a good solution. First, we observe that exploratory empirical evaluations, especially those with hundreds
of developers or millions of programming interactions, can identify previously-understudied productivity
barriers in software for diverse sets of developers. This approach allows us to get an understanding of the
anecdotal wisdom present in data such as developer-focused forums where programmers discuss concerns
without oversight, often more likely to contribute negative experiences as well as positives. Second, we note
that rigorous controlled experimental design can be used to discover evidence-backed conclusions to com-
plex human-focused productivity questions. Real-world measurements of humans are inherently noisy. By
carefully specifying the inputs and outputs in our experimental design, we will be better positioned to cap-
ture any true signals through the noise. Third, we argue that amelioration of productivity barriers actually
encountered by developers in practice are more likely to be deployed or adopted. By providing generalized
empirical evidence of the relevance of various factors and systematically validating the effectiveness of pro-
posed interventions in diverse development contexts, we can offer solutions that are not only evidence-based
but also tailored to the nuanced needs of specific programming communities.

We combine these insights into a set of systematic studies on understanding and improving programmer
productivity. We consider three primary lenses: designing efficient bug fixing algorithms to help program-
mers quickly write more correct code, developing effective developer training to help novices become more
like experts faster, and understanding external productivity factors to help all developers regardless of back-
ground succeed in computing and be happy while doing so. We propose research on specific instances of the
lens (e.g., targeting a specific population or productivity factor). For each, we propose an initial exploratory
phase and subsequent rigorous human evaluation and/or actionable solution. Each also combines interdisci-
plinary methodologies (including those from programming languages, psychology and medicine) with core
software engineering techniques. Our specific proposed research components are as follows:

(1) Efficient Bug-fixing Support: Can we use programming languages techniques to support non-
traditional novices in writing more correct code faster? Finding or fixing software bugs is one way
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to improve software productivity [113]. Novice programmers can find debugging particularly challenging,
especially those who do not have the support of the traditional classroom [11,28]. We hypothesize that such
non-traditional novices may not only struggle more with program errors in general, but also struggle with
different errors than those faced by experts, error types not supported by existing tools. However, we argue
that programming language techniques useful for supporting more expert programmers can be expanded to
support non-traditional novices as well. In this research lens, we propose first identifying unsupported error
types faced by non-traditional novices via empirical investigation, and second developing and evaluating
support for two types of errors that we identified as barriers for novices: input-related bugs and parse errors.

(2) Effective Developer Training: Can we use medical imaging to inform supplementary cognitive
training and improve programming outcomes? There is a growing body of work that uses neuroimaging
to understand the cognitive processes behind programming (see [30] for a recent seminar). Such work,
combined with a cognitive understanding of programming expertise, has the potential to lead to improved
productivity through training targeted at identified relevant skills. However, this potential has yet to be
explicitly tested in practice. We propose a two-phase approach: First, we will use neuroimaging to construct
a mathematical model of novice programmer cognition. Second, we will combine insights from our model,
and from other recent neuroimaging studies of programming, to develop a cognitive training curriculum
likely to transfer to programming. We will evaluate the efficacy of our intervention using a controlled
longitudinal study with programming students. By integrating cognitive insights with software engineering
education, we aim to develop a novel approach to programmer training that is empirically grounded and
directly applicable to the challenges faced by novices, especially those with less incoming preparation in
programming-related cognitive skills.

(3) Understanding External Productivity Factors: How does psychoactive substance use impact
software developer productivity? External factors beyond programming itself, such as cultural or environ-
mental considerations, can also influence software developer productivity [43, 80]. Anecdotes connecting
one such factor, psychoactive substance use, to programming abound. There are many conflicting opinions
on substance-related cultural and productivity impacts on software (e.g., [8,19,74] for examples). However,
little to no scientific research has been conducted to empirically assess these claims. We propose to fill
this gap by first, conducting an exploratory survey on the relationship between psychoactive substance use
and software. Second, we propose to conduct an observational study of the actual impact of one substance
common in programming, cannabis, on programming productivity. We hope to help replace anecdote with
evidence, enabling both companies and individual developers to make more informed and evidence-based
drug-related decisions.

Overall, the thesis of this proposal is:

We can combine empirical evidence, theoretical modeling, and human-centered evaluation to
develop and assess actionable interventions that improve programmer productivity in practice.

Informally, we believe that more controlled methods from fields outside of software can improve soft-
ware productivity for diverse groups. To the best of our knowledge, this proposal includes the first identifi-
cation of, and support for, input-related bugs as a barrier for novices. We also propose the first controlled
evaluation of the practical use of neuroimaging findings on software training as well as the first controlled
study of psychoactive use and programming. The PI has published preliminary work supporting all three
lenses, and has made publicly available relevant source code and data (when ethically permitted). To pro-
mote open and reproducible science, we will do the same for the remaining work, as well as pre-registering
hypotheses for our proposed observational study of cannabis use and programming. In the rest of this pro-
posal, we overview relevant background for each of the three lenses into developer productivity (Section 2),
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describe the proposed research, including our primary insights (Section 3), outline our experimental design
metrics and success criteria (Section 4), and present preliminary results (when available, Section 5).

2 Background

We present a high-level overview of background relevant to the research proposed in this proposal.

2.1 Automatic Program Repair

Automatic program repair (APR) is a set of techniques to automatically provide patches that fix buggy or
incorrect programs. There is a vast literature on automatically repairing or patching programs: Proposed
in 2008, APR has developed into a vibrant research area with over 500 publications (cf. the review [77]).
Overall, traditional techniques take as input the source code for the buggy program and output a synthesized
patch. Beyond program source code, APR techniques typically require as input the location of the bug (or
some method for finding it), and some method to determine that a candidate patch correctly fixes the bug
(e.g., a test suite or the like). The majority of approaches target expert programmers or professional software
developers, and such expert-focused tools can be confusing for novices in practice [121].

APR has seen some adoption in industry, including use at Facebook (Meta) where it is used to repair
bugs in multiple real-world systems at scale (e.g., each with millions of lines of code) [72]. In addition, the
recent adoption of large language models have influenced APR approaches, with the use of models such as
Codex [18] (which powered GitHub’s Co-Pilot tool) or ChatGPT1 becoming increasingly popular.

2.2 Program Comprehension and Neuroimaging

Software engineering researchers have long been interested in program comprehension, or understanding
the cognitive processes that drive reading and writing source code [23]. By understanding what cognitive
skills are relevant, researchers hope to gain insights that inform improved programming pedagogy and de-
veloper retraining, as well as to better understand productivity gaps between novices and experts [52]. Many
cognitive skills have been associated with programming. Two of the more prominent ones are reading com-
prehension [15, 69, 79, 93] and spatial reasoning ability (a person’s capacity to understand and reason about
spatial relationships among objects, including activities such as mentally rotating 3D shapes). [73, 86, 88].

One way to study program comprehension is using functional neuroimaging to capture relevant brain ac-
tivity. It can provide a physically-grounded insight into cognition without relying on potentially-unreliable
self-reporting [30, 52]. We focus on one technique: functional Near Infrared Spectroscopy (fNIRS) which
uses the hemodynamic response, or change in neuronal blood flow to active brain regions, to measure brain
activity [16]. fNIRS can be used in ecologically-valid environments such as sitting at a standard desktop
computer (cf. [63]). Following the pioneering work of Siegmund et al. [104], many works have used neu-
roimaging to investigate software, confirming the connections to both reading and spatial ability identified
in the behavioral literature (e.g., [17,27,39,42,52,53,63,81,90,104,105]). Explicit studies of programming
expertise are rare (cf. [91]), and tend to use proxies such as undergraduate grades or degree status.

2.3 Transfer Training

One potential intervention for supporting struggling novices is facilitating learning transfer to programming
from a concurrently-taught supplemental training course [9], where learning transfer refers to the use of

1Produced by OpenAI, see https://openai.com/chatgpt
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skills in a separate context from where they were learned. One of the most common cognitive training
interventions proposed and validated for improving programming is spatial ability training (often in a one-
credit class with one hour of additional instruction per week) [9, 21, 108, 114]. Broadly, supplemental
spatial ability training can increase engineering degree retention [106] and directly improve programming
outcomes [9, 21]. The impact on programming of training other relevant cognitive skills are less studied.

2.4 Cannabis and Its Use In Programming

Cannabis sativa is the world’s most common illicit substance [110], used for both medical (e.g., pain,
nausea) and recreational (e.g., social or perceptual enhancement, altered consciousness) purposes [6,10,66].
In the US, cannabis is criminalized, hampering research on its effects [82]. However, prohibition is contrary
to popular opinion [57, 116], and 38 states have legalized cannabis for medical or adult use.

Anecdotes of cannabis use while programming abound. Questions inquiring about cannabis’s effects
on programming are common on online forums,23 often inspiring numerous conflicting answers. Popular
tech-related media sites cover the topic, positing that cannabis may help with programming-related chronic
pain [59] or enhance programming through increasing focus [8] and creativity [118]. There is even evidence
that cannabis use can impact software hiring and retention [19, 56, 67]. Physiologically, acute cannabis
use impairs memory and learning as well inhibiting motor responses and reaction times [12, 62], cognitive
processes that are used while programming [63, 104]. Cannabis may also impact creativity [60, 64], a key
component of many software engineering tasks [47, 48, 71].

3 Proposed Research

We propose a series of experiments that both identify and try to ameliorate (either through a proposed
intervention or evidence backed mathematical model) factors impacting developer productivity. These ex-
periments are grouped into three different lenses on programmer productivity, each targeting a different
sub-population or interdisciplinary methodology. We overview the proposed research for each lens:

• Lens 1: Developing Efficient and Usable Programming Tools (for non-traditional novices)

1-a: Factor Identification: We will identify error types that non-traditional novice programmers struggle
with in practice, including those understudied in the existing literature.

1-b: Testable Solution: We will develop automated bug fixing tools supporting common error types, and
establish this support’s efficacy via both automated and human-focused evaluations.

• Lens 2: Designing Effective Programmer Training (for students)

2-a: Factor Identification: We will develop a mathematical model of cognitive processes important for
new programmers.

2-b: Testable Solution: We will use existing cognitive understanding to design supplemental training. We
will evaluate if our training transfers to programming via a controlled human study.

• Lens 3: Understanding External Productivity Factors (for professional developers)

2https://www.reddit.com/r/computerscience/comments/dbzp5v/how_many_of_you_found_
that_smoking_weed_gets_you/

3https://news.ycombinator.com/item?id=509614
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3-a: Factor Identification: We will conduct a survey of programmers on factors influencing software
development productivity, including the prevalence and perception of psychoactive substances.

3-b: Testable Solution: We will conduct a controlled, observational study of one substance, cannabis, to
develop a mathematical model of the impact of cannabis use on programming productivity.

We now discuss the research proposed in each lens in more detail.

3.1 Research Lens 1: Building Bug Fixing Support for Non-traditional Novices

Research Motivation and Overview. Novices are increasingly turning to online resources beyond the tra-
ditional classroom to learn computing [75,103]. But even as demand soars, the educational support provided
by online tools leaves much room for improvement [11], especially for those students who need the most
help [28]. Free tutoring environments seek to close this gap by providing educational support beyond struc-
tured course assignments. However, such sites can still suffer from low retention, reducing their ability to
help in practice. We hypothesize that one reason for this low retention is the frustration novices face without
instructional support; the time spent debugging a single error can correlate with student frustration [97]. In
the proposed work, we hope to both identify and provide automated support for common errors encountered
by non-traditional novices to help improve their productivity and lower computing barriers.

Factor Identification (1-a) — Where do non-traditional novices struggle? We first propose identifying
error types that non-traditional novice programmers struggle with in practice via an empirical evaluation. To
do so, we propose analyzing PYTHON TUTOR programming interactions; PYTHON TUTOR is a free online
programming tutoring environment that is often used by novices learning programming without traditional
classroom support [49, 50]. Two common error types encountered by novices merit particular attention:
input-related errors and parse errors. For example, 35% of PYTHON TUTOR interactions involve user input,
with 6.6% of interpreter errors fixed by only modifying input data. Similarly, 77.4% of all faulty programs
failed with a parse error, accounting for the vast majority of the errors that novices face. Both of these error
types are not currently well supported by Automatic Program Repair tools, which typically operate only on
program source code (rather than inputs) and require the code to parse (see Section 2.1 for more detail).

Testable Solution (1-b) — Two novice-focused tools for bug-fixing support. While identifying factors
non-traditional novices struggle with is important, we also wish to provide support for such errors. We
propose two automatic bug fixing tools, one that targets program inputs rather than standard code and another
that targets parse errors. We now discuss our proposed support for each type of error in more detail.

For input-related bugs, we propose INFIX, a randomized search optimization algorithm for automati-
cally repairing program inputs for generic novice programs. The key insight behind INFIX is that input
repairs are often composed from a small number of common mutations and that these mutations are often
heavily correlated to specific error messages. As a result, we propose using an iterative approach where
we repeatedly modify the buggy input according to error-message-specific mutation templates until it either
finds a repaired input or times out. INFIX does not require test cases or training data to assess correctness.
Instead, we propose using the implicit specification of eliminating interpreter errors (as tested by running
the program after each input mutation). This, along with the fact that it permits a pleasingly parallel imple-
mentation, enables INFIX to provide efficient real-time programming support. To the best of our knowledge,
we are the first to propose extending APR techniques to support input-related bugs (see [77] for a review).

For parse errors, we propose SEQ2PARSE, a language-agnostic approach that combines the theoretical
accuracy of Error Correcting Parsers (EC-Parsers) [3] with the efficiency of Neural Networks to quickly
generate high-quality fixes. In theory, EC-Parsers, which have been studied for decades but have not been
widely adopted, can generate minimal-edit parse error repairs using special error production rules to handle
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programs with syntax errors. Sadly, EC-Parsers (along with more modern equivalents such as [13, 22, 112,
115]) remain inefficient in practice, as their running time is cubic in the program size, and quadratic in the
size of the language’s grammar [76, 94]. Our key insight is that novice edits are highly predictable, and
thus Neural approaches can pinpoint the relevant rules. Thus, we propose addressing parse error repair via
a neurosymbolic approach where we first train sequence classifiers to predict the relevant EC-rules for a
given program, and then use the predicted rules to synthesize repairs via EC-Parsing. To the best of our
knowledge, we are the first to propose augmenting EC-Parsers with Neural methods.

For both tools, we propose evaluating a Python-supporting implementation on data from PYTHON TU-
TOR. For INFIX, we propose first developing Python-specific mutation templates via an observational study
characterizing novice Python input patterns and errors. As both tools are aimed toward helping novices
debug, we note that it essential that the repairs be helpful and of high quality. Previous work has shown that
student-generated source repairs and expert human tutor input hints can be helpful for students by decreas-
ing debugging time and increasing learning. Therefore, we propose augmenting automatic evaluation with
human studies comparing tool-made repairs to those developed by the PYTHON TUTOR users themselves.

3.2 Research Lens 2: Designing Effective Programmer Training via Cognitive Insights

Research Motivation and Overview. As discussed in Section 2.2, the software engineering community has
increasingly used medical neuroimaging to understand the cognitive processes behind programming. Such
studies have the potential to improve our understanding of expertise and to inform software engineering
pedagogy, helping novices become experts faster (see Floyd et al. [42, Sec. II-D] for a summary). Many
of the neuroimaging studies in software engineering have compared programming to reading [42, 104, 105]
or spatial manipulation [52]. Tantalizingly, one study [42] found that coding became more neurologically
similar to reading for programmers with even greater expertise.

Critically, most (c.f., [91]) software engineering neuroimaging studies thus far have only studied pro-
gramming experts that are either professionals or students with multiple years of experience (e.g., [105,
Sec. 3.3]). In addition, the potential of neuroimaging to improve pedagogy has not yet been tested in prac-
tice. To realize this potential, we propose both directly observing true novices with neuroimiging and also
studying the potential pedagogical impact via the design and evaluation of cognitive supplemental training.

Factor Identification (2-a) — A mathematical model of novice programmer cognition. To better un-
derstand the cognitive processes of novice programmers, we propose using fNIRS to conduct a controlled
neuroimaging study with first-semester programming students. We propose comparing participants’ brain
activation patterns while coding to those while reading prose or using spatial reasoning (i.e., mentally rotat-
ing 3D objects, see Section 2.2) to see if patterns observed with more expert developers continue.

We note that studying novices presents challenges relative to studying experts. First, we must create
experimental stimuli amenable for novices with little to no previous coding experience; the coding stimuli
in previous neuroimaging studies all involve constructs (e.g., trees [52]) or tasks (e.g., code review [42])
unfamiliar to novices. We propose leveraging introductory computing syllabi to develop stimuli commensu-
rate with participant experience. Second, we must pay particular care to recruit participants with equivalent
programming expertise; even though we are recruiting from the same introductory course, programming
experiences can vary [119]. To mitigate this risk, we propose restricting our population to students without
previous programming experience. Finally, we propose a protocol that follows up with participants months
later to assess their programming gains using a written assessment. This provides a preliminary exploration
of an aspect of learning, assessing if novices’ brain activation patterns while coding can predict their future
programming ability and underscoring the potential for cognitive interventions in computing.
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Testable Solution (2-b) — Does technical reading training transfer to programming outcomes? As
discussed in Section 2.3, one way neuroimaging may impact practice is by informing targeted cognitive
training that transfers to improved programming outcomes. Such transfer for spatial reasoning has been
observed in the educational literature [9, 21, 108, 114]. However, the benefit of training of other cognitive
skills identified by neuroimaging is less understood. We hypothesize that reading ability may sometimes be
more important than spatial ability for software engineering success: Many essential software engineering
tasks, such as code review, code summarization, or documentation, require technical reading ability.

To test this hypothesis, we propose a semester-long CS-focused reading training course that covers
various technical reading strategies. The majority of these strategies will focus on using structural cues to
quickly and accurately scan texts to retrieve and understand key points. Topics will include focusing on
outlines when reading to improve comprehension, understanding figures and charts in scientific writing, and
strategies for understanding persuasive technical proposals (e.g., Heilmeier’s Catechism). Our emphasis on
teaching structural cues and patterns is motivated by findings that experienced programmers tend to read
code non-linearly, focusing on high level features [14, 96]. We hypothesize that explicitly teaching how to
trace through scientific texts will transfer to tracing through programs, a key software activity.

We propose evaluating our technical reading course via an 11-week randomized trial where we compare
our novel technical reading training and a validated standardized spatial ability training, each with the same
student time commitment of 1.5 hours per week. We propose doing so because first, spatial training has
already been found to transfer to programming, so it can act as a strong control and second, comparing the
two interventions allows us to come to actionable conclusions about which intervention is most helpful for
introductory computing. To the best of our knowledge, we are the first both to propose a computing-focused
technical reading training and also to test for transfer to computer science.

3.3 Research Lens 3: External Productivity Factors: A Cannabis Case Study

Research Motivation and Overview. For the final research lens we investigate how external factors can
impact programmer productivity and well-being. There are a large array of potential external factors that
could influence programming. We propose focusing on psychoactive substances with a particular focus on
cannabis use: Despite anecdotal connections and potential impacts (see Section 2.4), no previous empirical
studies have directly investigated the intersection of software and psychoactive substances. Nor have any
observational studies investigated the actual effects of such substances, including cannabis, on programming
ability. We hope to fill this gap with evidence-based research that either confirms or overturns conventional
wisdom, helping programmers and policy makers make more informed decisions.

Factor Identification (3-a) — A survey of psychoactive substance use in software. To gain an empir-
ical understanding of the prevalence and perceptions of psychoactive substances in software, we propose
conducting a survey of programmers. As we would like our survey results to be useful to company policy-
makers, it is essential that our population includes professional developers. However, as many psychoactive
substances are illegal or explicitly prohibited by corporate policy (e.g.,see [20] for an example), it is also
imperative to maintain participant privacy and confidentiality to avoid the risk of work place retaliation. To
balance these considerations, we propose focusing recruitment on top contributors to open source projects
(who are often professionals [95]) rather than on software engineering company contacts.

Testable Solution (3-b) — How does cannabis actually impact programming? We propose an observa-
tional study to develop a mathematical model of the actual effects of one substance, cannabis, on developer
productivity. As discussed in Section 2.4, it seems likely that many programmers use cannabis while pro-
gramming, holding positive views of its impacts. In broader contexts, however, views may be more negative.
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Cannabis can impair decision-making consistency, motor control, and reaction times [62, 98], impacts that
inform both general and software-specific regulation. However, the efficacy of such policies [83, Sec. IX.B]
and whether they are needed or beneficial [56] have been questioned in a modern context.

We hope our proposed study will fill this knowledge gap, allowing for evidence-based corporate policies
and informed decisions by developers regarding when and if to use cannabis while programming. We
propose a study that first has a larger, indicative sample size (e.g., more than a dozen participants, more than
just students), second uses ecologically valid conditions (e.g., tasks that are used in the real world, cannabis
dosages consistent with actual developer use), and third captures both quantitative (e.g., number of defects
or typing speed) and qualitative (e.g., creativity, coding style) aspects of produced software. Specifically,
we propose using a counter-balanced within-subjects design to maximize statistical power when comparing
programming outcomes while intoxicated (at the level they would normally use while programming) to
those while sober. We propose holding sessions remotely with the participant using their own computer to
both ensure participant comfort and safety while also maximizing experimental ecological validity.

4 Proposed Research Questions and Metrics

We discuss our experimental design, metrics, and success criteria for evaluating each proposed research
component in more detail. We will correct for multiple comparisons, as well as compute effect sizes and
statistical significance as appropriate throughout our mathematical analyses across all research questions.

4.1 Experimental Design — Lens 1: Bug Fixing Support for Non-Traditional Novices

When investigating how to support non-traditional novices to fix software bugs (see Section 3.1), we con-
sider three research questions: 1) RQ1 — Factor Identification: What types of errors do non-traditional
novices struggle with the most? 2) RQ2-a — Testable Solution: Are our proposed tools, INFIX and
SEQ2PARSE, able to accurately and efficiently repair input-related bugs and parse errors respectively, as
compared to state of the art approaches? 3) RQ2-b — Testable Solution: Are the repairs produced by INFIX

and SEQ2PARSE of high quality compared to historical user repairs, as judged by humans?

RQ1: To understand how non-traditional novices struggle with bug fixing, we propose an empirical analysis
of four years of data (including over six-million programming interactions) from PYTHON TUTOR, a free
online programming tutoring platform [50]. Metrics: We will sort the most common error types in the data
set using both frequency (number of occurrences) and difficulty (average time for the student to fix). We
will consider error types to be of high-priority if they are either of high frequency (account for more than
5% of all errors) or are difficult (often take more than two minuets to solve).

RQ2-a: To understand the accuracy and efficiency of INFIX and SEQ2PARSE, we will evaluate our im-
plementations using relevant subsets of the PYTHON TUTOR dataset. For SEQ2PARSE, we will train and
test on separate subsets. Metrics: For both tools, our primary metric will be error repair rate. That is, for
what percentage of buggy scenarios can our tool fix the program such that it parses or runs without error?
For SEQ2PARSE, we will also consider what fraction of repairs exactly match the historical human repair.
For both, we will measure efficiency by calculating the average time to repair. We will consider our tools
accurate if they have repair rates commensurate with state-of-the-art APR tools such as DEEPFIX, which
repairs 27% of programs [51], and GGF, which repairs 58% of syntax errors [120]. We will consider our
tools efficient if they can produce the majority of their repairs in real time (i.e., less than six seconds).

RQ3-b: To understand how our repairs compare to human-generated repairs, we will conduct a human
study. We will recruit participants via mailing lists, professional contacts, and social media. Participants

9



will be directed to an online web portal where they will be asked to rate the quality and helpfulness of a
series of program repairs using a Likert scale. Stimuli will be selected randomly from the PYTHON TUTOR

dataset, and each will have two versions: the tool-generated repair and the historical student repair. Metric:
We will compare Likert scores between the tool-generated and human-generated versions to see if there is
a statistical difference in quality. We will consider repairs to be of high quality if they are judged more
similarly to historical human repair than repairs from other APR tools (i.e., above 75%, see [58, Tab. VII]).

4.2 Experimental Design – Lens 2: Effective Programmer Training via Cognitive Insights

We organize our investigation of cognitive modeling and transfer training (see Section 3.2) around three
research questions. The first two relate to the fNIRS study, while the third involves the proposed reading
training: 1) RQ1-a — Factor Identification: What areas of the brain activate when novice software engineers
program, and how do they compare to brain activation during mental rotation or reading? 2) RQ1-b — Factor
Identification: Can brain activation patterns at the beginning of CS1 predict programming performance at the
end of the course? 3) RQ2 — Testable Solution: Does our reading training transfer to improved programming
outcomes, and if so, is this effect more pronounced for some programming aspects than others?

RQ1-a and RQ1-b: As described in Section 3.2, we propose using fNIRS to study novice programmers
completing spatial ability, reading, and programming problems. We will present these stimuli in a random-
ized order using a block-based design, allowing us to contrast brain activity between tasks. For spatial
ability, we propose using mental rotation stimuli adapted from Peters and Battista’s Mental Rotation Stimu-
lus Library [92]. For reading, we propose using sentence completion tasks adapted from official Graduate
Record Examination practice questions [38]. For programming stimuli, we propose creating a corpus of
short code snippets that use constructs familiar to introductory computing students such as Boolean logic,
loops, and arrays [111]. For the programming assessment at the end of the course, we propose using the
Second CS1 Assessment (SCS1) [87], a validated language-agnostic measure of CS1 programming ability.

Metrics: To analyze the fNIRS data, we will follow established best practices: We will model the hemo-
dynamic response for each subject using a General Linear model. We will then use a Linear Mixed Effects
model for group level analysis and compute t-value and p-value statistics for brain activation contrasts be-
tween tasks. Results will be significant if p < 0.01 with a false discovery threshold q < 0.05. For analyzing
if brain activation patterns can predict programming outcomes, we propose using Representational Similar-
ity Analysis (RSA), a common Psychology approach [61]. We will reject the null hypothesis if we retain a
significant correlation with absolute value (r > 30, p < 0.01) after multiple comparison correction.

RQ2: To evaluate our semester-long reading training, we will compare the programming gains between
participants in the reading training to those from a validated spatial training course developed by Sorby et
al. [107,108]. Due to its established correlation with computer science outcomes and evidence of transfer to
programming ability [9,106], we propose using spatial training as a baseline for analyzing the efficacy of our
reading treatment. To ensure a fair comparison, both courses will have the same weekly time commitment
and participants (all recruited from the same course) will be randomly assigned to an intervention.

Metrics: We will assess programming ability gains between groups using a pre-test/post-test design with
the SCS1 [87]. The SCS1 has three types of questions: definition, code tracing, and code-completion. To see
if our reading training transfers to programming, we will specify a multiple linear regression model contain-
ing pre-test programming scores (to control for participant variation) and intervention group as predictors.
To see if the effect is different for different question types, we will specify a multiple linear regression model
for each with sub-type pretest scores and intervention group as predictors. We will consider the difference
in programming gains between the two groups significant if p < 0.05.
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4.3 Experimental Design — Lens 3: External Factors, Cannabis and Programming

In our third lens we propose using a large-scale survey followed by an observational study to understand the
impact of cannabis use on programming. We consider two primary research questions: 1) RQ1 — Factor
Identification: Do programmers use psychoactive substances, such as cannabis, while programming? If
so, when and why do they do so? and 2) RQ2 — Testable Solution: Does cannabis intoxication while
programming impact program correctness, programming speed, or programming creativity?

RQ1: To capture the experiences of professionals and students alike, we propose a survey recruiting from
popular open-source GitHub projects and current computing students at the University of Michigan. To mea-
sure cannabis usage frequency, we propose using the validated Daily Sessions, Frequency, Age of Onset,
and Quantity of Cannabis Use Inventory (DFAQ-CU) [25]. To measure cannabis use while programming,
we propose adapting questions from the DFAQ-CU by adding the phrase “while programming, coding, or
completing any other software engineering-related task?”. We will also ask participants for which types of
programming projects or tasks they are likely to use cannabis, and about their usage motivations. Choices
will reflect those we observed in anecdotal online posts, and include a free text option. Metrics: We will
compare variables (e.g., Likert perception scores, participant age, etc.) using t-tests, χ2-tests, and propor-
tions z-tests as appropriate. p < 0.05 will indicate significance, and within each research question, we will
correct for multiple comparisons using a Benjamini-Hochberg Threshold of q = 0.05.

RQ2: We propose conducting an observational study to develop a model of the impact of cannabis use on
programming. We propose using a within-subjects design where each participant completes two sessions
on different days, one while sober and one while using cannabis, in a counterbalanced order. In each
session, participants will complete both short programming tasks from the neuroimaging literature [63]
and also multiple LeetCode problems [7] using a standard development environment (Visual Studio) on
their personal computers. In the cannabis condition, participants will use the amount they would normally
use while programming, an ecologically-valid context that allows us to learn actionable insights. Based
on our power analysis where we estimate our expected effect size with the known effect of cannabis on
programming-related cognitive tasks such as working memory, we propose recruiting at least 50 participants

Metrics: We propose capturing participant key strokes, program runs, and completion time. We will
measure cannabis’s impact on program correctness by comparing scores on held out test suites that we design
via common systematic processes (i.e., achieve full branch coverage [46]). We will compare programming
speed using the average number of key strokes per second and the total time to complete the problem.
We propose to assess one aspect of programming creativity via a qualitative approach where we manually
annotate responses for style and algorithmic choices that may differentiate high and sober programmers.

5 Preliminary Results

We now cover available preliminary results for each lens.

5.1 Preliminary Results – Lens 1: Building and Evaluating Bug Fixing Support

Preliminary work on INFIX and input-related bugs was published in the International Conference on Auto-
mated Software Engineering, 2019 [34], while SEQ2PARSE and parse errors was published in the OOPSLA
issue of the Proceedings of the ACM on Programming Language in 2022 [101]. The human-evaluations of
both tools were approved by Michigan’s IRB under HUM00158717 and HUM00183855.
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RQ1 – Factor Identification, Common Novice Errors: We find that the most common error type encoun-
tered by non-traditional novices is parse-errors: 77.4% of all faulty programs in the PYTHON TUTOR dataset
failed with a syntax error. Beyond being ubiquitous, parse errors can take time for novices to fix: 37% take
over two minutes to resolve, with more complex fixes taking longer. Even for fixes that require only a one
or two token change, the user spends 25 seconds on average (a considerable amount of time for such simple
fixes) — this time jumps to 56 seconds for three token fixes. Together, we observe strong indications that
parse errors are a very common category of error for which novices may benefit from additional support.

We find that input-related bugs are also common and time-consuming for novices. Making up 6.6%
of all PYTHON TUTOR errors, programs with input-related errors are often surprisingly complex. 40% of
erroneously-used input calls are embedded in either a loop or a split call, resulting in complex dynamic
input interaction. As a result, input-related errors take a wide range of time for users to resolve. The median
time to solve input-related errors is 49 seconds, however 34.6% take users over two minutes to solve and
5.5% take over seven minutes. Based on the metrics proposed in Section 4.1, we find that both parse errors
and input-related bugs are common and challenging, making them high priority for providing additional
support. This helps us gain confidence in our over-arching insight that large empirical evaluations can
identify previously-understudied programming barriers.

RQ2-a — Testable Solution, Automated Evaluation: We find that our proposed support for input-related
errors, INFIX is able to both accurately and efficiently repair historical student bugs, repairing 96% of
input-related errors in the PYTHON TUTOR dataset in a median of 0.88 seconds. SEQ2PARSE is similarly
accurate and efficient, able to parse and repair 94% of syntax errors in a median of 2.1 seconds. These
numbers demonstrate that both tools are accurate and efficient in generating repairs: Both have a repair rate
well above those of state-of-the-art APR tools and are also efficient enough to provide real-time feedback to
struggling learners (see Section 4.1 for more). Our results demonstrate the potential of exploratory empirical
evaluations to lead to actionable insights and tools for supporting programmers from diverse populations.

RQ2-b — Testable Solution, Human Evaluation: In our preliminary work, we find that repairs produced
by both INFIX and SEQ2PARSE are well-received in comparison to the historical repair. In human stud-
ies with 97 and 48 participants, we found that INFIX and SEQ2PARSE repairs (respectively) were similar
in quality (and sometimes of higher quality) than the historical bug fix. For example, participants found
INFIX’s repairs equally helpful as human repairs and we found that 35% of SEQ2PARSE repairs are actu-
ally equivalent to the historical fix. Of those that remain, 15% were judged to be significantly more useful
and 52% equally useful: k. Our preliminary results demonstrate how tools designed to support commonly-
encountered bugs can be well-received in practice, helping programmers write more correct code faster.

5.2 Preliminary Results — Lens 2: Effective Programmer Training via Cognitive Insights

Preliminary results for our fNIRS study on programming expertise an the efficacy of our reading training
were published in the 2021 International Conference on Software Engineering [32], and the 2021 Sympo-
sium on the Foundations of Software Engineering [31], respectively. Both phases of the proposed research
involve human subjects, which was approved by Michigan’s IRB under HUM00173556.

RQ1 — Factor Identification, Programming Brain Activation: To develop a preliminary mathematical
model of novice programmer cognition, we conducted a study with 31 first-year computing students using
fNIRS (see Section 2.2). We captured brain activation during programming, reading, and spatial reasoning
tasks, comparing observed activation to both a rest condition and also to each other.

Figure 1a shows our preliminary results for Programming vs. Rest; we found that novice programmers
engage brain regions associated with language and spatial cognition, as well as regions associated with in-
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(a) Programming vs. Rest (b) Programming vs. Rotation (c) Programming vs. Reading

Figure 1: Significant Brain Activation Contrasts for Novice Programmers. Red indicates regions more
activated during coding, while blue indicates regions more activated during the contrast activity. Arrows
and stars indicate brain activation that is particularly distinctive between the two tasks.

creased demand for attention and executive function (p < 0.01, q < 0.05). In addition, as demonstrated
by the contrasting brain activation in Figures 1b and 1c, for novices, coding is neurally distinct from both
reading and spatial reasoning (p < 0.01, q < 0.05). Coding engages regions associated with working mem-
ory (the cognitive system used to store and process information over short periods) more than does either
reading or rotation, indicating that programming is more cognitively challenging. However, unlike previous
work with experts that found strong similarities between coding and reading [42,104,105], we observe more
substantial differences between coding and reading than we do for coding and spatial tasks. This indicates
that novices rely heavily on visiospatial cognitive processes while coding. Overall, our preliminary results
demonstrate the ability of objective methods such as fNIRS to identify programming-relevant cognitive
processes and help develop a cognitive model of computing that that is more objective than self-reporting.

RQ1-b — Factor Identification, Predictive Brain Activity: In our preliminary results, we found that brain
activation patterns captured at the beginning of a semester can indeed predict end-of-semester programming
outcomes. We found a significant medium negative correlation between the similarity of a participant’s men-
tal rotation and coding brain activation patterns and their final programming score (in the right frontal region
of the brain, r = −0.48, p = 0.006): the less similar the neural activation patterns for coding and rotation,

Figure 2: Reading participants have sig-
nificantly larger % programming gains.

the better the final programming assessment outcome.
While more work is needed to fully understand the mecha-

nisms facilitating this finding, it may indicate that novices who
use more problem-solving intensive strategies at the beginning of
the semester make less progress over in a semester. This hypoth-
esis may align with the Spatial Encoding Strategy framework, a
leading theory of spatial encoding in computing which hypothe-
sizes that strong spatial reasoning ability helps novice program-
mers with general, but not with domain-specific, strategies for
mentally encoding programming information [73]. Our work
may thus have implications for the use of domain-specific strate-
gies in skills-based training. Regardless, our preliminary findings
demonstrate not only the ability of measures such as fNIRS to
gain computing insights more objective than self-reporting [45],
but also that they can identify factors that have real-world predic-
tive power (e.g., could be leveraged in interventions that help improve productivity in practice).

RQ2-a — Testable Solution, Supplemental Reading Training. Having established that spatial cognition
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is relevant for novice programmers, we also wanted to see if cognitively-informed supplemental reading
training (see Section 3.2) is as effective. To test for transfer from our training to improved programming, we
conducted a controlled 11-week longitudinal study with 57 CS1 students. We compared the programming-
related impacts of our novel reading training curriculum and a validated spatial training curriculum by
comparing final programming scores on the (SCS1 [87], see Section 4.2).

We find our reading training improves programming outcomes: as shown in Figure 2, students in our
reading training performed significantly better on the final programming test than those in the spatial training
(via a multiple linear regression with pre-test programming scores and training group as predictors, B =
−0.09, SE(B) = 0.14, t(54) = −2.33, p = .02). This indicates that technical reading ability may
sometimes better facilitate programming for novices than spatial ability, and demonstrates the importance
of objective methods (such as fNIRS) for informing actionable interventions.

We found that the programming-related benefits of our reading training is largest for code-tracing ques-
tions (B = −1.04, SE(B) = 0.45, t(54) = −2.31, p = .03). This demonstrates the potential usefulness of
our curriculum in practice: for novices, the ability to trace through code and describe its function in natural
language is highly-predictive of programming ability [69, 79]. Code tracing remains essential for experi-
enced programmers as developers are frequently required to read and understand code to both contribute to
multi-programmer projects [44] and also for code reviews [4]. Overall, our preliminary results demonstrate
the potential of cognitive training to support the productivity of novice programmers, especially those who
may have lower incoming preparation in cognitive skills such as technical reading or spatial ability.

5.3 Preliminary Results — Lens 3: Psychoactive Substances and Programming

We have preliminary results for this lens’s first research question (see Section 4.3). We conducted a survey
of the psychoactive substance usage history and preferences of 803 programmers, including 450 full-time
developers. This survey was supplemented by hour-long interviews with 26 professional programmers who
use psychoactive substances while programming. Both the survey and subsequent interviews were approved
by the IRB (HUM00187787, and HUM00213745), and preliminary results were published in the Interna-
tional Conference on Software Engineering in 2022 [29] and 2023 [83].

RQ1 — Factor Identification, Psychoactive Substance Usage Patterns: We find that psychoactive sub-
stance use is common in software: in the last year, 59% of our respondents have used a mind-altering

Figure 3: Selected tasks that are more or less
likely completed while using cannabis.

substance while programming, with alcohol and cannabis
the most common. For example, we find 35% of our
sample have ever used cannabis while completing a pro-
gramming or software engineering-related task, of which
half currently use cannabis at least once or more a month.
This use is most commonly-motivated by perceived pro-
gramming enhancement or increased enjoyment. In ad-
dition, we find evidence that strict anti-drug-policies can
influence job search decisions, with some developers re-
porting that the existence of such a policy reflects poorly
on company culture and developer trust.

Regarding cannabis in particular, we find that pro-
grammers often use products that contain THC (the compound responsible for its mind-altering effects),
and 11% of those who have used while programming report currently doing so on a near daily basis, be-
haviors very likely to be detected by most drug test policies. This is especially relevant as we find that over
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a third of cannabis-using programmers sometimes choose to use during work-related tasks, a likelihood
that increases for developers working remotely. As depicted in Figure 3, programmers may self-regulate
this work-related use by software task: cannabis use is more likely during creative open-ended software
tasks (such as Brainstorming or Prototyping) than during time- or safety- critical tasks (such as Quality
Assurance), a finding that may have policy implications.

Our preliminary findings of frequent use by professional programmers and reports of perceived program-
ming enhancement further motivate our proposed and ongoing observational study of the actual effects of
cannabis on programming. We have received IRB approval for a controlled observational study of cannabis’s
impact on programming (HUM00223584). We have secured funding for participants, and have successfully
obtained preliminary data from 74 participants. Our preliminary results give us confidence in the potential
of the proposed work to provide actionable insights for evidence-based drug policy reform in software.

6 Schedule

The proposed work for lens one was started in 2018 and completed in 2022 (with supporting publications in
2019 and 2022). The proposed work for lens two was started in 2019 and completed in 2021 (with supporting
publications in 2021). The proposed work for lens three was started in 2021. The preliminary results for the
first research question were finished in 2023 (with supporting publications in 2022 and 2023). The proposed
work for lens three’s Testable Solution is expected to be finished and published no later than February 2024.
We propose targeting the International Conference on Software Engineering for the remaining work.

7 Conclusion

Improving programming productivity, for both novices and experts, has long been a key challenge in soft-
ware. Myriad potential relevant factors and interventions have been proposed. However, many have failed to
impact practice, in part due to limited human-focused evaluation, causing companies or educators to struggle
to identify and implement proposals. We argue that effective research on programming productivity should
provide theoretically-grounded and actionable insights, include empirical or objective measures to validate
self-reported data, and support the diverse backgrounds of developers. We suggest that a combination of
exploratory empirical evaluations, rigorous experimental design, and a focus on practical productivity barri-
ers can yield actionable results. These insights guide our approach to identifying understudied productivity
factors and evaluating their impact on a broad spectrum of developers.

We propose three targeted research initiatives. First, we aim to develop algorithms that support bug-
fixing for non-traditional novices, focusing on common error types such as input-related bugs and parse
errors that we find such novices encounter in practice. Second, we suggest improving productivity via
evidence-backed developer training; we propose using neuroimaging to both build a mathematical model of
programming expertise and also inform cognitive training that helps novice programmers become experts
faster. Third, we propose understanding one way that external factors can impact software via an exploration
of the impact of psychoactive substances on programming productivity, a subject full of anecdotal evidence
but lacking sufficient scientific scrutiny. The PI is well positioned to carry out the research in all three
lenses, with 14 peer-reviewed conference and workshop publications [24, 29, 31–36, 41, 68, 83, 100–102],
including six [29, 31, 32, 34, 83, 101] that directly support the proposed work. By addressing these lenses
into programming productivity through empirical investigation and rigorous human evaluation, we aim to
contribute to the creation of a more productive and inclusive software development environment.
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