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Why study human-focused programming productivity?
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Performance Measure Slowest 
Coder

Fastest 
Coder Ratio

Code Hours: Algebra Problem 111 7 16:1

Code Hours: Maze Problem 50 2 25:1

Debug Hours: Algebra Problem 170 6 28:1

Debug Hours: Maze Problem 26 1 26:1

The Range of Individual Differences in 
Programming Performance

Sackman (et al.), 1968
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Developing Efficient 
and Usable 

Programming Support

Designing Effective 
Developer Training

Understanding External 
Productivity Factors

Can we support 
non-traditional novices in 

writing more correct 
code faster?

Can we use cognitive 
insights to inform training and 

improve programming 
outcomes?

How does psychoactive 
substance use impact 
software productivity?
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Desired Research Attribute Why I'm Excited (and you could be too!)

Provide Theoretically- 
Grounded and Actionable 
Insights

Bridging the gap between novel theoretical 
ideas to supporting programmers in practice 
leads to higher impact

Improving Programming Productivity: My Human-Focused Approach 
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Desired Research Attribute Why I'm Excited (and you could be too!)

Provide Theoretically- 
Grounded and Actionable 
Insights

Bridging the gap between novel theoretical 
ideas to supporting programmers in practice 
leads to higher impact

Include Empirical or Objective 
Measures of Programmers

Captures aspects of programming beyond 
self-reporting alone, including unconscious 
behaviors and habits

Minimize Scientific Bias to 
Support Generalizability

Controlled experimental design can capture a 
signal, even for complex human behavior

Support Diverse Developer 
Groups

I prefer approaches that not only help 
programmers in general, but also help those 
who need the most support

Improving Programming Productivity: My Human-Focused Approach 



InFix and Seq2Parse:
Developing Efficient and Usable Tools

Supporting Non-traditional 
Programming Novices via a two 
novel forms of bug-fixing support 
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Many People Want to 
Learn to Code

Without traditional classroom 
support
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How do Codecademy's 
45 million users 

learn to code?

The online Python Tutor interpreter 
currently has 60,000 users per month 
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    Python Tutor is a free online interpreter. It helps 
novices visualize arbitrary code execution.

Started in 2010, it has had over 150 million 
users from 180 countries 

Users are primarily Novice Programmers

One Such Platform: Python Tutor



Parse Errors     Input-Related Bugs

● Syntax errors are, by far, the most 
common Python error type 
experienced by novice 
programmers (77%)
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● We found that 6% of student errors 
are resolved by fixing the program 
input, not the source code

Example Code and Input

26,2
u = 42

x = float(input())

print(x * math.e / 2)

ValueError: could not convert 
string to float: '26,2'

SyntaxError: missing 
parentheses in call to print

u = 42

x = 3.14

print(x * math.e / 2
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What do Non-Traditional Novices Struggle with? Parse Errors

For Non-Traditional Novices, Parse Errors (Syntax Errors) 
   are both common and challenging 

37% of Parse Errors take over two minutes 
to resolve

More complex fixes take even longer:
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Fixing Parse Errors: How can we support Novices? 

Goal: We want support for fixing parse errors faced by 
non-traditional novices that is both:

●  Effective: can provide helpful repairs close to the 
user's intent in the majority of cases

and

● Efficient: Fast enough to be computed in real time
17



Fixing Parse Errors: How can we support Novices? 

Symbolic Approach?

Neural Approach?
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Goal: We want support for fixing parse errors faced by 
non-traditional novices that is both:

●  Effective: can provide helpful repairs close to the 
user's intent in the majority of cases

and

● Efficient: Fast enough to be computed in real time



Parsing Overview
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 Grammar G Program P



Finding Parse Errors: Fault Localization
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New_S    →   S | S Insert
RetStmt  →    |  E_return | E_return Args
E_return →  return | 𝜖 | Replace  

| Insert return 
E_number →  number | 𝜖 | Replace  

| Insert number
...

Fixing Parse Errors: Error Correcting Earley Parsers
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 Grammar G' Program P

Too many rules!
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Fixing Parse Errors: Neural Approaches 

Pros:

● Sequence classifiers can be good at predicting edits or 
repairs similar to human behavior

● Once trained, neural approaches can be quite efficient

Cons:

● Generally, no guarantees that the response will correct 
(e.g., actually parse), let alone be a minimal repair

● Neural approaches can be confused program context 
not directly related to the parse error 
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Fixing Parse Errors: Neural Approaches 

Pros:

● Sequence classifiers be good at identifying likely edits 
or repair

Cons:

● Generally, no guarantees that the response will correct 
(e.g., actually parse), let alone be a minimal repair

● Neural approaches can be confused program context 
not directly related to the parse error 

● EC-Parsers guarantee a correct minimal parse error fix, but are slow in practice because 
they consider too many production rules, the vast majority of which are not needed to fix 
any given novice error. 

● In contrast, Neural approaches are fast and can leverage historical user patterns, but can 
be inaccurate or untrustworthy if used alone 

  We propose to get the best of both worlds and efficiently and accurately suggest repairs in a 
  neurosymbolic fashion: 

1. Train sequence classifiers to predict the relevant EC-rules for a given program, instead of 
the next token or the full fix

2. Use the predicted rules to synthesize a Parse Error repair via EC-Parsing 

Seq2Parse: Key Insight



Seq2Parse: Efficient Fixes for Novice Parse Errors

Program 
With Parse 

Error

Fixed 
Program

Error-Correcting 
Earley Parser
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Seq2Parse: Efficient Fixes for Novice Parse Errors

Program 
With Parse 

Error

Fixed 
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Python Tutor Dataset

 X
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Error 
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Fixed 
Programs

Relevant 
Error Rule 
Predictor 

(Sequence 
Classifier)
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Error-Correcting 
Earley Parser
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How do we learn 
relevant error rules?

Error-Correcting 
Earley Parser



Additional Considerations for Learning EC-Production Rules

Ill-parsed Program Representation for Learning:

● Problem: Predicting relevant production rules using full buggy programs 
causes the model to be confused by irrelevant program context

● Our Solution: Instead of standard token strings, develop semantics for 
Abstracted Token Sequences that concentrate information relevant to a 
given parse error and remove confusing context

28

Mitigating Representational Ambiguity: 

● Problem: While needed, this abstraction adds ambiguity into what parse tree should result from 
any given abstracted token sequence

● Our Solution: Use fixed Python Tutor programs to learn a Probabilistic Context Free Grammar 
and resolve parsing ambiguities



Seq2Parse: Python Implementation

● Dataset: Over One Million Buggy/Fixed Program Pairs from Python Tutor
○ Average abstracted token sequence is 43 tokens long
○ 15,000 random programs used for evaluation, the rest for model training

● Error Rule Prediction Model Structure: 
○ Transformer classifier with six blocks, each with a fully-connected hidden layer of 256 

neurons and 12 attention heads, connected to a DNN-based classifier with two 
fully-connected hidden layers. 

○ Trained using an Adam optimizer, a variant of stochastic gradient descent for 50 epochs.

● Model Output: We trained multiple model variations, including one that outputs 
the 20 most likely error production rules for a given Buggy Program 

○ These rules are then fed into the Error Correcting Earley Parser

29



Preliminary results: Does it work? Yes!

Repair Rate: Seq2Parse can parse and repair 
up to 94.25% of programs with syntax errors.

Efficiency: Seq2Parse can parse and repair the 
vast majority of the test set in under 20 
seconds in a median time of 2.1 seconds

Quality: Seq2Parse generates the exact fix as 
the historical user up to 35% of the time! Of the 
remainder, Seq2Parse repairs are equivalent to 
or more useful than historical repairs 52% and 
15% of the time, respectively. 

Seq2Parse can fix most 
parse errors for 

non-traditional novices, 

in real time

and with the same, or 
better, quality to the 
novices themselves!
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Seq2Parse can fix most 
parse errors for 

non-traditional novices, 
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better, quality to the 
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We assess repair quality via a study with 39 programmers

Captured 527 subjective quality ratings for a corpus of 50 Seq2Parse / historical fix pairs
Compared the two pairs using standard statistical tests

31

Preliminary results: Does it work? Yes!
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Preliminary results: Does it work? Yes!
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Lens 1 — Summary: Developing Better Bug Fixing Support

● We identified parse errors and input-related bugs as a 
significant barrier for non-traditional novices in practice

● We propose Seq2Parse, a neurosymbolic approach to fixing 
parse errors, and InFix, a template-based approach for fixing 
input-related bugs

● Our preliminary results show that both tools produce repairs 
that are accurate, efficient, and of high quality, as judged by 
humans.

34
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Developing Efficient 
and Usable 

Programming Support

Designing Effective 
Developer Training

Understanding External 
Productivity Factors

Can we support 
non-traditional novices in 

writing more correct 
code faster?

Can we use cognitive 
insights to inform training and 

improve programming 
outcomes?

How does psychoactive 
substance use impact 
software productivity?



TO READ OR TO ROTATE?

An example of how cognitive insights can 
inform effective programming interventions

36



Novice programmers often struggle, 
especially those students with weaker preparatory 

education 

This struggle may result from insufficient preparation 
in cognitive skills necessary for programming

37
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How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill) 

can help underprepared students succeed in many fields
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How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill) 

can help underprepared students succeed in many fields
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Cognitive interventions may also help improve programming ability for novices…
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Cognitive interventions may also help improve programming ability for novices…

… but what cognitive skills should we target?



Neuroimaging and Software Engineering

● Understanding the cognitive basis of software engineering is important

● Neuroimaging allows us to objectively measure this cognitive basis by directly 
observing brain activation patterns while programming! (as opposed to 
self-reported data)

● Potential impact areas of neuroimaging include pedagogy, 
technology transfer, expertise, adult retraining
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● Neuroimaging uses contrast-based experiments to compare programming 
activities to other cognitive tasks

45

What do we know so far?

Neuroimaging 
Experiment

Is programming like 
Reading?

Is programming like 
Spatial Reasoning?

Siegmund et al., (2014) ✔

Siegmund et al., (2017) ✔

Floyd et al., (2017) ✔

Huang et al., (2019) ✔



● Neuroimaging uses contrast-based experiments to compare programming 
activities to other cognitive tasks
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What do we know so far?

Neuroimaging 
Experiment

Is programming like 
Reading?

Is programming like 
Spatial Reasoning?

Siegmund et al., (2014) ✔

Siegmund et al., (2017) ✔

Floyd et al., (2017) ✔

Huang et al., (2019) ✔

Found 
connection 
with 
Expertise



● Neuroimaging uses contrast-based experiments to compare programming activities to other 
cognitive tasks

47

What do we know so far?

Neuroimaging 
Experiment

Is programming like 
Reading?

Is programming like 
Spatial Reasoning?

What about with 
novices?

Siegmund et al., (2014) ✔ ?

Siegmund et al., (2017) ✔ ?

Floyd et al., (2017) ✔ ?

Huang et al., (2019) ✔ ?



Proposed Study Overview

48

Phase 1: Neuroimaging

● We propose to build model of novice programmer cognition using the first 
neuroimaging study of true novice programmers during code comprehension

Phase 2: Transfer Training

● We propose to investigate the the usefulness of transfer training in computing 
comparing the impact of two cognitive interventions on novice programming 
performance in a controlled, longitudinal study



Proposed Study Overview
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Phase 1: Neuroimaging

● We propose to build model of novice programmer cognition using the first 
neuroimaging study of true novice programmers during code comprehension

Phase 2: Transfer Training

● We propose to investigate the the usefulness of transfer training in computing 
comparing the impact of two cognitive interventions on novice programming 
performance in a controlled, longitudinal study

ICSE, 2021

FSE, 2021



Phase 1: Neuroimaging Method

50

● We propose using Functional Near Infrared Spectroscopy (fNIRS) to capture 
the brain activation patterns of novice programmers (no prior programming 
experience) 
○ fNIRS uses light to measure the oxygen levels in different parts 

of the brain
○ Supports studying the brain while doing natural programming tasks 

● We compare programming-associated activations to two 
well-understood cognitive tasks commonly used in 
neuroimaging studies of expert developers: spatial visualization and reading
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Experimental  Timeline: A Semester of CS1

Week 1: Start 
of the CS1 
semester

Week 3: 
Participant 
recruitment 
from CS1

Week 4-5.5: 
Brain scans 

Week 16: 
End of 
semester
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of the CS1 
semester

Week 3: 
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Neuroimaging Stimuli

We compare brain activation during three tasks:



We compare brain activation during three tasks:
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Neuroimaging Stimuli

● CS1-Level Programming 
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● Mental Rotation

Neuroimaging Stimuli

● CS1-Level Programming 

We compare brain activation during three tasks:
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● Mental Rotation
● Prose Fill in the Blank 

Neuroimaging Stimuli

● CS1-Level Programming 

We compare brain activation during three tasks:



Proposed Scan Data Collection and Analysis
● Each scan session lasts two hours

○ 90 stimuli, 30 of each type (programming, mental rotation, reading)

● 36 participants, 31 valid (24 female, 7 male)

● Data Analysis
○ Compare activation by task by brain area

using best practices from psychology
○ Significance threshold: p < 0.01. 
○ FDR to correct for multiple comparisons: q < 0.05
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A Mathematical Model of Novice Cognition: 
Primary Research Questions

● Comparative Activation: Do true programming novices rely more on 
spatial or language brain regions while programming? 
a. How do novices' brain activation patterns compare to those of 

expert developers?

58



Preliminary Results: Comparative Brain Activation 

● Question: Do novices use more spatial or language areas while programming? 

● Result: While areas associated with both are activated, we find more substantial 
differences between Coding and Reading than between Coding and Mental Rotation
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Preliminary Results: Comparative Brain Activation 

● Question: Do novices rely more on spatial or language areas while programming? 

● Result: While areas associated with both are activated, we find more substantial 
differences between Coding and Reading than between Coding and Mental Rotation
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Coding > Reading Coding > Mental Rotation
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Preliminary Results: Comparative Brain Activation 

● Question: Do novices rely more on spatial or language areas while programming? 

● Result: While areas associated with both are activated, we find more substantial 
differences between Coding and Reading than between Coding and Mental Rotation
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Preliminary Results: Comparative Brain Activation 

● Question: Do novices rely more on spatial or language areas while programming? 

● Result: While areas associated with both are activated, we find more substantial 
differences between Coding and Reading than between Coding and Rotation

● We also find that for novices coding engages more working memory and is more 
cognitively challenging than does either mental rotation or prose reading 

64

So for novices, programming looks more like spatial 
visualization than like reading. Now what?



Preliminary Results: Comparing to Experts

● Question: How does this finding compare to previous studies with experts?

● Floyd et al. found that coding and prose tasks are more similar in terms of neural 
activity for senior undergraduate than for mid-level undergraduates

● Our results: the pattern continues to novices. For less experienced 
programmers, programming and reading show less cognitive similarity

● Implications for developer training and pedagogy:
○ Perhaps spatial skills enable general problem solving for novices, but domain-specific 

programming strategies use more reading-associated cognitive processes
○ Directly training reading-based domain-specific strategies may help novices become experts faster

65



Preliminary Results Summary

66

For novices, spatial reasoning is "more similar" to 
programming than reading at a cognitive level.

This is in contrast to results with expert developers, 
and has implications for future programming training 

or interventions.



Phase 2: Transfer Training 
A Tale of Two Cognitive Interventions

67

Standardized and Validated Spatial 

Reasoning Training

Our Novel CS-focused Technical 

Reading Training

vs.



Intervention 1: Spatial Reasoning Training

68

● Spatial Reasoning is the ability to mentally manipulate 
2D and 3D shapes

● We use a validated pre-made Spatial Reasoning Training Curriculum 
developed for engineering students
○ Developed by Sorby et al. (2000)

● Includes sketching practice of shape 
rotation projection, and folding



Intervention 2: Technical Reading Training

● We propose an intervention to teach strategies 
for efficiently understanding scientific writing 

● Strategies focused on using structural cues to scan texts to 
retrieve and understand key points
○ Experienced programmers tend to read code non-linearly, focusing on 

high level features.
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71

Semester CS1 Course With Final Exam
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Spatial Training

Reading Training
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?  Spatial Training

Reading Training

?  



Transfer Training Results: Which Group Did Better?
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Spatial Reasoning 
Training

Technical Reading 
Training
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Spatial Reasoning 
Training

Technical Reading 
Training

Transfer Training Results: Which Group Did Better?
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Technical Reading 
Training

Transfer Training Results: Which Group Did Better?



Now that we know that our Reading Training 

transferred to CS1, what programming skill did it help?
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Now that we know that our Reading Training 

transferred to CS1, what programming skill did it help?
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Our final programming assessment (the SCS1) had three types 

of questions: code completion, definitional, and code tracing



How did the Reading Training Help?
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How did the Reading Training Help?
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How did the Reading Training Help?
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How did the Reading Training Help?

83
     p = 0.03



Lens 2 Summary
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Phase 1: Neuroimaging

● Proposal:  model novice programmer cognition using using fNIRs
● Preliminary Results: For novices, programming is a challenging working-memory 

intensive task. In contrast to studies with experts, spatial reasoning is "more 
similar" to programming than reading for novices at a cognitive level

Phase 2: Transfer Training

● Proposal: investigate transfer training in computing by comparing the impact of 
two cognitive interventions on novice programming in a controlled, 
longitudinal study

● Preliminary Results: Technical Reading Training helped programming ability 
more than spatial training, especially helping novices trace through code

ICSE, 2021

FSE, 2021
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Developing Efficient 
and Usable 

Programming Support

Designing Effective 
Developer Training

Understanding External 
Productivity Factors

Can we support 
non-traditional novices in 

writing more correct 
code faster?

Can we use cognitive 
insights to inform training and 

improve programming 
outcomes?

How does psychoactive 
substance use impact 
software productivity?



Psychoactive Substances 
and Programming?

A case study on how understudied 
external factors can impact software 
productivity

86

ICSE 2022, 2023, 
2024

Credit: XKCD Comic, https://xkcd.com/323/



CULTURE OF PSYCHOACTIVE SUBSTANCE USE AND 
SOFTWARE

87

“Taking LSD was a profound experience, 
one of the most important things in my life”

- Steve Jobs



However, this 
culture may 
conflict with 
some 
organizational 
structures –  

Take 
cannabis-related 
policies as an 
example:

88

 29% of software 
developers have taken a 

drug test for a 
programming-

related job. (Endres et 
al, 2022)



Proposed Study Overview

89

Phase 1: Interviews and Survey

● We propose to understand if, when, or why developers use psychoactive 
substances while programming using a large-scale survey and qualitative 
interviews with professional prop

Phase 2: Observational Study

● We propose to build a mathematical model of how one substance, cannabis, 
impacts programming performance using a controlled, observational study.

ICSE, 2022, 2023

Preliminary work not 
published



Phase 1: Survey Methodology

● Goal: To understand if, when, and why developers use cannabis while programming

● Survey Design:

■ 15-minute Qualtrics survey with questions about demographics, programming 
background, cannabis usage history, and experiences using cannabis while 
programming

● Survey Populations:

○ GitHub: Sent emails to 5,000+ US-based developers on popular projects 

○ University of Michigan: Sent emails to 5,000+ current and recent graduates

● Survey Ethics: 

○ We also need to make sure we distribute this survey ethically: responses are anonymous 
and confidential 90



Phase 1: SURVEY RESPONSES

803 valid responses: 

○ 440 from GitHub

○ 339 from University of Michigan

○ 24 from Social Media

Demographics: 

○ 83% Men, 14% Women, 2% Non-binary

○ Ages range from 15 to 70

○ 56% Full-time programmers, 36% Students
91

Job Title (could select multiple)

Software Engineer 311
Developer 270
Systems Engineer 72
CS Researcher 53
CS Instructor 49
Data Scientist 49

:)
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Phase 1 Preliminary Results: Summary

:)

Usage While Programming 
in Last Year
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Phase 1 Preliminary Results: Summary

:)

Usage While Programming 
in Last Year

● 33% use cannabis for work-related tasks

● 11% use cannabis at a frequency likely to 
be caught by a drug test 

● Qualitative evidence from cannabis-using 
includes conflicting experiences, with 
some reporting impairment with others 
reporting programming enhancement.
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Phase 2:  A Controlled Study of Cannabis's Impacts

● Goal: To build a mathematical model of how cannabis use impacts programming. 
○ We want our model to be rigorous enough to be used by individual developers 

and policy makers alike in making more informed cannabis and programming 
decisions. 

○ We pre-registered our hypotheses to facilitate future replication.
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A Controlled Observational Study: Cannabis

● Goal: To build a mathematical model of how cannabis use impacts programming. 
○ We want our model to be rigorous enough to be used by individual developers 

and policy makers alike in making more informed cannabis and programming 
decisions. 

○ We pre-registered our hypotheses to facilitate future replication.

● Design Considerations:
○ Achieving sufficient statistical power to answer our pre-registered research 

questions
○ Balancing Ecological Validity with Experimental Control
○ Maximizing Participant Privacy and Safety
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Remote Programming 
Session 1

Programming SoberProgramming Intoxicated
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Remote Programming 
Session 1

Programming SoberProgramming Intoxicated
Remote Programming 

Session 2
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Remote Programming 
Session 1

?  

Programming SoberProgramming Intoxicated
Remote Programming 

Session 2



RQ1: How does cannabis intoxication while programming impact program correctness?

● Hypothesis: Programs will be less correct when written by cannabis-intoxicated 
programmers.

● Finding: Cannabis use decreases program correctness (0.0005 < p < 0.05, 0.28 < d  
0.44, 10-14% fewer passed tests). In particular, cannabis impairs the ability to write and 
trace through programs. 

RQ2: How does cannabis intoxication while programming impact programming speed?

● Hypothesis: Cannabis-intoxicated programmers will take longer to write programs. 
● Finding: Cannabis use impairs programming speed (p < 0.04, d = 0.3, 10-14% slower). 

This decrease in speed is associated with typing slower, deleting more characters, 
and more time spent not typing.
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RQ1: How does cannabis intoxication while programming impact program correctness?

● Hypothesis: Programs will be less correct when written by cannabis-intoxicated 
programmers.

● Finding: Cannabis use decreases program correctness (0.0005 < p < 0.05, 0.28 < d  
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Current Status: 
We have received IRB approval for our proposed study and have funding for 
participants. We have successfully obtained preliminary data from 74 participants. 



Lens 3 - Summary: Psychoactive Substances and Programming

● In a survey of 800 programmers, we found that psychoactive 
substance use is common in software, especially alcohol and 
cannabis

● We found that many programmers use cannabis at rates that can 
be tested by current software drug policies, and that there are 
conflicting qualitative experiences of its impacts

● We have received IRB approval to conduct an observational 
study of cannabis's impact on programmers, and have collected 
preliminary data
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Developing Efficient 
and Usable 

Programming Support

Designing Effective 
Developer Training

Understanding External 
Productivity Factors

Supporting non-traditional 
novices in writing more 

correct code faster

Use cognitive insights to 
inform training and improve 
programming outcomes

Exploring how substance 
use impacts software 

productivity

A Human-Focused Approach to 
Improving Programmer Productivity
Madeline Endres, PhD Candidate, University of Michigan
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Anecdotal evidence 
abounds: 

Many programmers 
use cannabis while 
programming
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Cannabis use can 
conflict with 
corporate anti-drug 
policies

This conflict can lead 
to hiring shortages!

We find that 29% of software 
developers have taken a drug 

test for a programming-
related job.
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Seq2Parse: Efficient Fixes for Novice Parse Errors

Program 
With Parse 

Error
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How can we represent ill-parsed programs when training our classifier?

  Buggy Program                Token Sequence             Abstracted Token Sequence
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How can we represent ill-parsed programs when training our classifier?

  Buggy Program                Token Sequence             Abstracted Token Sequence

Great! But we have a new problem: Ambiguity
each abstracted token sequence can lead to multiple different ECE parse trees!
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Seq2Parse: Efficient Fixes for Novice Parse Errors
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How can we represent ill-parsed programs when training our classifier?

  Buggy Program                Token Sequence             Abstracted Token Sequence

Great! But we have a new problem: Ambiguity
 Solution: Learn a Probabilistic Context Free Grammar to Pick the Right One
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Seq2Parse: Efficient Fixes for Novice Parse Errors
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Cannabis sativa is the world’s most 
commonly used illicit substance, used 
by more than 192 million people in 2018 

Cannabis is used for many reasons both 
medical (e.g., pain relief) and recreational 

(e.g., altered consciousness) 

Cannabis’s legality is changing rapidly with many 
countries (e.g., UK, Colombia, Canada, Malawi) 

recently taking steps towards legalization 
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RQ2: Prediction

● Question: Can brain activation patterns at the start of CS1 predict future 
programming ability?

● Method: correlate brain activity interactions with scores on a programming test 
at the end of the semester (11-12 weeks after the initial brain scan)

● Result: Yes, it is possible! 

● Less-similar patterns of activation for coding and mental rotation in the right 
frontal hemisphere at the start of the semester predict better outcomes on the  
end-of-semester programming assessment (r = −0.482, p = 0.006)
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RQ2: Prediction Implications

● Perhaps novices who transition away from general spatial skills to 
reading-associated domain-specific strategies earlier make more progress

● Provides impetus for earlier pedagogical interventions

● Note: we do not see our result supporting essentialist-based theories of 
programming ability
○ Rather, it provides insight for more effectively understanding and 

removing computing barriers
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RQ2: Prediction Summary
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Novice brain activity when programming can predict 
future programming ability.

Provides another window into understanding and 
ameliorating computing barriers.


