
Three Lenses for Improving Programmer
Productivity

From Anecdote to Evidence

Madeline Endres, PhD Proposal, University of Michigan

1

Why study human-focused programming productivity?

2

Performance Measure Slowest
Coder

Fastest
Coder Ratio

Code Hours: Algebra Problem 111 7 16:1

Code Hours: Maze Problem 50 2 25:1

Debug Hours: Algebra Problem 170 6 28:1

Debug Hours: Maze Problem 26 1 26:1

The Range of Individual Differences in
Programming Performance

Sackman (et al.), 1968

Why study human-focused programming productivity?

3

Performance Measure Slowest
Coder

Fastest
Coder Ratio

Code Hours: Algebra Problem 111 7 16:1

Code Hours: Maze Problem 50 2 25:1

Debug Hours: Algebra Problem 170 6 28:1

Debug Hours: Maze Problem 26 1 26:1

The Range of Individual Differences in
Programming Performance

Sackman (et al.), 1968

4

Developing Efficient
and Usable

Programming Support

Designing Effective
Developer Training

Understanding External
Productivity Factors

Can we support
non-traditional novices in

writing more correct
code faster?

Can we use cognitive
insights to inform training and

improve programming
outcomes?

How does psychoactive
substance use impact
software productivity?

5

Desired Research Attribute Why I'm Excited (and you could be too!)

Provide Theoretically-
Grounded and Actionable
Insights

Bridging the gap between novel theoretical
ideas to supporting programmers in practice
leads to higher impact

Improving Programming Productivity: My Human-Focused Approach

6

Desired Research Attribute Why I'm Excited (and you could be too!)

Provide Theoretically-
Grounded and Actionable
Insights

Bridging the gap between novel theoretical
ideas to supporting programmers in practice
leads to higher impact

Include Empirical or Objective
Measures of Programmers

Captures aspects of programming beyond
self-reporting alone, including unconscious
behaviors and habits

Improving Programming Productivity: My Human-Focused Approach

7

Desired Research Attribute Why I'm Excited (and you could be too!)

Provide Theoretically-
Grounded and Actionable
Insights

Bridging the gap between novel theoretical
ideas to supporting programmers in practice
leads to higher impact

Include Empirical or Objective
Measures of Programmers

Captures aspects of programming beyond
self-reporting alone, including unconscious
behaviors and habits

Minimize Scientific Bias to
Support Generalizability

Controlled experimental design can capture a
signal, even for complex human behavior

Improving Programming Productivity: My Human-Focused Approach

8

Desired Research Attribute Why I'm Excited (and you could be too!)

Provide Theoretically-
Grounded and Actionable
Insights

Bridging the gap between novel theoretical
ideas to supporting programmers in practice
leads to higher impact

Include Empirical or Objective
Measures of Programmers

Captures aspects of programming beyond
self-reporting alone, including unconscious
behaviors and habits

Minimize Scientific Bias to
Support Generalizability

Controlled experimental design can capture a
signal, even for complex human behavior

Support Diverse Developer
Groups

I prefer approaches that not only help
programmers in general, but also help those
who need the most support

Improving Programming Productivity: My Human-Focused Approach

InFix and Seq2Parse:
Developing Efficient and Usable Tools

Supporting Non-traditional
Programming Novices via a two
novel forms of bug-fixing support

10

Many People Want to
Learn to Code

Without traditional classroom
support

11

How do Codecademy's
45 million users

learn to code?

The online Python Tutor interpreter
currently has 60,000 users per month

12

 Python Tutor is a free online interpreter. It helps
novices visualize arbitrary code execution.

Started in 2010, it has had over 150 million
users from 180 countries

Users are primarily Novice Programmers

One Such Platform: Python Tutor

Parse Errors Input-Related Bugs

● Syntax errors are, by far, the most
common Python error type
experienced by novice
programmers (77%)

13

● We found that 6% of student errors
are resolved by fixing the program
input, not the source code

Example Code and Input

26,2
u = 42

x = float(input())

print(x * math.e / 2)

ValueError: could not convert
string to float: '26,2'

SyntaxError: missing
parentheses in call to print

u = 42

x = 3.14

print(x * math.e / 2

Parse Errors Input-Related Bugs

● Syntax errors are, by far, the most
common Python error type
experienced by novice
programmers (77%)

14

● We found that 6% of student errors
are resolved by fixing the program
input, not the source code

Example Code and Input

26,2
u = 42

x = float(input())

print(x * math.e / 2)

ValueError: could not convert
string to float: '26,2'

SyntaxError: missing
parentheses in call to print

u = 42

x = 3.14

print(x * math.e / 2

Proposed Approach:
Neurosymbolic technique,

Seq2Parse

Preliminary results in OOPSLA, 2022

Proposed Approach:
Template-repair approach,

InFix

Preliminary results in ASE, 2019

Parse Errors Input-Related Bugs

● Syntax errors are, by far, the most
common Python error type
experienced by novice
programmers (77%)

15

● We found that 6% of student errors
are resolved by fixing the program
input, not the source code

Example Code and Input

26,2
u = 42

x = float(input())

print(x * math.e / 2)

ValueError: could not convert
string to float: '26,2'

SyntaxError: missing
parentheses in call to print

u = 42

x = 3.14

print(x * math.e / 2

Proposed Approach:
Neurosymbolic technique,

Seq2Parse

Preliminary results in OOPSLA, 2022

Proposed Approach:
Template-repair approach,

InFix

Preliminary results in ASE, 2019

What do Non-Traditional Novices Struggle with? Parse Errors

For Non-Traditional Novices, Parse Errors (Syntax Errors)
 are both common and challenging

37% of Parse Errors take over two minutes
to resolve

More complex fixes take even longer:

16

Fixing Parse Errors: How can we support Novices?

Goal: We want support for fixing parse errors faced by
non-traditional novices that is both:

● Effective: can provide helpful repairs close to the
user's intent in the majority of cases

and

● Efficient: Fast enough to be computed in real time
17

Fixing Parse Errors: How can we support Novices?

Symbolic Approach?

Neural Approach?

18

Goal: We want support for fixing parse errors faced by
non-traditional novices that is both:

● Effective: can provide helpful repairs close to the
user's intent in the majority of cases

and

● Efficient: Fast enough to be computed in real time

Parsing Overview

19

 Grammar G Program P

Finding Parse Errors: Fault Localization

20

 Grammar G Program P

New_S → S | S Insert
RetStmt → | E_return | E_return Args
E_return → return | 𝜖 | Replace

| Insert return
E_number → number | 𝜖 | Replace

| Insert number
...

Fixing Parse Errors: Error Correcting Earley Parsers

21

 Grammar G' Program P

New_S → S | S Insert
RetStmt → | E_return | E_return Args
E_return → return | 𝜖 | Replace

| Insert return
E_number → number | 𝜖 | Replace

| Insert number
...

Fixing Parse Errors: Error Correcting Earley Parsers

22

 Grammar G' Program P

Too many rules!

23

Fixing Parse Errors: Neural Approaches

Pros:

● Sequence classifiers can be good at predicting edits or
repairs similar to human behavior

● Once trained, neural approaches can be quite efficient

Cons:

● Generally, no guarantees that the response will correct
(e.g., actually parse), let alone be a minimal repair

● Neural approaches can be confused program context
not directly related to the parse error

24

Fixing Parse Errors: Neural Approaches

Pros:

● Sequence classifiers be good at identifying likely edits
or repair

Cons:

● Generally, no guarantees that the response will correct
(e.g., actually parse), let alone be a minimal repair

● Neural approaches can be confused program context
not directly related to the parse error

● EC-Parsers guarantee a correct minimal parse error fix, but are slow in practice because
they consider too many production rules, the vast majority of which are not needed to fix
any given novice error.

● In contrast, Neural approaches are fast and can leverage historical user patterns, but can
be inaccurate or untrustworthy if used alone

 We propose to get the best of both worlds and efficiently and accurately suggest repairs in a
 neurosymbolic fashion:

1. Train sequence classifiers to predict the relevant EC-rules for a given program, instead of
the next token or the full fix

2. Use the predicted rules to synthesize a Parse Error repair via EC-Parsing

Seq2Parse: Key Insight

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Error-Correcting
Earley Parser

25

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Python Tutor Dataset

 X
Parse
Error

Programs

Fixed
Programs

Relevant
Error Rule
Predictor

(Sequence
Classifier)

26

Error-Correcting
Earley Parser

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Python Tutor Dataset

 X
Parse
Error

Programs

Fixed
Programs

Relevant
Error Rule
Predictor

(Sequence
Classifier)

27

How do we learn
relevant error rules?

Error-Correcting
Earley Parser

Additional Considerations for Learning EC-Production Rules

Ill-parsed Program Representation for Learning:

● Problem: Predicting relevant production rules using full buggy programs
causes the model to be confused by irrelevant program context

● Our Solution: Instead of standard token strings, develop semantics for
Abstracted Token Sequences that concentrate information relevant to a
given parse error and remove confusing context

28

Mitigating Representational Ambiguity:

● Problem: While needed, this abstraction adds ambiguity into what parse tree should result from
any given abstracted token sequence

● Our Solution: Use fixed Python Tutor programs to learn a Probabilistic Context Free Grammar
and resolve parsing ambiguities

Seq2Parse: Python Implementation

● Dataset: Over One Million Buggy/Fixed Program Pairs from Python Tutor
○ Average abstracted token sequence is 43 tokens long
○ 15,000 random programs used for evaluation, the rest for model training

● Error Rule Prediction Model Structure:
○ Transformer classifier with six blocks, each with a fully-connected hidden layer of 256

neurons and 12 attention heads, connected to a DNN-based classifier with two
fully-connected hidden layers.

○ Trained using an Adam optimizer, a variant of stochastic gradient descent for 50 epochs.

● Model Output: We trained multiple model variations, including one that outputs
the 20 most likely error production rules for a given Buggy Program

○ These rules are then fed into the Error Correcting Earley Parser

29

Preliminary results: Does it work? Yes!

Repair Rate: Seq2Parse can parse and repair
up to 94.25% of programs with syntax errors.

Efficiency: Seq2Parse can parse and repair the
vast majority of the test set in under 20
seconds in a median time of 2.1 seconds

Quality: Seq2Parse generates the exact fix as
the historical user up to 35% of the time! Of the
remainder, Seq2Parse repairs are equivalent to
or more useful than historical repairs 52% and
15% of the time, respectively.

Seq2Parse can fix most
parse errors for

non-traditional novices,

in real time

and with the same, or
better, quality to the
novices themselves!

30

Repair Rate: Seq2Parse can parse and repair
up to 94.25% of programs with syntax errors.

Efficiency: Seq2Parse can parse and repair the
vast majority of the test set in under 20
seconds in a median time of 2.1 seconds

Quality: Seq2Parse generates the exact fix as
the historical user up to 35% of the time! Of the
remainder, Seq2Parse repairs are equivalent to
or more useful than historical repairs 52% and
15% of the time, respectively.

Seq2Parse can fix most
parse errors for

non-traditional novices,

in real time

and with the same, or
better, quality to the
novices themselves!

We assess repair quality via a study with 39 programmers

Captured 527 subjective quality ratings for a corpus of 50 Seq2Parse / historical fix pairs
Compared the two pairs using standard statistical tests

31

Preliminary results: Does it work? Yes!

Repair Rate: Seq2Parse can parse and repair
up to 94.25% of programs with syntax errors.

Efficiency: Seq2Parse can parse and repair the
vast majority of the test set in under 20
seconds in a median time of 2.1 seconds

Quality: Seq2Parse generates the exact fix as
the historical user up to 35% of the time! Of the
remainder, Seq2Parse repairs are equivalent to
or more useful than historical repairs 52% and
15% of the time, respectively.

Seq2Parse can fix most
parse errors for

non-traditional novices,

in real time

and with the same, or
better, quality to the
novices themselves!

32

Preliminary results: Does it work? Yes!

33

Lens 1 — Summary: Developing Better Bug Fixing Support

● We identified parse errors and input-related bugs as a
significant barrier for non-traditional novices in practice

● We propose Seq2Parse, a neurosymbolic approach to fixing
parse errors, and InFix, a template-based approach for fixing
input-related bugs

● Our preliminary results show that both tools produce repairs
that are accurate, efficient, and of high quality, as judged by
humans.

34

35

Developing Efficient
and Usable

Programming Support

Designing Effective
Developer Training

Understanding External
Productivity Factors

Can we support
non-traditional novices in

writing more correct
code faster?

Can we use cognitive
insights to inform training and

improve programming
outcomes?

How does psychoactive
substance use impact
software productivity?

TO READ OR TO ROTATE?

An example of how cognitive insights can
inform effective programming interventions

36

Novice programmers often struggle,
especially those students with weaker preparatory

education

This struggle may result from insufficient preparation
in cognitive skills necessary for programming

37

38

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

39

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

40

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

41

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

42

Cognitive interventions may also help improve programming ability for novices…

43

Cognitive interventions may also help improve programming ability for novices…

… but what cognitive skills should we target?

Neuroimaging and Software Engineering

● Understanding the cognitive basis of software engineering is important

● Neuroimaging allows us to objectively measure this cognitive basis by directly
observing brain activation patterns while programming! (as opposed to
self-reported data)

● Potential impact areas of neuroimaging include pedagogy,
technology transfer, expertise, adult retraining

44

● Neuroimaging uses contrast-based experiments to compare programming
activities to other cognitive tasks

45

What do we know so far?

Neuroimaging
Experiment

Is programming like
Reading?

Is programming like
Spatial Reasoning?

Siegmund et al., (2014) ✔

Siegmund et al., (2017) ✔

Floyd et al., (2017) ✔

Huang et al., (2019) ✔

● Neuroimaging uses contrast-based experiments to compare programming
activities to other cognitive tasks

46

What do we know so far?

Neuroimaging
Experiment

Is programming like
Reading?

Is programming like
Spatial Reasoning?

Siegmund et al., (2014) ✔

Siegmund et al., (2017) ✔

Floyd et al., (2017) ✔

Huang et al., (2019) ✔

Found
connection
with
Expertise

● Neuroimaging uses contrast-based experiments to compare programming activities to other
cognitive tasks

47

What do we know so far?

Neuroimaging
Experiment

Is programming like
Reading?

Is programming like
Spatial Reasoning?

What about with
novices?

Siegmund et al., (2014) ✔ ?

Siegmund et al., (2017) ✔ ?

Floyd et al., (2017) ✔ ?

Huang et al., (2019) ✔ ?

Proposed Study Overview

48

Phase 1: Neuroimaging

● We propose to build model of novice programmer cognition using the first
neuroimaging study of true novice programmers during code comprehension

Phase 2: Transfer Training

● We propose to investigate the the usefulness of transfer training in computing
comparing the impact of two cognitive interventions on novice programming
performance in a controlled, longitudinal study

Proposed Study Overview

49

Phase 1: Neuroimaging

● We propose to build model of novice programmer cognition using the first
neuroimaging study of true novice programmers during code comprehension

Phase 2: Transfer Training

● We propose to investigate the the usefulness of transfer training in computing
comparing the impact of two cognitive interventions on novice programming
performance in a controlled, longitudinal study

ICSE, 2021

FSE, 2021

Phase 1: Neuroimaging Method

50

● We propose using Functional Near Infrared Spectroscopy (fNIRS) to capture
the brain activation patterns of novice programmers (no prior programming
experience)
○ fNIRS uses light to measure the oxygen levels in different parts

of the brain
○ Supports studying the brain while doing natural programming tasks

● We compare programming-associated activations to two
well-understood cognitive tasks commonly used in
neuroimaging studies of expert developers: spatial visualization and reading

51

Experimental Timeline: A Semester of CS1

Week 1: Start
of the CS1
semester

Week 3:
Participant
recruitment
from CS1

Week 4-5.5:
Brain scans

Week 16:
End of
semester

52

Experimental Timeline: A Semester of CS1

Week 1: Start
of the CS1
semester

Week 3:
Participant
recruitment
from CS1

 Week 4-5.5:
 Brain scans

Week 16:
End of
semester

53

Neuroimaging Stimuli

We compare brain activation during three tasks:

We compare brain activation during three tasks:

54

Neuroimaging Stimuli

● CS1-Level Programming

55

● Mental Rotation

Neuroimaging Stimuli

● CS1-Level Programming

We compare brain activation during three tasks:

56

● Mental Rotation
● Prose Fill in the Blank

Neuroimaging Stimuli

● CS1-Level Programming

We compare brain activation during three tasks:

Proposed Scan Data Collection and Analysis
● Each scan session lasts two hours

○ 90 stimuli, 30 of each type (programming, mental rotation, reading)

● 36 participants, 31 valid (24 female, 7 male)

● Data Analysis
○ Compare activation by task by brain area

using best practices from psychology
○ Significance threshold: p < 0.01.
○ FDR to correct for multiple comparisons: q < 0.05

57

A Mathematical Model of Novice Cognition:
Primary Research Questions

● Comparative Activation: Do true programming novices rely more on
spatial or language brain regions while programming?
a. How do novices' brain activation patterns compare to those of

expert developers?

58

Preliminary Results: Comparative Brain Activation

● Question: Do novices use more spatial or language areas while programming?

● Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

59

Preliminary Results: Comparative Brain Activation

● Question: Do novices rely more on spatial or language areas while programming?

● Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

60

Coding > Reading Coding > Mental Rotation

Preliminary Results: Comparative Brain Activation

● Question: Do novices rely more on spatial or language areas while programming?

● Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

61

Coding > Reading Coding > Mental Rotation

Preliminary Results: Comparative Brain Activation

● Question: Do novices rely more on spatial or language areas while programming?

● Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

62

Coding > Reading Coding > Mental Rotation

Preliminary Results: Comparative Brain Activation

● Question: Do novices rely more on spatial or language areas while programming?

● Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

63

Preliminary Results: Comparative Brain Activation

● Question: Do novices rely more on spatial or language areas while programming?

● Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Rotation

● We also find that for novices coding engages more working memory and is more
cognitively challenging than does either mental rotation or prose reading

64

So for novices, programming looks more like spatial
visualization than like reading. Now what?

Preliminary Results: Comparing to Experts

● Question: How does this finding compare to previous studies with experts?

● Floyd et al. found that coding and prose tasks are more similar in terms of neural
activity for senior undergraduate than for mid-level undergraduates

● Our results: the pattern continues to novices. For less experienced
programmers, programming and reading show less cognitive similarity

● Implications for developer training and pedagogy:
○ Perhaps spatial skills enable general problem solving for novices, but domain-specific

programming strategies use more reading-associated cognitive processes
○ Directly training reading-based domain-specific strategies may help novices become experts faster

65

Preliminary Results Summary

66

For novices, spatial reasoning is "more similar" to
programming than reading at a cognitive level.

This is in contrast to results with expert developers,
and has implications for future programming training

or interventions.

Phase 2: Transfer Training
A Tale of Two Cognitive Interventions

67

Standardized and Validated Spatial

Reasoning Training

Our Novel CS-focused Technical

Reading Training

vs.

Intervention 1: Spatial Reasoning Training

68

● Spatial Reasoning is the ability to mentally manipulate
2D and 3D shapes

● We use a validated pre-made Spatial Reasoning Training Curriculum
developed for engineering students
○ Developed by Sorby et al. (2000)

● Includes sketching practice of shape
rotation projection, and folding

Intervention 2: Technical Reading Training

● We propose an intervention to teach strategies
for efficiently understanding scientific writing

● Strategies focused on using structural cues to scan texts to
retrieve and understand key points
○ Experienced programmers tend to read code non-linearly, focusing on

high level features.

69

70

71

Semester CS1 Course With Final Exam

72

73

Spatial Training

Reading Training

74

? Spatial Training

Reading Training

?

Transfer Training Results: Which Group Did Better?

75

Spatial Reasoning
Training

Technical Reading
Training

76

Spatial Reasoning
Training

Technical Reading
Training

Transfer Training Results: Which Group Did Better?

77

Technical Reading
Training

Transfer Training Results: Which Group Did Better?

Now that we know that our Reading Training

transferred to CS1, what programming skill did it help?

78

Now that we know that our Reading Training

transferred to CS1, what programming skill did it help?

79

Our final programming assessment (the SCS1) had three types

of questions: code completion, definitional, and code tracing

How did the Reading Training Help?

80

How did the Reading Training Help?

81

How did the Reading Training Help?

82

How did the Reading Training Help?

83
 p = 0.03

Lens 2 Summary

84

Phase 1: Neuroimaging

● Proposal: model novice programmer cognition using using fNIRs
● Preliminary Results: For novices, programming is a challenging working-memory

intensive task. In contrast to studies with experts, spatial reasoning is "more
similar" to programming than reading for novices at a cognitive level

Phase 2: Transfer Training

● Proposal: investigate transfer training in computing by comparing the impact of
two cognitive interventions on novice programming in a controlled,
longitudinal study

● Preliminary Results: Technical Reading Training helped programming ability
more than spatial training, especially helping novices trace through code

ICSE, 2021

FSE, 2021

85

Developing Efficient
and Usable

Programming Support

Designing Effective
Developer Training

Understanding External
Productivity Factors

Can we support
non-traditional novices in

writing more correct
code faster?

Can we use cognitive
insights to inform training and

improve programming
outcomes?

How does psychoactive
substance use impact
software productivity?

Psychoactive Substances
and Programming?

A case study on how understudied
external factors can impact software
productivity

86

ICSE 2022, 2023,
2024

Credit: XKCD Comic, https://xkcd.com/323/

CULTURE OF PSYCHOACTIVE SUBSTANCE USE AND
SOFTWARE

87

“Taking LSD was a profound experience,
one of the most important things in my life”

- Steve Jobs

However, this
culture may
conflict with
some
organizational
structures –

Take
cannabis-related
policies as an
example:

88

 29% of software
developers have taken a

drug test for a
programming-

related job. (Endres et
al, 2022)

Proposed Study Overview

89

Phase 1: Interviews and Survey

● We propose to understand if, when, or why developers use psychoactive
substances while programming using a large-scale survey and qualitative
interviews with professional prop

Phase 2: Observational Study

● We propose to build a mathematical model of how one substance, cannabis,
impacts programming performance using a controlled, observational study.

ICSE, 2022, 2023

Preliminary work not
published

Phase 1: Survey Methodology

● Goal: To understand if, when, and why developers use cannabis while programming

● Survey Design:

■ 15-minute Qualtrics survey with questions about demographics, programming
background, cannabis usage history, and experiences using cannabis while
programming

● Survey Populations:

○ GitHub: Sent emails to 5,000+ US-based developers on popular projects

○ University of Michigan: Sent emails to 5,000+ current and recent graduates

● Survey Ethics:

○ We also need to make sure we distribute this survey ethically: responses are anonymous
and confidential 90

Phase 1: SURVEY RESPONSES

803 valid responses:

○ 440 from GitHub

○ 339 from University of Michigan

○ 24 from Social Media

Demographics:

○ 83% Men, 14% Women, 2% Non-binary

○ Ages range from 15 to 70

○ 56% Full-time programmers, 36% Students
91

Job Title (could select multiple)

Software Engineer 311
Developer 270
Systems Engineer 72
CS Researcher 53
CS Instructor 49
Data Scientist 49

:)

92

Phase 1 Preliminary Results: Summary

:)

Usage While Programming
in Last Year

93

Phase 1 Preliminary Results: Summary

:)

Usage While Programming
in Last Year

● 33% use cannabis for work-related tasks

● 11% use cannabis at a frequency likely to
be caught by a drug test

● Qualitative evidence from cannabis-using
includes conflicting experiences, with
some reporting impairment with others
reporting programming enhancement.

94

Phase 2: A Controlled Study of Cannabis's Impacts

● Goal: To build a mathematical model of how cannabis use impacts programming.
○ We want our model to be rigorous enough to be used by individual developers

and policy makers alike in making more informed cannabis and programming
decisions.

○ We pre-registered our hypotheses to facilitate future replication.

95

A Controlled Observational Study: Cannabis

● Goal: To build a mathematical model of how cannabis use impacts programming.
○ We want our model to be rigorous enough to be used by individual developers

and policy makers alike in making more informed cannabis and programming
decisions.

○ We pre-registered our hypotheses to facilitate future replication.

● Design Considerations:
○ Achieving sufficient statistical power to answer our pre-registered research

questions
○ Balancing Ecological Validity with Experimental Control
○ Maximizing Participant Privacy and Safety

96

97

Remote Programming
Session 1

Programming SoberProgramming Intoxicated

98

Remote Programming
Session 1

Programming SoberProgramming Intoxicated
Remote Programming

Session 2

99

Remote Programming
Session 1

?

Programming SoberProgramming Intoxicated
Remote Programming

Session 2

RQ1: How does cannabis intoxication while programming impact program correctness?

● Hypothesis: Programs will be less correct when written by cannabis-intoxicated
programmers.

● Finding: Cannabis use decreases program correctness (0.0005 < p < 0.05, 0.28 < d
0.44, 10-14% fewer passed tests). In particular, cannabis impairs the ability to write and
trace through programs.

RQ2: How does cannabis intoxication while programming impact programming speed?

● Hypothesis: Cannabis-intoxicated programmers will take longer to write programs.
● Finding: Cannabis use impairs programming speed (p < 0.04, d = 0.3, 10-14% slower).

This decrease in speed is associated with typing slower, deleting more characters,
and more time spent not typing.

100

Outstanding Work: Pre-registered Hypotheses

RQ1: How does cannabis intoxication while programming impact program correctness?

● Hypothesis: Programs will be less correct when written by cannabis-intoxicated
programmers.

● Finding: Cannabis use decreases program correctness (0.0005 < p < 0.05, 0.28 < d
0.44, 10-14% fewer passed tests). In particular, cannabis impairs the ability to write and
trace through programs.

RQ2: How does cannabis intoxication while programming impact programming speed?

● Hypothesis: Cannabis-intoxicated programmers will take longer to write programs.
● Finding: Cannabis use impairs programming speed (p < 0.04, d = 0.3, 10-14% slower).

This decrease in speed is associated with typing slower, deleting more characters,
and more time spent not typing.

101

Outstanding Work: Pre-registered Hypotheses

Current Status:
We have received IRB approval for our proposed study and have funding for
participants. We have successfully obtained preliminary data from 74 participants.

Lens 3 - Summary: Psychoactive Substances and Programming

● In a survey of 800 programmers, we found that psychoactive
substance use is common in software, especially alcohol and
cannabis

● We found that many programmers use cannabis at rates that can
be tested by current software drug policies, and that there are
conflicting qualitative experiences of its impacts

● We have received IRB approval to conduct an observational
study of cannabis's impact on programmers, and have collected
preliminary data

102

Professional Programmers

Programming Novices

ICSE 2021

ICSE 2022

ICSE 2023

ICSE 2024a

ICSE 2024b

ICSE-SEET 2022

FSE 2023

FSE 2021

OOPSLA 2022

ASE 2019

PLDI 2020

SIGCSE 2020

SIGCSE 2021

103

More Theoretical More Empirical

104

20
19

20
20

20
21

20
22

20
23

20
24

Proposal
Date

Proposed
G

raduation

Proposed Ph.D. Timeline

 Research
 Publication Delay
 Other

Supporting Publications

105

1. ICSE, 2024 Causal Relationships and Programming Outcomes: A Transcranial Magnetic Stimulation Experiment,
Ahmad, H., Endres, M., Newman, K., Santiesteban, P., Shedden, E., Weimer, W.

2. FSE, 2023 A Four-Year Study of Student Contributions to OSS with a Lightweight Intervention,
Fang, Z., Endres, M., Zimmermann, T., Ford, D., Weimer, W., Leach., K., Huang, Y

3. ICSE, 2023 From Organizations to Individuals: Psychoactive Substance Use By Professional Programmers,
Newman, K., Endres, M., Weimer, W., Johnson, B.

4. OOPSLA, 2022 Seq2Parse: Neurosymbolic Parse Error Repair, Sakkas, G., Endres, M., Guo, P., Weimer, W., Jhala, R.
5. ICSE, 2022 Hashing It Out: A Survey of Programmers’ Cannabis Usage, Perception, and Motivation,

Endres, M., Boehnke, K., Weimer, W.
6. ICSE-SEET, 2022 Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers,

Li, A., Endres, M., Weimer,
7. FSE, 2021 To Read or To Rotate? Comparing the Effects of Technical Reading Training and Spatial Skills Training…

Endres, M., Fansher, M., Shah, P., Weimer, W.
8. ICSE, 2021 Relating Reading, Visualization, and Coding for New Programmers: A Neuroimaging Study

Endres, M., Karas, Z., Hu, Z., Kovelman, I., Weimer, W
9. SIGCSE, 2021 An Analysis of Iterative and Recursive Problem Performance, Endres, M., Weimer, W., Kamil, A.

10. PLDI, 2020 Type Error Feedback via Analytic Program Repair Sakkas, G.,Endres, M.,Cosman, B.,Weimer, W.,Jhala, R.
11. SIGCSE, 2020 Pablo: Helping Novices Debug Python Code Through Data-Driven Fault Localization

Cosman, B., Endres, M., Sakkas, G., Medvinsky, L., Yao-Yuan,Y.,Jhala, R.,Chaudhuri, K.,Weimer, W.
12. ASE, 2019 InFix: Automatically Repairing Novice Program Inputs

Endres, M., Cosman, B., Sakkas, G., Jhala, R., Weimer, W.

106

Developing Efficient
and Usable

Programming Support

Designing Effective
Developer Training

Understanding External
Productivity Factors

Supporting non-traditional
novices in writing more

correct code faster

Use cognitive insights to
inform training and improve
programming outcomes

Exploring how substance
use impacts software

productivity

A Human-Focused Approach to
Improving Programmer Productivity
Madeline Endres, PhD Candidate, University of Michigan

Bonus Slides

107

108

Anecdotal evidence
abounds:

Many programmers
use cannabis while
programming

109

Cannabis use can
conflict with
corporate anti-drug
policies

This conflict can lead
to hiring shortages!

We find that 29% of software
developers have taken a drug

test for a programming-
related job.

110

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Python Tutor Dataset

 X
Parse
Error

Programs

Fixed
Programs

Error-Correcting
Erley Parser

Relevant
Error Rule
Predictor

(Sequence
Classifier)

How can we represent ill-parsed programs when training our classifier?

 Buggy Program Token Sequence Abstracted Token Sequence

111

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Python Tutor Dataset

 X
Parse
Error

Programs

Fixed
Programs

Error-Correcting
Erley Parser

Relevant
Error Rule
Predictor

(Sequence
Classifier)

How can we represent ill-parsed programs when training our classifier?

 Buggy Program Token Sequence Abstracted Token Sequence

Great! But we have a new problem: Ambiguity
each abstracted token sequence can lead to multiple different ECE parse trees!

112

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Python Tutor Dataset

 X
Parse
Error

Programs

Fixed
Programs

Error-Correcting
Erley Parser

Relevant
Error Rule
Predictor

(Sequence
Classifier)

How can we represent ill-parsed programs when training our classifier?

 Buggy Program Token Sequence Abstracted Token Sequence

Great! But we have a new problem: Ambiguity
 Solution: Learn a Probabilistic Context Free Grammar to Pick the Right One

113

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Python Tutor Dataset

 X
Parse
Error

Programs

Fixed
Programs

Error-Correcting
Erley Parser

Relevant
Error Rule
Predictor

(Sequence
Classifier)

114

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program
With Parse

Error

Fixed
Program

Python Tutor Dataset

 X
Parse
Error

Programs

Fixed
Programs

Partial
Parser

Error-Correcting
Erley Parser

Probabilistic
Context Free

Grammar

Relevant
Error Rule
Predictor

(Sequence
Classifier)

115

116

Cannabis sativa is the world’s most
commonly used illicit substance, used
by more than 192 million people in 2018

Cannabis is used for many reasons both
medical (e.g., pain relief) and recreational

(e.g., altered consciousness)

Cannabis’s legality is changing rapidly with many
countries (e.g., UK, Colombia, Canada, Malawi)

recently taking steps towards legalization

116

RQ2: Prediction

● Question: Can brain activation patterns at the start of CS1 predict future
programming ability?

● Method: correlate brain activity interactions with scores on a programming test
at the end of the semester (11-12 weeks after the initial brain scan)

● Result: Yes, it is possible!

● Less-similar patterns of activation for coding and mental rotation in the right
frontal hemisphere at the start of the semester predict better outcomes on the
end-of-semester programming assessment (r = −0.482, p = 0.006)

117

RQ2: Prediction Implications

● Perhaps novices who transition away from general spatial skills to
reading-associated domain-specific strategies earlier make more progress

● Provides impetus for earlier pedagogical interventions

● Note: we do not see our result supporting essentialist-based theories of
programming ability
○ Rather, it provides insight for more effectively understanding and

removing computing barriers

118

RQ2: Prediction Summary

119

Novice brain activity when programming can predict
future programming ability.

Provides another window into understanding and
ameliorating computing barriers.

