
Syntactic Regression Testing for Tree-Structured Output

Elizabeth Soechting
University of Virginia

eas2h@virginia.edu

Kinga Dobolyi
University of Virginia

dobolyi@virginia.edu

Westley Weimer∗

University of Virginia
weimer@virginia.edu

Abstract

Regression testing is used by software developers to en-
sure that program modifications have not negatively im-
pacted the correctness of code. While regression testing
has been successfully applied in many domains, programs
such as web applications, XML processors, and compilers
remain expensive to test because harmless program evolu-
tions make the tests appear to fail: in our experiments 82%
of test case output differences are false positives.

We present an automated tool that measures syntactic
differences in the tree-structured output of such programs
to reduce the number of false positives in, and thus the cost
of, regression testing. We model test case outputs that merit
human inspection through a set of structural and domain-
specific features. We evaluate the performance of our tech-
nique on over 20,000 test case output comparisons, and find
that we are three times as accurate as a naive comparator.

1. Introduction

In software engineering, regression testing is a way of
life: after a program is changed to introduce features or
remove defects, regression testing provides assurance that
those modifications have not negatively impacted correct-
ness. Regression testing is a major part of software main-
tenance [21]. Maintenance activities consume 70% [4] to
90% [26] of the total lifecycle cost of software, summing
to over $70 billion per year in the United States [23, 32],
with regression testing accounting for as much as half of
this cost [12, 24]. Nevertheless, a lack of resources often
restricts developers to utilize only a fraction of the available
regression tests [8, 16, 35]. Consequently, even mature soft-
ware projects are constrained to ship with known bugs [14].

∗This research was supported in part by National Science Foun-
dation Grant CNS 0716478, Air Force Office of Scientific Re-
search grant FA9550-07-1-0532, and NASA grant NAS1-02117,
as well as gifts from Microsoft Research. The information pre-
sented here does not necessarily reflect their positions or policies.

Regression testing is frequently limited by the effort re-
quired to compare results between two versions of program
output. Formally, it can be viewed in terms of an oracle
mechanism that produces an expected result and a com-
parator that checks the actual result against the expected
result [3]. In practice the oracle is commonly taken to be
the output of a previous, trusted version of the code on the
same input and the comparator is a simple diff of the
two outputs. Any difference implies that the test should be
inspected by developers; this commonly suggests an error
in the new version but may also indicate a discrepancy in
the oracle output (e.g., the correct output may legitimately
change as the program gains new functionality). Unfortu-
nately, traditional regression testing is particularly burden-
some for programs with tree-structured output (e.g., [29])
because using diff as the comparator produces too many
false positives [31].

We propose SMART, a tool for syntactic regression test-
ing, to reduce the cost of regression testing for programs
with tree-structured output by providing a precise compara-
tor. Programs that produce tree-structured output, such as
XML, HTML, or abstract syntax trees, require a compara-
tor that captures richer information. Consider new versions
of: (1) a web application that produces HTML with a dif-
ferent copyright notice; (2) a program business logic core
that serializes user sessions to XML with a different at-
tribute order; and (3) a compiler that also includes addi-
tional debugging information. Even if no new defects have
been introduced, a direct diff of the output will always
report a potential error in all three cases, and thus always
demand developer effort to either fix the program or up-
date the oracle answer. The more the program evolves, the
greater this unnecessary burden of regression test inspec-
tion will become. Nevertheless, the move toward XML-
and HTML-emitting web-based applications continues at a
rapid rate, and evolving and testing them remains critically
important [38]. For such web applications, even a partial
loss of functionality can cost businesses millions of dollars
per hour [19]. Instead of just using character-based com-
parison through diff, we suggest that such projects use
test comparators that understand the syntax and semantics

of tree-structured output. We propose to combine insights
from structural differencing algorithms (e.g., [1]) as well as
semantic features (e.g., [29]) into a distance model for test
case output. This distance metric then forms the heart of
a precise comparator, where a regression test should be in-
spected if the new output’s distance from the oracle output
exceeds a certain cutoff. We automatically determine which
differences between program outputs and oracles are worth
inspecting, based on their structural and syntactic features.
Our technique is applied by inspecting a small fraction of
the regression testing output (as one normally does), and
using that information to train a model based on our fea-
tures; the model dictates which of the remaining test out-
puts should be inspected. Our comparator is successful if it
reduces false positives (i.e., correctly tells developers not to
inspect test cases that have small changes but do not indi-
cate defects) while minimizing or avoiding false negatives
(i.e., incorrectly tells developers not to inspect real defects).

The contributions of this paper are:

• A set of features, both structural and syntactic, that
help to determine if tree-structured regression test out-
put should be inspected by human developers

• An experimental evaluation of a model and distance
metric using those features; SMART is more than three
times as accurate as diff averaged over 20,000 test
case output pairs

• A quantitative and qualitative comparison of the rela-
tive power of those features, with a discussion of the
possible impact on regression test practices

2 Motivating Example

Web application development has certain features that
make comprehensive testing both difficult and important.
Web applications have become an integral part of the global
economy, with Internet-based e-commerce projected to
reach over one trillion dollars by 2010 [28]. The short time-
to-market horizon for web applications argues that testing
should be a high priority, but in practice testing is often con-
sidered to be high-cost and low-benefit [9]. Compounding
the problem are the evolving nature of user needs, the pres-
sure to change, the complexity of web applications [22], and
high quality-of-service requirements [37].

Testing web applications is challenging because they are
often subject to updates that may not change the appearance
or functionality experienced by the end user. Consider the
diff output from two TXT2HTML test case versions [33]:
1 < <P>The same table could be indented.
2 < <TABLE border="1">
3 ---
4 > <p>The same table could be indented.</p>
5 > <table border="1" summary="">

In addition to including a new summary attribute, the newer
output also handles the paragraph tag <p> differently. A sin-
gle paragraph tag <p> is equivalent to the open-close pair of
paragraph tags <p></p> for most browsers, with the distinc-
tion being that future versions of HTML will not support
unmatched tags. A direct comparison would yield a false
alarm (i.e., incorrectly instruct the developer to inspect the
output) for this test case, because both of these changes rep-
resent updates to the HTML rather than errors. In general,
the structure of web output is generated by the application,
but the content itself often comes from a user or a database
beyond the program’s control. Consider a news site, such
as CNN or the BBC: the content text changes daily, but that
does not indicate a bug in the underlying web application.

The above example demonstrates that using diff to
compare outputs for regression testing is often not appro-
priate for XML or HTML applications because of the po-
tential for frequent false positives. Alternatively, develop-
ers may customize diff-like comparators for their specific
applications (e.g., they may ignore different timestamps).
However, such tools must be manually configured for each
project and potentially each test case, a human-intensive
process that may need to be updated frequently as the test
suite evolves. In following sections we will present a flex-
ible technique for reducing false positives associated with
a naive diff comparator which is able to learn the nature
of faults in a target application rather than rely on human
customization.

3 A Model of Test Case Output Differences

Our goal is to save effort in regression testing by using an
automated test case output comparator. We specifically tar-
get applications with tree-structured output, such as XML
or HTML, where a standard diff comparison would yield
a high rate of false positives. The key distinction between
tree-structured output and flat text files is that trees are well-
formed objects with a directed edge relationship. In XML,
for example, an element is defined between a start and end
tag, which can contain other elements, attributes, and text.

Although recent work has explored using semantic graph
differencing [20] and abstract syntax tree matching [6, 17]
for analyzing source code evolution, such approaches are
not helpful in comparing XML and HTML text outputs.
First, because they depend on the presence of source code
constructs such as functions and variables, which are not
present in generic HTML or XML, to make distinctions.
More importantly, however, they are meant to summarize
changes, rather than to decide whether or not an update sig-
nals an error.

SMART relies on tree representations to make decisions
about the relative importance of changes between two ver-
sions of output with respect to their structural significance.

2

We characterize each pair of program outputs via a distance
metric that is based on the weighted sum of individual fea-
tures. If the distance exceeds a given cutoff, the two test
case outputs are deemed different enough to merit human
inspection.

Source code differencers hard-wire knowledge of pro-
gram semantics; SMART learns the weights and the cutoffs
on a per-project or global basis via linear least-squares re-
gression. An important advantage of linear regression over
other techniques is that the resulting models are straightfor-
ward to analyze. We use analyses of variance to assess the
relative contribution of our various features to an accurate
prediction.

4 Comparing Pairs of Documents

Our approach classifies test case output based on struc-
tural and syntactic features of tree-structured documents.
Although some are complicated, most features are quite
simple, such as counting the number of inserted elements
when converting one tree into the other. As a con-
crete example of a feature, consider counting node inver-
sions: in HTML, <u>text</u> renders identically
to <u>text</u>, even though the order of the bold
and underline tags has been reversed.

4.1 Tree Alignment

To recognize such features, we must first align the in-
put trees by matching up nodes with similar elements. An
alignment is a partial mapping between the nodes of one
tree and the nodes of the other. To see why this alignment
is necessary, consider these two HTML fragments:
1 <u>textA</u> <i><u>textB</u></i>
2 <i><u>textB</u></i>

We must know how the fragments align before we can count
inversions: if we align the textB subtree of #2 with the
textA subtree of #1, we can count an inversion between the
<u> and tags. However, if we align the textB subtree
of #2 with the textB subtree of #1, we can count inversions
between the <u>, and <i> tags.

This insight motivates us to find an alignment based on
the minimal number of changes that describe the difference
between two documents. We adapt the DIFFX [1] algorithm
for calculating structural differences between XML doc-
uments to compute alignments on general tree-structured
data. Matching pairs of elements between the newer and
older trees allows SMART to identify local features derived
from element pairs, as well as global features, such as the
addition of natural language text across elements in the doc-
ument.

Our technique employs features that fall into two loose
categories: identifying differences in the higher level tree

structure of the output, and emulating human judgment of
interesting differences between two XML or HTML pages.

4.2 Tree-based differences

SMART uses features based on the tree structure of the
test case output to signal interesting changes that merit hu-
man inspection. Taken together, these tree-based features
are meant to flag a wide assortment of differences identified
between two XML or HTML files, based on the tree struc-
ture itself. We arrived at several of our tree features through
hours of manual inspection of test case output.

The DIFFX Algorithm. Three of these features are taken
from a variant of the DIFFX [1] algorithm that we adapted
to work on arbitrary tree-structured inputs rather than just
XML. The algorithm computes the number of moves, in-
serts and deletes required to transform the first input into
the second. It does this via bottom-up exact tree match-
ing combined with top-down isolated tree fragment map-
ping; this amalgamated approach provides a high quality
characterization of the relationship between the two input
trees. We hypothesize that deletes and especially moves fre-
quently correlate with test cases that merit inspection, and
that the size of the change is indicative of the likelihood
of an error. For example, if a generated webpage is miss-
ing a repeated element, or contains a long stack trace, the
delete and insert features will allow our technique to flag it
as worth inspecting. Considering moves instead of delete-
insert pairs reduces the number of false positives returned.

Inversions. We hypothesize that inverted elements in
XML or HTML do not indicate high-level semantic errors.
We measure two related types of inversions. In both cases,
we perform a pre-order traversal of all nodes in both of the
document trees. Since we are interested in structural inver-
sions, we remove all text nodes. We then sort the two lists
and calculate the longest common subsequence between
them. The longest common subsequence provides a spe-
cialized mapping between the two documents. We remove
all nodes not in the common subsequence and unsort the
lists, returning the remaining nodes to their original relative
orders. We then compare the lists element-wise and count
each difference; each difference is a structural inversion.

Grouped Changes. In addition to detecting changes to
individual tree elements, we also detect when a set of el-
ements that form a contiguous subtree are changed as a
group. We measure the size of the grouped change in terms
of the number of elements involved. We hypothesize that
clustered edits are more likely to be deserve inspection, of-
ten because they contain missing components or lengthy ex-
ception reports. We also record a boolean feature that notes
the presence or absence of grouped changes.

Depth of Changes. We note the relative depth of any
edit operation within a tree. We hypothesize that changes

3

closer to the root are more likely to signal large semantic
differences and thus more likely to merit human inspection.

Changes to Only Text Nodes. In many changes the dif-
ferences between two outputs will be limited to text nodes
while the tree structure remains unchanged. We expect that
documents with such text-only differences are unlikely to
contain semantic errors and thus should not be inspected.

Order of Children. We note when two aligned nodes
are otherwise similar but have the order of their children
changed. We hypothesize that changes in the order of chil-
dren (as opposed to changes in the order of attributes) do
not indicate high-level semantic errors and thus should not
be inspected. This feature is complementary to moves being
associated with errors in test case output.

4.3 Human-Judgment differences

We also attempt to detect changes a human would dis-
cern between two rendered versions of output files. These
features are specific to HTML and attempt to identify differ-
ences that a human observer would notice on a web browser.

Text and Multimedia Ratios. Natural language and im-
ages play an important role in the human interpretation of a
webpage. We measure the ratio of displayed text between
two versions as well as the ratio of displayed text to mul-
timedia objects. Replacing a small amount of text with an
image, such as replacing a textual link with a button, is not
a large semantic difference. On the other hand, changing
many words in a small document may merit inspection.

Error Keywords. Many classes of errors in
web applications follow similar patterns. For
NullPointerExceptions and many other violations
are tied to the underlying languages, and can be reasonably
predicted by a textual search of the document for error key-
words, such as “exception”. Relying on natural language
text to signal page errors has been previously explored
in [2]. We hypothesize that output pairs containing error
keywords in the newer version, but not in the older, are
likely to merit human inspection.

Changes to Input Elements. We measure the addition
and removal of functional elements of a webpage, such as
buttons and forms. Beyond hyperlinks, these elements rep-
resent the primary interface between the user and the web
application. We hypothesize that the removal of a functional
element, such as a submit button, indicates that the output
should be inspected.

Changed or Missing Attribute Values. We note when
two aligned elements contain the same attribute but have a
different attribute value. Consider this example:

1 < <Type id="_8" name="int"/>
2 ---
3 > <Type id="_8" name="unsigned int"/>

If the two <Type> elements on lines 1 and 3 are aligned
then the change from "int" to "unsigned int" represents a
meaningful change. Note that this is different than the case
where the second <Type> has a new attribute that the origi-
nal does not. Whether or not a change of an attribute value
signals an error will depend on the specific application; the
example above is more likely to indicate a bug than chang-
ing the value of an HTML image’s height attribute. On the
other hand, we claim that a newer version of code that is
missing an attribute should be inspected.

5 Experimental Results

We evaluated SMART on ten open-source benchmarks
that produced either XML or HTML output, totaling
473,000 lines of code. We chose benchmarks from an
assortment of domains, considering only benchmarks for
which multiple versions were available and for which a set
of test cases was available. Figure 1 summarizes the pro-
grams used.

For each benchmark, we manually inspected the test case
output generated by the two versions of the benchmark in-
dicated. Our manual inspection marked the output as “def-
initely not a bug” or “possibly a bug, merits human in-
spection”. We conservatively erred on the side of requir-
ing human inspection, and annotated each test case twice,
re-examining situations where the two annotations did not
initially agree, so that our annotations remained consistent.
Human inspection represents the standard software engi-
neering processes and might, for example, discover prob-
lems in the program, the test case, or both. Our initial ex-
periments involve 7154 pairs of test case output, of which
919 were labeled as requiring inspection.

For the hypothetical benefit experiment described in Sec-
tion 5.3, we also considered multiple additional versions of
two of the projects and manually annotated the test case out-
put between each pair of successive versions. In sum, we
annotated and evaluated on 20833 pairs of test case outputs.

5.1 Experiment 1 – Model Selection

In this experiment, we evaluate our technique’s feasibil-
ity when phrased as an information retrieval task by creat-
ing a linear regression model based on those features and
selecting an optimal cutoff to form a binary classifier.

5.1.1 Recall and Precision

We use recall and precision to evaluate the performance of
our model. These measures are commonly used to evalu-
ate document retrieval systems [25]; we use our model to
answer the query: “Which test case outputs should be in-
spected by a human?” Precision and recall are defined as

4

Benchmark Versions LOC Description Test cases Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K W3C HTML validation 2402 25
LIBXML2 v2.3.5 v2.3.10 84K XML parser 441 0
GCC-XML Nov’05 Nov’07 20K XML output for GCC 4111 875
CODE2WEB v1.0 v1.1 23K pretty printer 3 3
DOCBOOK v1.72 v1.74 182K document creation 7 5
FREEMARKER v2.3.11 v2.3.13 69K template engine 42 1
JSPPP v0.5a v0.5.1a 10K pretty printer 25 0
TEXT2HTML v2.23 v2.51 6K text converter 23 6
TXT2TAGS v2.3 v2.4 26K text converter 94 4
UMT v0.8 v0.98 15K UML transformations 6 0
Total 473K 7154 919

Figure 1. The benchmarks used in our experiments. The “Test cases” column gives the number of regression tests
we used for that project; the “Test cases to Inspect” column gives the number of those tests for which our manual
inspection indicated a possible bug.

follows:

recall = |D ∩M | ÷ |D| precision = |D ∩M | ÷ |M |

where D is the desired set of test cases (as determined by
our human annotators, see Section 5); and M (for model) is
the set of test cases returned by our technique.

Precision can be trivially maximized by returning a sin-
gle test case, while recall can similarly be maximized by re-
turning all test cases. We avoid these scenarios by combin-
ing the two measures by taking their harmonic mean. The
resulting F1-score is defined as F1 = 2pr÷ (p + r), where
p is precision and r is recall. This metric gives equal weight
to precision and recall. In practice recall, which penalizes
missing real bugs, is usually more important; we will return
to that consideration in Section 5.3.

5.1.2 Cross Validation

Before evaluating the performance of our model, we must
first ensure that it is not biased with respect to our data
set. To mitigate the threat of overfitting, we used 10-fold
cross validation [13]. Although cross-validation may not
always be necessary for linear regression, we performed it
explicitly to ensure our results were not biased by testing
and training on the same data. We randomly assigned test
cases from all programs in the data set into ten equally-sized
groups. Each group is reserved once for testing, and the re-
maining nine groups are used to train the model; we thus
never train and test on the same data. Next we average the
cross validation results and compare these values to the re-
sults of the same model when we trained and tested on the
entire data set. If the two outcomes were not significantly
different, we can conclude that we were not subject to bias.

5.1.3 Experimental Procedure

SMART classifies pairs of tree-structured outputs based on
whether a human should inspect them or not. In this exper-
iment:

1. We first perform the cross-validation steps (Sec-
tion 5.1.2). On each fold, we train a linear model as
if the response variable (i.e., our boolean human anno-
tation of whether a human should inspect that output
or not) were continuous in the range [0,1].

2. The real-valued model outputs are turned into a binary
classifier by comparing against a cutoff. We perform a
linear search to find a model cutoff. Depending on how
the result of applying the linear model compares to the
cutoff, SMART reports that the outputs need be or need
not be inspected. We choose the cutoff and comparison
that yield the highest F1-score for each validation step.

3. After cross-validation, we train the model on the en-
tire data set. We again find the best model cutoff and
comparison to maximize the F1-score.

5.1.4 Results

Figure 2 shows our precision, recall, and F1-score values
for our dataset. As a point of comparison, we also com-
puted the predictive power of diff, xmldiff [34], coin
toss, and biased coin toss as baseline values. The fair coin
returns “no” with even probability. The biased coin returns
“no” with probability equal to the actual underlying distri-
bution for this dataset: (7154−919)/7154. Note that the bi-
ased coin toss cannot generally be implemented in the field
since it relies on knowing the distribution of right answers
in advance. Despite this, SMART has clear advantages in
predictive power over diff, xmldiff, and random or bi-
ased chance; our approach yields three times diff’s F1-

5

Comparator F1-score Precision Recall
SMART 0.9931 0.9972 0.9890
SMART w/
cross-validation 0.9935 0.9951 0.9920
diff 0.3004 0.1767 1.0000
xmldiff 0.2406 0.1368 1.0000
fair coin toss 0.2045 0.1286 0.4984
biased coin toss 0.2268 0.1300 0.8868

Figure 2. The F1-score, precision, and recall values
for SMART on our entire dataset. Results for diff,
xmldiff, and random approaches are given as base-
lines; diff represents current industrial practice.

score. xmldiff, an off-the-shelf diff-like tool for XML
and HTML [34], was a worse comparator than than basic
diff because it was unable to process some benignly ill-
formatted output.

Little to no bias was revealed by cross-validation. The
absolute difference in F1-score between the model and its
corresponding averaged cross validation steps was 0.0004.
This shows that results obtained using the corresponding
model trained on the entire data set were never significantly
different from the the averaged results from each set of cross
validation steps.

After measuring our performance for our global model,
we evaluated our performance when training on each
project individually. We found both that we can train an
effective model using only information from one project,
and also that we can learn a more effective model using
per-project information. In addition, we found that the ef-
fects of our features were frequently similar across different
projects.

5.2 Experiment 2 – Feature Analysis

In this section, we evaluate relative feature impor-
tance and determine which features correlate with output
that should be inspected. Figure 3 shows the results of a
per-feature analysis of variance on the model using the en-
tire dataset. The table lists only those features with a sig-
nificant main effect. F denotes the F -ratio, which is close
to 1 if the feature does not affect the model; conceptually F
represents the square root of variance explained by that fea-
ture over variance not explained. The p column denotes the
significance level of F (i.e., the probability that the feature
does not affect the model).

5.2.1 Results

Our most significant feature was whether or not the change
involved only low-level text. This is the key distinction
between our approach for tree-structured output and the

Feature Coefficient F p

Text Only - 0.217 179000 < 0.001
DIFFX-move + 0.003 170000 < 0.001
DIFFX-delete + 0.017 52700 < 0.001
Grouped Boolean + 0.792 9070 < 0.001
DIFFX-insert + 0.019 862 < 0.001
Error Keywords + 0.510 410 < 0.001
Input Elements + 0.118 184 < 0.001
Depth - 0.001 128 < 0.001
Missing Attribute - 0.045 116 < 0.001
Children Order - 0.000 77 < 0.001
Grouped Change - 0.078 62 < 0.001
Text/Multimedia + 0.009 19 < 0.001
Inversions - 0.000 6 0.020
Text Ratios - 0.001 6 0.020

Figure 3. Analysis of variance of our model. A +
in the ‘Coefficient’ column means high values of that
feature correlate with test cases outputs that should
be inspected (both + and - indicate useful features).
The higher the value in the ‘F ’ column, the more the
feature affects the model. The ‘p’ column gives the
significance level of F ; features with no significant
main effect (p ≥ 0.05) are not shown.

state-of-the-art for normal textual output: in normal prac-
tice, changes to the text of the output indicate regression er-
rors. We find, however, that text-only changes have a strong
negative effect: test case outputs that differ only in small
amounts of non-structural text do not merit human inspec-
tion. This is one of the key reasons we are able to out-
perform diff, because many web-based applications may
update natural language text as part of normal program evo-
lutions.

Our DIFFX-move feature was frequently correlated with
test case errors. It may seem counter-intuitive that moves,
as opposed to insertions or deletions, would indicate a need
for human inspection. In practice, however, tree-structured
moves show up as a side-effect of other large changes;
the introduction or deletion of one element often involves
a move of its neighbors. Despite the high F -ratio of the
DIFFX-move feature, its model coefficient was an order of
magnitude smaller than those of insert or delete. Although
moves were most frequently associated with errors, other
features also had to be present in order for the test case out-
put to merit inspection.

Our boolean feature that indicated the presence or ab-
sence of clustered changes was also highly correlated with
errors. We claim that variations in the sizes of the grouped
changes are not as salient as their existence. We note that
grouped changes were more important than DIFFX-inserts,
which may have been scattered across the output.

Some of our features were less powerful than we origi-

6

nally hypothesized. For example, the presence of error key-
words did not effect our model as much as the features listed
above. Analysis of natural language to identify errors can
be challenging [11], and will likely vary between different
data sets. The high coefficient for error keywords allows
them to overcome the negative impact of text-only changes,
because error keywords only occur in text.

5.3 Experiment 3 – Effort Saved

Finally, we evaluate the hypothetical benefit of our
technique, in terms of developer effort saved, when used
to determine if humans should inspect regression test out-
put over multiple revisions to software projects. We con-
sider a situation in which a development organization uses
our technique on all regression tests between successive re-
leases of the same project. We assume that humans man-
ually inspect a small percentage of the test case output
flagged by diff — 20% in this experiment — and then
train our tool on that information (as in Section 5.1.3), us-
ing it to guide the inspection of the remaining test cases.
Subsequent releases of the same project retain training in-
formation from previous releases, as well as incorporating
the false positive or true positive results of any test case that
our tool deemed to require manual inspection.

5.3.1 Experimental Procedure

Two of our benchmarks, GCC-XML and HTMLTIDY, had
three or more released versions available. For each suc-
cessive version considered, we manually annotated the test
case differences to determine if a human should inspect
them (see Section 5). The dataset for this simulation
thus includes 20232 regression test output pairs spanning
seven software releases for two projects. Note that this is
slightly different setup than that of Figure 1 — for exam-
ple, while there were 25 test cases to inspect for the version
of HTMLTIDY used in Figure 2, here we use five different
releases of HTMLTIDY that have correspondingly different
numbers of test outputs that should be inspected (12–254).

We measure the number of test cases flagged for manual
inspection (i.e., the 20% used for initial training as well as
the true positives and false positives produced by our tool)
as well as the number of false negative test cases that should
have been flagged for inspection (i.e., that indicated poten-
tial bugs found via regression testing) but were not. Each of
these carries an associated software engineering cost.

We can estimate the amount of effort saved by develop-
ers when using SMART, by defining a cost of looking (Look-
Cost) at a test case and a cost of missing (MissCost) for each
test case that should have been flagged but was not. We con-
sider SMART a useful investment when the cost of using it:

(TruePos+FalsePos)×LookCost+FalseNeg×MissCost

is less than the cost of |diff| ×LookCost . That is, SMART
saves effort when the cost of looking at the test cases flagged
by diff but not by our technique exceeds the cost of miss-
ing any relevant test cases we fail to report. We thus express
the condition under which our technique is profitable:

LookCost
MissCost

>
− FalseNeg

TruePos + FalsePos − |diff|

We assume LookCost � MissCost, so we would like this
ratio to be as small as possible.

5.3.2 Results

Figure 4 shows our results. For example, when applying our
technique to the last release of HTMLTIDY, the ratio above
which we are profitable is about 1/1000; if the cost of miss-
ing a potentially useful regression test report is less than or
equal to 1000 times the cost of triaging and inspecting a test
case, we save developer effort. A ratio of 0 indicates that we
have no false negatives, and in such cases we always outper-
form diff, regardless of LookCost or MissCost. Figure 4
also shows the number of test cases that a developer would
need to examine when using diff.

SMART’s performance generally improves on subse-
quent releases, and it totally avoids false negatives in one
instance for both benchmarks. Our model is at its worst
when there is a large relative number of regression test er-
rors (e.g., for a rushed release that fails to retain required
functionality). For the fourth release of HTMLTIDY, the
number of test cases that should be inspected is a order-
of-magnitude higher than usual. A cautious development
organization might use our tool only when the random sam-
pling of 20% of the test case outputs shows a historically
reasonable number of regression test errors.

Previous work on bug report triage has used a LookCost
to MissCost ratio of 0.023 as a metric for success for an
analysis that required 30 days to operate [10], and we adopt
that ratio as a baseline here. The typical performance of
our technique, which includes the cost of the 20% manual
annotation burden and would take 1.3 hours on average per
release, is 0.0183 — a 20% improvement over that figure.
If we exclude the HTMLTIDY outlier mentioned above our
ratio is 0.0015; we exceed the utility of previous tools by an
order of magnitude and require an order of magnitude less
time.

In general, LookCost, the time to compare the results of
a test suite to the oracle, is typically a few minutes for each
test case [18]. MissCost varies by application domain: it
can be low for applications where servers can easily update
deployed software, but is often high for web applications
with high quality-of-service requirements [37]. An IBM
publication provides concrete examples of industrial values
for these costs: based on a 2008 report [36], LookCost is

7

Test Should True Positive False Positives False Negatives
Benchmark Release Cases Inspect SMART diff SMART diff SMART diff Ratio
HTMLTIDY 2nd 2402 12 5 12 78 781 7 0 0.0099

3rd 2402 48 48 48 0 782 0 0 0
4th 2402 254 109 254 1 574 145 0 0.2019
5th 2402 48 48 48 0 775 0 0 0
6th 2402 20 19 20 1 774 1 0 0.0013

GCC-XML 2nd 4111 662 658 662 16 2258 4 0 0.0018
3rd 4111 544 544 544 0 2577 0 0 0

total 20232 1588 1431 1588 96 8521 157 0 0.0183

Figure 4. Simulated performance of our technique on 20232 test cases from multiple releases of two projects. The
‘Test Cases’ column gives the total number of regression tests per release. The ‘Should Inspect’ column counts the
number of those tests that our manual annotation indicated should be inspected (i.e., might indicate a bug). The
‘Inspected’ column gives the number of tests that our technique and diff flag for inspection. The ‘False Positives’
and ‘False Negatives’ columns measure accuracy, and the ‘Ratio’ column indicates the value of LookCost/MissCost
above which our technique becomes profitable (lower values are better).

$25 and MissCost is $450 (the cost of a defect “during the
QA/testing phase”). With those cost figures, using SMART
reduces the costs associated with regression testing over all
releases shown in Figure 4 by 48% ($131730 vs. $252725).
Even if MissCost doubles to $1000, SMART still reduces the
costs by 22% ($195175 vs. $252725).

5.4 Threats to Validity

Although we outperform diff by over a factor of three,
it is possible that our results do not generalize to indus-
try practice for various reasons. For example, the bench-
marks used in our experiments may not be representative of
other projects. To mitigate this threat, we selected our two
large benchmarks (HTMLTIDY and GCC-XML) from dif-
ferent domains, and supplemented our global dataset with
other, smaller benchmarks to increase the diversity of the
data we test on. It is possible that some results are more
indicative for our two larger benchmarks than the smaller
ones, however, and in future work we would like to include
more test applications. Even if our benchmarks are repre-
sentative, it is possible we overfit our model to the data;
our cross-validation in Section 5.1.2 suggests that is not the
case.

Similarly, our results may not generalize if we do not use
SMART as developers would in practice: we examined the
regression test output of versions of HTMLTIDY and GCC-
XML that were several months apart, but in practice some
organizations may perform these tests more frequently, such
as during a nightly build. Because our model’s performance
depends on the relative frequency of bugs between release
versions, and not the number of bugs in general, we believe
that we will still be able to save developer effort, even if
regression tests are run more frequently.

Finally, our human annotations may not have accurately

flagged potential errors in regression test output. To avoid
missing actual bugs, our annotations were conservative: we
only annotated test outputs as not meriting inspection if we
were highly certain they did not indicate an error. Thus
we may have annotated non-errors as errors, which trans-
lates into less of an opportunity for us to outperform diff,
but does not impact the correctness of our approach. In ad-
dtion, because annotators were also responsible for suggest-
ing some features for the model, it is possible that bias exists
in the annotations themselves, although care was taken to
avoid this situation and baseline annotations were computed
at least twice on each output pair to guarantee a minimum
level of consistency.

5.5 Experimental Summary

In this section we have shown that we can use our syn-
tactic and structural features to build a model that classi-
fies which regression test case outputs merit human inspec-
tion. On 7154 test cases from 10 projects, SMART obtains
a precision of 0.9972, a recall of 0.9890, and an F1-score
of 0.9931, over three times as good as diff’s F1-score of
0.3004. Although these are very strong machine learning
results, we further tested our technique in a simulated de-
ployment involving 20232 test cases and multiple releases
of two projects. In that scenario we had 8425 fewer false
positives than diff, and we save development effort when
the ratio of the cost of inspecting a test case to the cost of
missing a relevant report is over 0.0183; we claim that num-
bers in that range correspond to a savings for typical indus-
trial practice.

8

6 Related Work

Sprenkle et al. have focused on oracle comparators for
testing web applications [29, 30, 31] with HTML output.
Building on a capture-replay testing framework for user ses-
sion data [29], they investigate features based on diff,
content, and structure. They refine these features into oracle
comparators [31] based on HTML tags, unordered links, tag
names, attributes, forms, the document, and content. They
then investigate applying decision tree learning to identify
the best combination of oracle comparators for specific ap-
plications [30]. We also combine machine learning and au-
tomated oracle comparators, but we include features and ex-
periments that are not HTML-specific and can be applied
to any tree-structured data. Finally, they validate their ap-
proach by measuring their oracles’ abilities to reveal seeded
defects in a single version of an application (i.e., measur-
ing differences between the clean application and a fault-
seeded one). By contrast, our experiments train and test
on data between different versions of the same application.
Our approach aims to not flag common and benign program
evolutions, in contrast to the setting of Sprenkle et al. [30],
where a deterministic application would yield no false pos-
itives with a diff comparator.

Lucca et al. address the open issues of web applica-
tion testing through the use of an object-oriented model of a
web application which defines the unit level for testing [15].
As part of their testing toolkit, they outline a Comparator
which automatically compares the actual results against the
expected values of the test execution. The authors do not
describe the details of their comparator, but SMART can be
thought of as a working instantiation of such a design.

Many testing methodologies use oracle comparators that
require manual intervention in the presence of discrepan-
cies [5, 15, 22, 31]. For example, user session data can
be used as both input and also test cases [5, 29], but there
must be a way to compare obtained results with expected
results. Lucca et al. address web application testing with an
object-oriented web application model [15]. They outline a
comparator which automatically compares the actual results
against the expected values of the test execution. Our tech-
nique can be thought of as a working instantiation of such a
design, and we extend the notion to structural differences.

Sneed explores a case study on testing a web applica-
tion system for the Austrian Chamber of Commerce [27]. A
capture-replay tool was used to record the dialog tests, and
XML documents produced by the server were compared at
the element level: if the elements did not match, the test
failed. Our approach also compares XML documents, but
does not necessarily rely on exact element matching, and
thus reports fewer false positives.

Haran et al. aim to automatically support fault detection
by classifying program executions [7]. They also use ma-

chine learning to build a model of program executions that
are likely to be associated with failed test cases. Their ap-
proach is orthogonal to ours, although it may be difficult to
apply their approach to some web applications due to the
dynamic nature of content generation.

7 Conclusions

We present SMART, a technique for reducing the cost of
regression testing by using syntactic and structural features
to decide whether or not test case output merits human in-
spection. In domains with tree-structured output, such as
HTML, XML or abstract syntax trees, traditional diff-
based comparisons yield too many false alarms. We posit
a number of features that can be used to distinguish poten-
tial errors from harmless functionality additions or render-
ing changes. For example, changes to the text of HTML
output are actually negatively correlated with the presence
of potential errors, while tree-structured differences, such
as moving a subtree from one part of the output to another,
are positively correlated with potential errors.

We evaluate SMART both as a model and as a cost-saving
technique. As a model evaluated on 7154 test case pairs
from 10 projects, we obtain a precision of 0.9972, a recall of
0.9890 and an F1-score of 0.9931, over three times as good
as the standard diff F1-score of 0.3004. We complement
these strong machine learning results with a simulated de-
ployment involving 20232 test cases. SMART had only 96
false positives — 8425 fewer than diff— and saves devel-
opment effort when the ratio of the cost of inspecting a test
case to the cost of missing a relevant report is over 0.0183,
a range both corresponding to a savings for typical indus-
trial practice and also 20% better than previously-published
results. Web applications and XML-processing middleware
applications are becoming increasingly important; SMART
presents a first step toward a comparator that makes regres-
sion testing for them attractive.

References

[1] R. Al-Ekram, A. Adma, and O. Baysal. diffX: an algorithm
to detect changes in multi-version XML documents. In Con-
ference of the Centre for Advanced Studies on Collaborative
research, pages 1–11. IBM Press, 2005.

[2] M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Automat-
ically testing dynamic web sites. In World Wide Web Confer-
ence, May 2002.

[3] R. V. Binder. Testing object-oriented systems: models, pat-
terns, and tools. Addison-Wesley, 1999.

[4] B. Boehm and V. Basili. Software defect reduction. IEEE
Computer Innovative Technology for Computer Professions,
34(1):135–137, January 2001.

9

[5] S. Elbaum, S. Karre, and G. Rothermel. Improving web ap-
plication testing with user session data. In International Con-
ference on Software Engineering, pages 49–59, 2003.

[6] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change dis-
tilling: Tree differencing for fine-grained source code change
extraction. IEEE Trans. Softw. Eng., 33(11):725–743, 2007.

[7] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil. Apply-
ing classification techniques to remotely-collected program
execution data. In ESEC/FSE-13: Proceedings of the 10th
European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 146–155, New York,
NY, USA, 2005. ACM.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for
controlling the size of a test suite. ACM Trans. Softw. Eng.
Methodol., 2(3):270–285, 1993.

[9] E. Hieatt and R. Mee. Going faster: Testing the web appli-
cation. IEEE Software, 19(2):60–65, 2002.

[10] P. Hooimeijer and W. Weimer. Modeling bug report quality.
In Automated software engineering, pages 34–43, 2007.

[11] N. Jalbert and W. Weimer. Automated duplicate detection for
bug tracking systems. In Dependable Systems and Networks,
pages 52–61, 2008.

[12] G. M. Kapfhammer. Software testing. In The Computer Sci-
ence Handbook, chapter 105, 2004. CRC Press.

[13] R. Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. International
Joint Conference on Artificial Intelligence, 14(2):1137–
1145, 1995.

[14] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug iso-
lation via remote program sampling. In Programming lan-
guage design and implementation, pages 141–154, 2003.

[15] G. D. Lucca, A. Fasolino, F. Faralli, and U. de Carlini. Test-
ing web applications. International Conference on Software
Maintenance, page 310, 2002.

[16] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan.
DART: A framework for regression testing ”nightly/daily
builds” of GUI applications. In International Conference on
Software Maintenance, 2003.

[17] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source
code evolution using abstract syntax tree matching. SIG-
SOFT Softw. Eng. Notes, 30(4):1–5, 2005.

[18] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment. Commun.
ACM, 41(5):81–86, 1998.

[19] S. Pertet and P. Narsimhan. Causes of failures in web ap-
plications. Technical Report CMU-PDL-05-109, Carnegie
Mellon University, Dec. 2005.

[20] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Au-
gustine. Dex: A semantic-graph differencing tool for study-
ing changes in large code bases. pages 188–197, 2004.

[21] C. V. Ramamoothy and W.-T. Tsai. Advances in software
engineering. IEEE Computer, 29(10):47–58, 1996.

[22] F. Ricca and P. Tonella. Testing processes of web applica-
tions. Ann. Softw. Eng., 14(1-4):93–114, 2002.

[23] S. Rosenberg. What you don’t know can cost you mil-
lions, July 2009. http://www.cxoamerica.com/
pastissue/article.asp?art=270091&issue=
202.

[24] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases
for regression testing. IEEE Trans. Softw. Eng., 27(10):929–
948, 2001.

[25] G. Salton and M. J. McGill. Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, Inc., 1986.

[26] R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing
Legacy Systems: Software Technologies, Engineering Pro-
cess and Business Practices. Addison-Wesley, 2003.

[27] H. M. Sneed. Testing a web application. In Workshop on
Web Site Evolution, pages 3–10, 2004.

[28] F. Soliman and M. A. Youssef. Internet-based e-commerce
and its impact on manufacturing and business operations.
In Industrial Management & Data Systems, pages 546–552.
MCB UP Ltd, 2003.

[29] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Auto-
mated replay and failure detection for web applications. In
Automated Software Engineering, pages 253–262, 2005.

[30] S. Sprenkle, E. Hill, and L. Pollock. Learning effective ora-
cle comparator combinations for web applications. In Inter-
national Conference on Quality Software, pages 372–379,
2007.

[31] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and
S. Ecott. Automated oracle comparators for testing web ap-
plications. In International Symposium on Reliability Engi-
neering, pages 117–126, 2007.

[32] J. Sutherland. Business objects in corporate information sys-
tems. ACM Comput. Surv., 27(2):274–276, 1995.

[33] http://txt2html.sourceforge.net/. txt2html -
text to HTML converter. Technical report, 2008.

[34] http://www.a7soft.com/jexamxml.html. JEx-
amXML diff tool for comparing and merging xml docu-
ments. Technical report, 2008.

[35] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Timeaware test suite prioritization. In International
Symposium on Software Testing and Analysis, pages 1–12,
2006.

[36] L. Williamson. IBM Rational software analyzer: Beyond
source code. In Rational Software Developer Confer-
ence. http://www-07.ibm.com/in/events/
rsdc2008/presentation2.html, June 2008.

[37] Y. Wu, D. Pan, and M.-H. Chen. Techniques of maintaining
evolving component-based software. International Confer-
ence on Software Maintenance, page 236, 2000.

[38] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen. Regression
testing for web applications based on slicing. In Confer-
ence on Computer Software and Applications, pages 652–
656, 2003.

10

