
CLUSTERING STATIC ANALYSIS
DEFECT REPORTS TO REDUCE
MAINTENANCE COSTS
Zachary P. Fry and Westley Weimer
 University of Virginia

Static Analysis-based Bug Finders
• Use known-faulty semantic patterns to find
suspected bugs statically
• Generally with minimal human intervention

• Valgrind, Fortify, SLAM, ConQAT,
CodeSonar, PMD, Findbugs, Coverity
SAVE, etc.

• Influential in both academia and industry
• Many academic tools spanning various languages
• Coverity boasts over 300 employees and over 1,100

customers, with extremely high growth

Static Analysis-based Bug Finders
• Produce many defect reports in practice

• Difficult to adapt to particular styles or idioms
• Regardless of true or false positives, groups of
defect reports exhibit similarity in practice

Program KLOC Reports
Eclipse 3,618 4,345
Linux (sound) 420 869
Blender 996 827
GDB 1,689 827
MPlayer 845 500

Structurally Similar Defects
• Some defect reports are obviously
 similar or different
• Some are not:

printk(KERN_DEBUG "Receive CCP !
 frame from peer slot(%d)",!
 lp->ppp_slot);!
if (lp->ppp_slot < 0 || !
 lp->ppp_slot > ISDN_MAX) {!
 printk(KERN_ERR "%s: !
 lp->ppp_slot (%d) out of !
 range", _FUNCTION_, !
 lp->ppp_slot);!
 return;!
}!
is = ippp_table[lp->ppp_slot];!
isdn_ppp_frame_log('ccp-rcv', !
 skb->data, skb->len, 32, !

if (!lp->master)!
 qdisc_reset(lp->netdev->!
 dev.qdisc);!
lp->dialstate = 0;!
dev->st_netdev[isdn_dc2minor(!
 lp->isdn_device!
 lp->isdn_channel)!

!] = NULL;
isdn_free_channel(!
 lp->isdn_device,!
 lp->isdn_channel,!
 ISDN_USAGE_NET);!
lp->flags &= !
 ISDN_NET_CONNECTED;!

sidx = isdn_dc2minor(di, 1);!
#ifdef ISDN_DEBUG_NET_ICALL!
 printk(KERN_DEBUG “n_fi:ch=0\n”);!
#endif!
!
if (USG_NONE(dev->usage[sidx])){!
 if (dev->usage[sidx] &!
 ISDN_USAGE_EXCLUSIVE) {!
 printk(KERN_DEBUG “n_fi: 2nd!
 channel is down and bound\n”);!
 if ((lp->pre_device == di) &&!
 (lp->pre_channel == 1)) {!

Determining Defect Report Similarity
• Some defect reports are obviously
 similar or different
• Some are not:

printk(KERN_DEBUG "Receive CCP !
 frame from peer slot(%d)",!
 lp->ppp_slot);!
if (lp->ppp_slot < 0 || !
 lp->ppp_slot > ISDN_MAX) {!
 printk(KERN_ERR "%s: !
 lp->ppp_slot (%d) out of !
 range", _FUNCTION_, !
 lp->ppp_slot);!
 return;!
}!
is = ippp_table[lp->ppp_slot];!
isdn_ppp_frame_log('ccp-rcv', !
 skb->data, skb->len, 32, !

if (!lp->master)!
 qdisc_reset(lp->netdev->!
 dev.qdisc);!
lp->dialstate = 0;!
dev->st_netdev[isdn_dc2minor(!
 lp->isdn_device!
 lp->isdn_channel)!

!] = NULL;
isdn_free_channel(!
 lp->isdn_device,!
 lp->isdn_channel,!
 ISDN_USAGE_NET);!
lp->flags &= !
 ISDN_NET_CONNECTED;!

sidx = isdn_dc2minor(di, 1);!
#ifdef ISDN_DEBUG_NET_ICALL!
 printk(KERN_DEBUG “n_fi:ch=0\n”);!
#endif!
!
if (USG_NONE(dev->usage[sidx])){!
 if (dev->usage[sidx] &!
 ISDN_USAGE_EXCLUSIVE) {!
 printk(KERN_DEBUG “n_fi: 2nd!
 channel is down and bound\n”);!
 if ((lp->pre_device == di) &&!
 (lp->pre_channel == 1)) {!

Determining Defect Report Similarity
• Some defect reports are obviously
 similar or different
• Some are not:

printk(KERN_DEBUG "Receive CCP !
 frame from peer slot(%d)",!
 lp->ppp_slot);!
if (lp->ppp_slot < 0 || !
 lp->ppp_slot > ISDN_MAX) {!
 printk(KERN_ERR "%s: !
 lp->ppp_slot (%d) out of !
 range", _FUNCTION_, !
 lp->ppp_slot);!
 return;!
}!
is = ippp_table[lp->ppp_slot];!
isdn_ppp_frame_log('ccp-rcv', !
 skb->data, skb->len, 32, !

if (!lp->master)!
 qdisc_reset(lp->netdev->!
 dev.qdisc);!
lp->dialstate = 0;!
dev->st_netdev[isdn_dc2minor(!
 lp->isdn_device!
 lp->isdn_channel)!

!] = NULL;
isdn_free_channel(!
 lp->isdn_device,!
 lp->isdn_channel,!
 ISDN_USAGE_NET);!
lp->flags &= !
 ISDN_NET_CONNECTED;!

sidx = isdn_dc2minor(di, 1);!
#ifdef ISDN_DEBUG_NET_ICALL!
 printk(KERN_DEBUG “n_fi:ch=0\n”);!
#endif!
!
if (USG_NONE(dev->usage[sidx])){!
 if (dev->usage[sidx] &!
 ISDN_USAGE_EXCLUSIVE) {!
 printk(KERN_DEBUG “n_fi: 2nd!
 channel is down and bound\n”);!
 if ((lp->pre_device == di) &&!
 (lp->pre_channel == 1)) {!

Determining Defect Report Similarity
• Some defect reports are obviously
 similar or different
• Some are not:

printk(KERN_DEBUG "Receive CCP !
 frame from peer slot(%d)",!
 lp->ppp_slot);!
if (lp->ppp_slot < 0 || !
 lp->ppp_slot > ISDN_MAX) {!
 printk(KERN_ERR "%s: !
 lp->ppp_slot (%d) out of !
 range", _FUNCTION_, !
 lp->ppp_slot);!
 return;!
}!
is = ippp_table[lp->ppp_slot];!
isdn_ppp_frame_log('ccp-rcv', !
 skb->data, skb->len, 32, !

if (!lp->master)!
 qdisc_reset(lp->netdev->!
 dev.qdisc);!
lp->dialstate = 0;!
dev->st_netdev[isdn_dc2minor(!
 lp->isdn_device!
 lp->isdn_channel)!

!] = NULL;
isdn_free_channel(!
 lp->isdn_device,!
 lp->isdn_channel,!
 ISDN_USAGE_NET);!
lp->flags &= !
 ISDN_NET_CONNECTED;!

sidx = isdn_dc2minor(di, 1);!
#ifdef ISDN_DEBUG_NET_ICALL!
 printk(KERN_DEBUG “n_fi:ch=0\n”);!
#endif!
!
if (USG_NONE(dev->usage[sidx])){!
 if (dev->usage[sidx] &!
 ISDN_USAGE_EXCLUSIVE) {!
 printk(KERN_DEBUG “n_fi: 2nd!
 channel is down and bound\n”);!
 if ((lp->pre_device == di) &&!
 (lp->pre_channel == 1)) {!

Goals
• To both aid in triage of real defects and facilitate
the elimination of false positives, we desire a
technique for clustering automatically-generated,
static analysis-based defect reports.

• The technique should be flexible to meet the
needs of different systems and development
teams.

• The resulting clusters should be more accurate
than those produced by existing baselines and
also congruent with human notions of related
defect reports.

High Level Approach

R1 R2 R3

✗ R1 x R2
✗ R1 x R3
✓ R2 x R3

High Level Approach

R1 R2 R3

✗ R1 x R2
✗ R1 x R3
✓ R2 x R3

Clustering

1

2

3

High Level Approach

R1 R2 R3

✗ R1 x R2
✗ R1 x R3
✓ R2 x R3

Clustering

1

2

3
C1: {R1}

C2: {R2,R3}

Approach – Types of Information
• Gathered or synthesized from structured defect
reports
•  Type of defect
•  Suspected faulty line
•  Set of lines on static execution path to suspected fault
•  The enclosing function of the suspected fault
•  Three-line window of context around faulty line
•  Macros
•  File system path of suspected faulty file
•  Additional meta-information

• These categories conform to many state-of-the-
art static analysis tools’ output format
•  For instance, Coverity’s SAVE tool and Findbugs

Approach – Types of Similarity Metrics
• Structured Similarity Metrics

•  Exact equality

Component comp = myGraph.subcomponent(size, false);!

Component comp = g.subcomponent(getSize(), false);!

Approach – Types of Similarity Metrics
• Structured Similarity Metrics

•  Exact equality
•  Strict pair-wise comparison

Component comp = myGraph.subcomponent(size, false);!

Component comp = g.subcomponent(getSize(), false);!

Approach – Types of Similarity Metrics
• Structured Similarity Metrics

•  Exact equality
•  Strict pair-wise comparison
•  Levenshtein edit distance

Component comp = myGraph.subcomponent(size, false);!

Component comp = g.subcomponent(getSize(), false);!

Approach – Types of Similarity Metrics
• Structured Similarity Metrics

•  Exact equality
•  Strict pair-wise comparison
•  Levenshtein edit distance
•  TF-IDF

Component comp = myGraph.subcomponent(size, false);!

Component comp = g.subcomponent(getSize(), false);!

Approach – Types of Similarity Metrics
• Structured Similarity Metrics

•  Exact equality
•  Strict pair-wise comparison
•  Levenshtein edit distance
•  TF-IDF
•  Largest common pair-wise prefix

Component comp = myGraph.subcomponent(size, false);!

Component comp = g.subcomponent(getSize(), false);!

Approach – Types of Similarity Metrics
• Structured Similarity Metrics

•  Exact equality
•  Strict pair-wise comparison
•  Levenshtein edit distance
•  TF-IDF
•  Largest common pair-wise prefix
•  Punctuation edit distance

Component comp = myGraph.subcomponent(size, false);!

Component comp = g.subcomponent(getSize(), false);!

Approach – Similarity and Clusters
• Learn a linear regression model for all relevant
information-metric pairs with similarity cutoff

• Traditional clustering (e.g. k-medoid) assumes equal
feature weights and real-valued properties measured
for individual entities

• Recursively find maximum cliques (clusters) and
remove them from similarity graph

R3

R5

R7

R4 R6

R9

R8
R10

R1 R11

R2 R12

Evaluation
• Research Questions

1.  How effective is our technique at accurately
clustering automatically-generated defect
reports?

2.  Does our approach outperform existing
baseline techniques?

3.  Do humans agree with the clusters produced by
our technique?

Evaluation
• Static analysis defect finding tools

•  Coverity SAVE (commercial) and Findbugs (open source)

• Benchmarks
•  Seven C and four Java open source programs totaling more than

14 million lines of code, yielding 8,948 defect reports

• Metrics – competing
•  Cluster accuracy
•  Cluster size

• Baseline techniques
•  Code Clone tools – Checkstyle, ConQAT, PMD
•  Well-established tools that solve a similar problem

Results

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
clu

st
er

in
g

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All C Benchmark Programs

Our Technique
ConQAT

PMD

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
clu

st
er

in
g

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All Java Benchmark Programs

Our Technique
ConQAT

PMD
Checkstyle

• Pareto frontier representing parametric choice
between accuracy and cluster size

• Split between languages

Results

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
clu

st
er

in
g

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All C Benchmark Programs

Our Technique
ConQAT

PMD

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
clu

st
er

in
g

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All Java Benchmark Programs

Our Technique
ConQAT

PMD
Checkstyle

Larger clusters at
all levels of
accuracy

Larger clusters at
most levels of

accuracy

Results

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
clu

st
er

in
g

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All C Benchmark Programs

Our Technique
ConQAT

PMD

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
clu

st
er

in
g

Accuracy (fraction of correctly clustered reports)

Pareto Frontier - All Java Benchmark Programs

Our Technique
ConQAT

PMD
Checkstyle

Capable of perfect
accuracy

Capable of near
perfect accuracy

Cluster Quality
• Clusters ultimately should agree with humans’
intuition of defect report similarity

•  Given highly accurate (>90%) and highly
inaccurate (<10%) clusters of actual defect
reports, we asked humans if they thought the
defect reports described the same or highly
related bugs

• Results
•  “Accurate” clusters: 99% of humans think reports are related
•  “Inaccurate” clusters: 44% of humans think reports are related

• Humans do not overwhelmingly agree on
inaccurate clusters
•  Motivates a parametric approach

Conclusion
• Defect reports from static analyses are
prevalent and can be readily clustered.

• Our technique is effective at clustering such
reports – it is capable of nearly perfect
accuracy.

• Our technique outperforms the nearest
baselines – with almost unanimously bigger
clusters at all accuracy levels.

• Our technique produces accurate clusters –
and humans agree with those clusters.

