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Abstract—This paper overviews the application of Search
Based Software Engineering (SBSE) to reverse engineering with
a particular emphasis on the growing importance of recent
developments in genetic programming and genetic improvement
for reverse engineering. This includes work on SBSE for re-
modularisation, refactoring, regression testing, syntax-preserving
slicing and dependence analysis, concept assignment and feature
location, bug fixing, and code migration. We also explore the
possibilities for new directions in research using GP and GI
for partial evaluation, amorphous slicing, and product lines,
with a particular focus on code transplantation. This paper
accompanies the keynote given by Mark Harman at the 20th

Working Conference on Reverse Engineering (WCRE 2013).

I. INTRODUCTION

The term ‘search based software engineering’ was intro-
duced in 2001 [42] to capture the (then emerging) interest
in the use of computational search as a means of optimising
software engineering problems. The motivation was that search
based optimisation was ideal for the multiple conflicting and
competing objectives with which software engineers routinely
contend. The algorithms used to conduct search based optimi-
sation are also known to perform well in the presence of par-
tial, noisy and missing data. This makes them attractive tools
with which to approach the complex, noisy and incomplete
world in which the software engineer has to find engineering
solutions.

Since 2001, SBSE has been applied to almost every aspect
of software engineering activity. A more detailed survey of
the entire field of SBSE can be found elsewhere [44], while
a tutorial introduction is also available [46] that assumes no
prior knowledge of computational search techniques. However
in this paper, we focus on reverse engineering and the consid-
erable potential for the development of new forms of Genetic
Programming (GP) and Genetic Improvement (GI) to reverse
engineering. Section II presents a summary of the application
of SBSE to reverse engineering. Section III briefly reviews
the relationship between the SBSE and RE publication venues
and trends. Section IV sets out some directions for future
work that form part of a ‘GP4RE’ research agenda; genetic
programming applications for reverse engineering.

II. APPLICATIONS OF SBSE TO REVERSE ENGINEERING

A large number of problems in reverse engineering are
amenable to SBSE. In this section we highlight some of
the many existing approaches, focusing on the application of
SSBSE to the problems of re-modularisation, refactoring, re-
gression testing, slicing, and concept assignment in particular.

We also discuss the general applicability of genetic pro-
gramming to reverse engineering problems. Our overall con-
clusion is that these are vibrant and active areas of research
with multiple open problems remaining to be tackled.

A. Re-Modularisation

Software structure degrades making periodic re-
modularisation important [8]. The search based modularisation
approaches discussed in this section assume that we start
with some form of module dependence graph, from which
we seek to construct suitable module boundaries.

Mancoridis et al. were the first to address the problem of
software modularisation using SBSE leading to the develop-
ment of a tool called Bunch [69] for module clustering. They
experimented with several search based algorithms including
genetic algorithms, hill climbing and simulated annealing. Hill
climbing tended to produce the best results for the single
objective of improving the Module Quality (MQ) metric.

MQ was introduced in 1998 [65], and refined in subsequent
papers. All versions of MQ are combinations of cohesion
and coupling into a single weighted fitness function, used to
guide the search. Other authors explored other ways to capture
cohesion and coupling in different metrics [47]. The choice of
the cohesion and coupling metric has a critical impact on the
results obtained.

Search based clustering has also been applied to package
coupling [1], to reduce overall package size [17] and to explore
the relationship between design and code level software struc-
ture [49]. The same overall search based clustering approach
can also be adapted for clustering heap allocation [22] and for
reducing memory fragmentation [23].

There were many attempts to find algorithms that produced
better modularisation results (in terms of cohesion, coupling
and faithfulness to some ‘gold standard’ modularisation).
Many of the earlier attempts to improve on hill climbing,
simply provided further evidence to suggest that it was a
simple, fast and effective algorithm for module clustering [39],
[64], [68].

In 2003, Mahdavi et al. [64] introduced a multiple hill
climbing approach, which performs repeated hill climbing and
combines the best results found to reduce the search space
size for subsequent hill climbs. Mahdavi et al. also used
parallelisation to improve the performance of the multiple
clustering, something first explored by Mitchell et al. [70] who
used parallel computing to distribute the task of computing
module clusters (but did not combine results to reduce the
search space).
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This multiple hill climbing approach can improve the per-
formance of simpler approaches. Performance is improved
both through parallelisation and through the identification of
high-quality building block sub-solutions that become fixed in
subsequent searches to reduce search space size.

More recently, in 2011 Praditwong et al. introduced a multi-
objective approach to module clustering [77]. The multi objec-
tive approach was the first to find module clustering solutions
that improved significantly on the hill climbing algorithm, in
terms of cohesion and coupling. The approach also found
results that improved on the single objective, MQ, thereby
demonstrating that multi objective techniques can find better
single objective solutions than single objective approaches.
This is a phenomenon observed elsewhere in the optimisation
literature [71]; by supporting diversity and maintaining a sub-
population of candidate solutions that meet sub-objectives,
a multiple objective approach can beat a single objective
approach ‘at its own game’.

Results by Praditwong et al. [77] yielded good quality, but
they came at a high computational price; the multi objective
search required two orders of magnitude more time than the
humble hill climber. Fortunately, recent results by Barros [7]
provide evidence that multi objective approaches may also be
capable of outperforming single objective approaches in terms
of both quality and computation time.

There has thus been a significant amount of SBSE work
tackling the problem of modularisation, and many problems
remain open. We draw particular attention to, and encourage
future work in, multi objective module clustering, since it also
allows the developer to optimise other objectives than just
cohesion and coupling.

Such additional objectives might include closeness to orig-
inal module structure, business goals, technical constraints,
testability, and other metrics that may be important in finding a
good module structure. As well as providing candidate module
structures, the multi objective approach, as with all multiple
objective SBSE [82], allows the engineer to explore the trade
offs and tensions between the objectives, something often
advocated as an advantage of SBSE [42], [34].

B. Refactoring

In this subsection we highlight some SBSE approaches to
optimisation and refactoring.

Early work on search based techniques for program trans-
formation tended to focus on improving program execution
time (through parallelisation) [72], [81], [91] and size [24].
These early search based approaches sought to go beyond the
peep-hole optimisations available to compilers. Search based
transformation seeks higher level transformations of source
code that improve space and time performance.

More recently, authors have focused on the potential of
search based approaches to suggest sequences of refactoring
steps that might be applied to a system in order to automate
or partially automate the refactoring process. There are both
single [18], [74], [83] and multiple objective [48] approaches
to search based refactoring.

Most of this work has concerned the code level (source-
to-source) transformation problem, but there is also work on
search based transformation at the model level [30]. Search
based refactoring has tended to focus on imperative languages.
There is work on refactoring for declarative languages [58],
[63], making search based refactoring for declarative lan-
guages an interesting topic for future work. Search based
refactoring has also been suggested as a means of improving
testability [37] through testability transformations [35].

Search based refactoring is a widely-studied automated
refactoring approach. It can also be used to experimentally
validate metrics [73] by searching for agreement and dis-
agreement between metrics on which refactorings should be
performed. In this work, the refactorings themselves are unim-
portant; what is important is the behaviour of the refactoring
process (guided by the metrics), which is used to asses the
quality of guidance offered by each metric.

We encourage more cross-fertilisation between refactoring
approaches (improving non-functional properties related to
maintenance and evolvability) and the genetic improvement
approaches (which can be thought of as improving non-
functional properties such as power consumption or memory
traffic) discussed in Section II-F4.

C. Regression Testing

In this subsection we briefly mention SBSE approaches
to regression testing. In practice, when applied to realistic
programs, this becomes an optimisation problem:

What is the test set (or order) that will maximise
the positive aspects of regression testing, while min-
imising the negative aspects, subject to constraints?

Positive aspects include coverage of the system and early
fault discovery, while the negative aspects include cost drivers
to be minimised, such as execution time and oracle cost [45].
The constraints come from technical concerns (for example,
one test must be executed first since it creates a resource con-
sumed by subsequent test) or business concerns (for example,
we prioritise tests that exercise business-critical features).

Not surprisingly, there has been a great deal of work on
regression test optimisation in the SBSE literature. Elsewhere,
there is a comprehensive survey on regression test optimisation
[92] and a shorter ‘manifesto’ for the specific case of the multi-
objective regression test optimisation paradigm [36]. These
topics, particularly the multi objective incarnations and the
regression test prioritisation formulation, remain highly active.

D. Slicing and Dependence Analysis

In this subsection we relate SBSE and program slicing.
Program slicing and dependence analysis has been widely
studied in the reverse engineering literature, because slices
have applications on comprehension [15], re-use [9], specifica-
tion mining [4], understanding bug reports and tool traces [50],
code salvaging [21] and testing [38], [67]. Dependence anal-
ysis also can be used to identify anti-patterns or code smells
that may be the trigger for reverse engineering interventions
[13], [14].
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There has been work on the construction of program slices
using search based approaches to slice construction [25]. There
has also been work on identifying dependence structures using
slicing as an input to a search for sets of slices that exhibit
properties that may be of interest to the reverse engineer [51].
More generally, there has been work on search based program
transformation and refactoring (mentioned in Section II-B).
We see a need for more work of search algorithms to find
interesting dependence structures, where ‘interesting’ can be
captured in a measurable fitness function.

E. Concept Assignment and Feature Location

Concept assignment [10] and feature location [90] have
found widespread application in the reverse engineering lit-
erature. We argue that there should be more work applying
SBSE to concept assignment. The problem of locating the code
corresponding to a concept or feature in a legacy system is a
natural starting point for comprehension and, therefore, plays
a critical role in many reverse engineering problems.

The underlying challenge is to find a good fit, where
‘goodness of fit’ is a direct target for formulation as a fitness
function. Despite the inherent optimisation flavour of the
problem, the authors are aware of only one approach to search
based concept or feature location [31]. In this work, goodness
of fit is formulated as a measurement of signal-to-noise ratio:
how much of the reported code corresponds to the features to
be located, and how much is merely ‘noise’? We believe there
is room for additional search based approaches to be profitably
applied to the problem.

F. Applications of GP to Reverse Engineering

The topics in search based reverse engineering briefly
outlined so far have used a variety of search based algorithms,
(most notably genetic algorithms, but also hill climbing and
simulated annealing). In this subsection we briefly review
topics in reverse engineering for which genetic programming
has proved to be particularly applicable, to set the scene for
Section IV, which presents our GP4RE agenda focusing on
novel topics in genetic programming for reverse engineering.

1) Bug Fixing: Work on GP for automated bug fixing
[6], [32], [62] has demonstrated that some bugs in existing
programs can be automatically patched so that the regression
test suite passes. This may be useful to ‘buy time’ for the
developers who could use an automated patch to keep a system
live while they investigate longer term solutions. Ultimately,
it is also possible that classes of bugs might be automati-
cally patched in ways that replace the need for human bug
fixing altogether. Of particular note to a reverse engineering
community, the maintainability of GP-produced fixes has been
evaluated in a human study [28]. A recent survey of work in
this area can be found elsewhere [61].

2) Code Migration: Work on code migration [59] was used
to automatically port the core algorithm of a UNIX utility
(gzip) from standard programming environment written in
the C language to the CUDA language on a general purpose
graphics processing card (GPGPU) environment.

This work suggest the possibility of using GP more widely,
to assist with the difficult and long-standing challenge of
reverse engineering a system from one platform, language
and/or environment to another.

3) Code Composition, Reuse and Model Extraction: Ge-
netic programming has been used to construct behavioural
models, allowing the reverse engineer to predict the response
time of an assembly of re-used components in a novel ar-
chitecture into which they are to be deployed. Krogmann et
al. [55] evaluated this approach to GP for reverse engineering
behaviour predictive models by predicting the performance of
a (partly reverse-engineered) file sharing application. Their
model monitors data and runtime bytecode counts and uses
static bytecode analysis to combine a behavioural model with
platform-specific benchmarking. Fredericks and Cheng [27]
also recently used GP for module reuse.

More generally, we believe that many existing model extrac-
tion approaches could benefit from search based techniques to
reduce manual overhead. As an early example, while using
semantics-preserving operations to extract from a program an
equivalent high-level specification, Ward observed [88]:

This process can never be completely automated —
there are many ways of writing the specification of a
program, several of which may be useful for different
purposes. So the tool must work interactively with
the tedious checking and manipulation carried out
automatically, while the maintainer provides high-
level “guidance” to the transformation process.

We believe a GP search could allow such guidance to be
codified in a fitness function, automatically favouring order-
ings of transformations that yield high-fitness specifications.

4) Genetic Improvement and Program Synthesis: Genetic
improvement (also called Evolutionary improvement) [5], [43],
[75], [76], [89]) is a form of program synthesis in which an
existing program is improved, using GP. Much of this work
has focussed on the improvement of the system’s execution
time, though it can also be applied to other non-functional
properties of the system [43]. Since genetic programming
tends to produce an optimised ‘program’ of some form, GI
has also tended to focus on improving source code. However,
it has also been applied at the architectural level too [79].
GI has even been applied to shader programs in the domain
of computer graphics, producing tradeoffs between execution
time and visual fidelity [85] via transformations that are not
semantics-preserving (e.g., [80]).

Recently, Langdon and Harman reported that GI found
improved versions with speed-ups of up 70x for a 50 KLoC
C/C++ system [60]. Even more attractive was that this im-
provement could be achieved with relatively few interventions
in the code. These interventions are not necessarily semantics-
preserving, so they cannot be found using traditional com-
piler optimisation (which must be semantics-preserving by
construction). However, although not semantics-preserving by
construction, Langdon and Harman were able to demonstrate
reasonable, even improved, faithfulness to required behaviour.
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III. SBSE AND THE WORKING CONFERENCE ON REVERSE
ENGINEERING (WCRE)

According to a recent survey [44], by 2010, SBSE papers
had appeared in 201 different publication venues. Ranking
these 201 venues by number of SBSE papers, the International
Conference on Software Maintenance (ICSM) was 9th (with
9 papers) and the Conference on Software Maintenance and
Reengineering (CSMR) was 14th (with 5). The Working
Conference on Reverse Engineering (WCRE) is not ranked in
the top 20. However, there have been three papers on SBSE
in WCRE [1], [25], [52]. Not surprisingly the single venue in
which the largest number of SBSE papers have appeared is the
Genetic and Evolutionary Computation Conference (GECCO),
which has featured a dedicated SBSE track since 2001.

However, other well-known software engineering venues
such as ASE, ICSE, ISSTA, IST, JSS, TSE and STVR all
appear in the top twenty by number of publications on SBSE.
Some of these papers are also on topics that concern the
application of SBSE to reverse engineering. Given the number
of reverse engineering applications for SBSE, it is surprising
that there are not more SBSE papers appearing in WCRE.

Hopefully, this keynote paper will encourage authors to
consider WCRE as a potential venue for SBSE work on
reverse engineering. We also hope that it may stimulate reverse
engineers to consider SBSE techniques.

IV. GP4RE: NEW GENETIC PROGRAMMING
APPLICATIONS FOR REVERSE ENGINEERING

This section proposes new research directions into Genetic
Programming (GP) for Reverse Engineering (RE): GP4RE.

A. GP for Partial Evaluation

In partial evaluation [53] a program is partially evaluated
by applying it to only some of the full range of its inputs (the
inputs are partially applied). The program is evaluated with
respect to be available inputs to produce not an output, but a
new program. This new program is specialised to those inputs;
the inputs become hardwired into the source code as a result
of this partial evaluation. The hardwiring process consists of
transforming the source code to optimise performance with
respect to the known inputs. Typical transformations involve
evaluation of expressions, constant folding and loop unrolling.
As well as improving performance, partial evaluation may
have other applications in reverse engineering such as program
comprehension [16].

By fixing the values of some inputs, GI can be used to
search for a genetically improved version of the original
program that is specialised to these inputs. This can be
achieved using any existing approach to GI, simply by fixing
some of the input values so that the genetically improved
candidates are only ever executed with these specific choices.
Overfitting becomes a distinct advantage in this case; it will
be one mechanism by which GI can partially evaluate the code
to be improved, fitting it to the specific cases denoted by the
set of inputs to which the program is partially applied.

Existing partial evaluation approaches often rely on par-
ticular backtracking search strategies (e.g., [2]), to which
GP provides an alternate. Similarly, in the presence of an
adequate test suite, GI holds out the promise of reducing or
eliminating the manual annotation burden of many popular
partial evaluation approaches (e.g., DyC [33]).

Generalised partial evaluation [29] (which partially evalu-
ates with respect to conditions on the input) could be achieved
simply be enclosing the code to be evolved in a harness that
checks the conditions as pre-conditions. However, there would,
of course, have to be sufficiently many test cases that meet the
required pre-conditions. If there were not, then search based
test data generation tools [3], [26], [41], [57] can be used to
enhance the test suite.

B. GP for Slicing

There are known relationships between partial evaluation
and program slicing [11]. For example, a partially evaluated
program can be formulated as an amorphous conditioned slice
with respect to the ‘all variables at all points’ slicing criterion
that requires complete faithfulness to the original program’s
semantics. Given these relationships and the discussion in Sec-
tion IV-A, it should come as no surprise that there is additional
scope for GI to implement various forms of slicing (over-and-
above the limited initial work overviewed in Section II-D).

Using these relationships, we can extend the approach to
GI for partial evaluation (Section IV-A) to GI for amorphous
conditioned slicing, by restricting the test suite to those test
cases that capture the slicing criterion. This would be a form of
observation-based slicing [12]. It would be amorphous slicing
because GP will not necessarily simply delete statements,
but may add new code. It would be conditioned slicing
if generalised partial evaluation were used (and more like
dynamic slicing otherwise). It would be observation-based
because the preservation of behaviour at the slicing criterion
is tested through observation (not built-in by construction).

C. GP for Transplants

We believe that there is considerable potential for search
based techniques to be used to achieve software transplanta-
tion. In this section we introduce the concept of search based
translation, setting out some initial definitions and possible
approaches. Much more work is required to develop the idea of
software transplantation, but we believe that this could prove
to be a valuable application of SBSE in the future.

Suppose we could automatically incorporate a desired fea-
ture from one program into another program. We currently
perform such ‘reuse’ entirely manually. We propose that GP
be used to re-implement the new feature in a more automated
fashion. Such an approach may yield a transplant that is
syntactically re-constructed (through search) to ensure that the
transplantation is successful. We could even transplant from
one language and platform into another using this approach.
We know that this is theoretically possible because of previous
work on code migration (see Section II-F2).
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Definition 1 (Transplant): We informally define a software
transplant as the adaptation of one system’s behaviour or
structure to incorporate a subset of the behaviour or structure
of another.

We could view a transplant as a more sophisticated (and
ideally much more benevolent) form of the kind of ‘software
injection’ that occurs when a virus copies itself into a host.
Had the same human effort and ingenuity that has been
targeted on virus design have been re-directed towards in-
vestigation of software transplantation, we might be currently
experiencing far better software systems.

For example, suppose System D, a potential ‘donor’ of a
transplant, includes a hotkey combination feature that exits
the program without saving any state. The hotkey feature is
a behaviour of System D that we might like to transplant
into some other System H , the ‘host’ of the transplant.
Conceptually, it should be fairly straightforward to transplant
the hotkey feature into any such System H that also handles
keyboard input. We suggest that a GP system should be able
to perform such transplants almost entirely automatically.

At a high level, we identify key steps likely to occur in a
software transplant algorithm to add feature F from source
System D (the donor) to destination System H (the host):

1) Localise: Identify and localise the code DF ⊆ D that
implements F (this might use, for example, concept and
feature location (see Section II-E))

2) Abstract: Construct an abstraction AF from DF , re-
taining control and data flow directly related to F in the
donor but abstracting references to D-specific identifiers
so that these become parameterised.

3) Target: Find locations HF in the host, H , where code
implementing F could be located.

4) Interface: Construct an interface, I and add it to the
host, H , allowing the resulting combination H ∪ I to
act as a ‘harness’ into which candidate transplants can
be inserted and evaluated.

5) Insert: Instantiate and concretise a candidate transplant
A′

F (concretised from AF ) at HF .
6) Validate: Validate the resulting transplanted system H∪
I ∪ A′

F .
7) Repeat: Repeat the above steps until a suitably well

tolerated transplant is found.

We call this seven-step approach the LATIIVR approach1:
Localise, Abstract, Target, Interface, Instantiate and Verify.

In the remainder of this subsection we discuss these seven
steps in more detail, highlight existing GP, RE or SBSE
techniques that might be applicable.

1) Localise: Localise the Feature in the Donor System:
Ideally, the user of a transplant system would be able to
identify the interesting behaviour in the donor via the system’s
functionality and not by code inspection. As a first step, we
propose a combination of test cases and manual annotation to
identify the feature F .

1Pronounced ‘Lativar’.

For example, the user might specify a regression suite T
testing non-F behaviour and additional tests TF testing F
behaviour. In such a scenario, mutations to the donor that
cause TF to fail while allowing T to pass are associated with
the location of the feature F . Additionally, the user might
explicitly annotate particular lines of code, variable definitions
or uses, or dependencies as part of (or not part of) F .

These localisation actions would require a trained software
engineer. However, for some (relatively simple) transplants,
it may be possible for an untrained user to identify desired
behaviour in the donor that they would like to see transplanted
into the host simply through the user interface.

For example, if the donor has a feature that renders the
screen purple in response to a GUI button, then this ‘purplisa-
tion’ feature might be identified by the user and transplanted
into the host simply by extending the events to which the host
can respond and incorporating the purplisation action code.

Given some identification of the feature of interest, existing
fault localisation [78], slicing [40], [56], [93] and feature
extraction (Section II-E) approaches could be used to find the
code DF ⊆ D that implements F .

2) Abstract: Abstract the Feature: The source code DF

implementing feature F in System D is almost certain to
contain explicit references to variables, functions and code
specific to the donor system. For example, consider the case
where F is a simple local null check:

if (ptr ! = NULL) { foo(∗ptr); }

The host system H is likely to use a different identifier
and perform different behaviour in the non-null case. Indeed,
System H might be written in a different language in the most
extreme case. We thus desire an abstraction AF , such as:

if (�1 ! = NULL) { �2(�1); }

The syntax suggests a transplantation template where �1

is an unspecified local pointer variable and �2 is a use of
it. Similar abstractions are already learned automatically in
other domains (e.g., documentation synthesis [20]) and such
templates have already been successfully applied to automated
bug fixing [54].

3) Target: Find Candidate Destinations in the Target Sys-
tem: In theory this step could be completely automatic, with
a search based algorithm trying out many possible locations
HF in the target System H to host the transplant. In practice,
feasibility will likely require a combination of test cases and
manual annotations for System H , akin to those used to
localise the feature in the source system.

As a simple example, consider the case of transplanting
additional GUI- or keyboard-handling behaviour. Ideally, this
step would be as simple as locating the switch statement
that dispatches code based upon GUI or keyboard events
and adding an additional case branch. This localisation can
additionally take advantage of the structure of the abstract
feature template AF . For instance, in the local null check
example above the template should favour destinations where
a local pointer is in scope.
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4) Interface: Construct an Interface Between Transplant
and Host: In the case where donor and host systems are
written in different language we may need a parameter passing
mechanism (perhaps through abstracted variable instances)
so that we can evaluate candidate re-implementations of the
feature against the original (which would act as oracle). A
similar approach has previously been used in search based
code migration (Section II-F2).

However, such interface construction will also be useful in
cases where the same platform, environment and programming
language dialect are used for the host into which the transplant
is located and the donor from which it is taken. It will assist
with testing and on-going maintenance.

The process of defining the interface may be automated,
given that the localisation and abstraction steps have produced
an abstracted feature and the target step has identified a
location in which to insert the transplant into the host. Some
interfaces may be trivial. However, for maintainability and ease
of testing, it will probably make sense to capture the transplant
as a function or procedure, with a defined interface (through
formal and actual parameters). This will assist in testing, for
example, using unit testing approaches to test the transplant
(with the original feature playing the role of oracle).

5) Insert: Instantiate and Concretise the Transplant: Given
a destination location HF and the abstract template for the
feature AF , we want to apply the transplantation template at
that destination. While our examples have been phrased in
terms of code additions, interesting transplants are likely to
involve deletions and replacements as well. For example, the
null check template above might be phrased as a replacement:

�2(�1) =⇒ if (�1 ! = NULL) { �2(�1); }

This phrasing suggests that an unguarded use of a pointer
should be replaced by a null-checked version of the same
use. However, since such templates likely contain ‘holes’ or
other abstract references, we must concretize them, choosing
functions and identifiers specific to the host System H . For
example, one concretization of the previous replacement tem-
plate might be:

host action(∗host ptr); =⇒
if (host ptr ! = NULL) { host action(∗host ptr); }

Once this template is concretized, it can then be instanti-
ated at any occurrence of host action(∗host ptr); at HF ,
replacing that use with the guarded null check. Thus each
template will likely have multiple concretizations, and each
such concretization can likely be instantiated at (applied to)
multiple points in HF , phrasing both such choices as search
problems.

The instantiation of such templates has been studied in the
bug fixing context [54] and has a direct formulation as a search
problem considering possible mappings from template holes
to local instantiations. In practice, instantiations are likely to
require assignments, casts, coercions and other ‘glue code’ to
form an interface between the behaviour AF from the donor
and the context HF of the host.

For example, a template involving the Eclipse IDE may
require an ASTNode object where only an IFile object is
in scope. Ideally, this glue code will be capture by the
interface. Algorithms such at Prospector [66] solve exactly
this issue, synthesising such glue code from input and output
types. Similarly, ‘programming by sketching’ or ‘storyboard’
approaches [84] synthesise working algorithms in the presence
given structured but incomplete information about the con-
tents. Finally, if user annotations take the form of contracts or
specifications, recent advances in automated synthesis admit-
ting the creation of non-trivial algorithms from scratch (e.g.,
Bresenham’s, Dijkstra’s, etc.) [86] could be applied.

6) Validation: Validating the Resulting Transplantation:
In a search based setting, many candidate transplants may be
considered before an acceptable one is found. We highlight a
number of dimensions along which the quality of a transplant
might be evaluated during the validation stage.

1) Passes new feature tests: The transplant implements
the new desired behaviour correctly. Ideally, all tests of
the host (System H) for the new feature F should pass
after the transplant.

2) Passes regression tests: The transplant does not disrupt
existing behaviour by introducing side effects. There are
two cases of side effects:

a) The truth, the whole truth: The transplant retains
required existing behaviour of H . Ideally, all tests
(and invariants, contracts, etc.) associated with
System H (the host) that do not directly conflict
with feature F from the donor (System D) should
pass after transplantation. Standard regression test-
ing might be used to determine if the transplant
sacrifices existing behaviour [92].

b) ... and noting but the truth: The transplant does
not introduce new undesired behaviour. This might
be measured in terms of anomaly detection or fuzz
testing [62]. Automated test data generation [3],
[26], [41], [57] could be used to augment the
host’s existing test suite for higher coverage of the
changed area HF .

3) Passes quality tests: The transplant is readable, main-
tainable and/or acceptable. If the post-transplant system
is to be maintained by humans, metrics or user studies
of readability [19], maintainability [28] or acceptabil-
ity [54] should be used.

These criteria are similar to the use of test cases in auto-
mated bug fixing [6], [32], [62]. Indeed, automated bug fixing
is a special case of transplantation and transplantation as a
special case of program improvement, which is, in turn a
special case of program synthesis.

That is, in traditional search based program repair, the donor
and host are the same system. We seek a transplant that
replaces the buggy code with code that implements the new
feature of ‘correct behaviour’. In this sense, repairs are special
kinds of transplants. All transplantation seeks to improve an
existing program.
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In this sense, transplantation is a special case of program
improvement: it seeks to improve the behaviour of an existing
program. Finally, since program synthesis is concerned with
automated code generation, program improvement can be
regarded as a special case of synthesis. The synthesised code is
not written from scratch, but augments some existing program
or system.

7) Discussion: While not every approach to software trans-
planting need necessarily follow the LATIIVR process outlined
above, we believe it highlights the challenges that will be
encountered. Localisation, abstraction, targeting, interfacing,
inserting and validation are all likely to be critical to any
such approach. We also believe that an SBSE formulation is
also very natural: given a fixed set of abstract templates and
targets from the localisation, search through that space until a
concretization and instantiation are validated.

We note that not all software transplantation tasks are
of equal complexity. Since the most direct and well-studied
approaches to localisation and validation are based on testing,
we propose that researchers begin with independent imple-
mentations of the same API or specification, thus allowing the
donor and host to share tests. In this formulation, transplanting
is akin to automated bug-fixing [6], [32], [62] with the bug
being that host fails the tests related to feature F and the
possible fixes all coming from the source code of the donor.

Independent implementations also make attractive testbeds.
For example, it is easy to imagine experiments to transplant
encryption code from one ZIP compression library to an-
other (or one audio or video codec library, etc.). Similarly,
researchers might make use of the multiple similar-but-not-
identical implementations of the various core Unix utilities
(e.g., Ultrix vs. Solaris vs. GNU) or the various secure socket
libraries (e.g., OpenSSL vs. GnuTLS vs. NSS vs. CyaSSL,
etc.), not all of which support the same subset of protocols.

Some code will be simply untransplantable, because the
two systems are just too different. For example, we cannot
meaningfully transplant a payroll update procedure into a disk
controller; they are simply incompatible species of software.
Defining the systems that can be mutual hosts and donors
might be an intellectual mechanism for defining species of
software systems. Such a definition of software species may
be a valuable contribution in itself (and one with surprising
findings). This alone might justify the effort to explore re-
search opportunities in software transplantation.

It seems clear that some of the socket libraries men-
tioned above will be similar enough to admit transplants; it
is equally easy to imagine that some code will be simply
untransplantable into some hosts. For example, we cannot
meaningfully transplant a payroll procedure into a disk drive
controller; they are incompatible species of software.

Even intra-species transplants might be rejected, perform
poorly or cause side effects. A transplant is rejected if the
resulting host-plus-transplant simply fails to compile. The
transplant performs poorly if it fails some of the tests which
check the new desired functionality. It causes side effects if
some regression test fails.

As with animal transplantation, a rejected transplant is use-
less, but poorly performing and side-effecting transplants may
be acceptable. For example, a transplant may add sufficient
value to the host to be retained until something better can
be found. If it causes side effects that can be tolerated or
ameliorated then it may also be retained. For example, a
transplant that causes a slight degradation in performance
might be tolerated, while one that adds ‘junk’ to a log file
could be ameliorated by incorporating a filter.

D. GP for Software Product Lines

There has recent been work on regression test optimisation
for Software Product Lines (SPLs) [87] using SBSE tech-
niques related to those overviewed in Section II-C, but GP
has not been used for the generation and merging of SPL
branches.

The idea of GP for SPLs was proposed in the ‘GISMOE
Challenge’ keynote paper at ASE 2012 [43], but has yet to be
fully explored. The idea is to use GI to create new branches
automatically and to merge versions when the product family
becomes large or unwieldy.

A new branch can be thought of as a transplant in the sense
defined in Section IV-C above. If a donor system can be found
then the SPL branch can be extended using a transplanting
approach. However, even where there is no donor, an extension
could be provided by GI, so long as there are sufficient test
cases available that capture the additional desired functionality.

For small extensions, it would make sense to put effort into
defining test cases, rather than into hand-writing code that
might otherwise be found by a GP. After all, a test suite will
be required to check that the branch is correct, so why not
define it up front?

A merge of several branches can be performed by seeking to
locate a parameterisation of the branches that allows a single
fragment of code to implement all branches. GI can be used
to find the smallest set of parameters that allows the smallest
set of code to be used to suffice for all branches; a natural
multi objective formulation.

Observe that there always exists a solution with maximal
code size and small parameter set size: it is simply the switch
of all branches, parameterised by a single enumeration-type
parameter that selects between them. Of course, this would
be a trivial solution that adds no value. The goal of GI SPL
automated branch merging is to improve on this.

E. GP for Reverse Engineering Strategies

One overall reverse engineering scenario could be charac-
terised as a three step process: decompose, evolve, re-compose.
That is, a system is first decomposed into models. There is
some existing work on refactoring and extraction of models
mentioned in Sections II-B and II-F3 that could assist here.

The components extracted through decomposition can then
be re-evolved into improved versions using the GI approach
outlined in Section II-F4. Finally, there is the remaining prob-
lem of how to re-compose the system into a new composition
of (improved) modules. This reassembly may be done by GP.
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Currently, research on reverse engineering proceeds in
problem-specific silos that target parts of each of these phases.
In the RE literature, we can find work on extraction of reusable
components and work on techniques to help engineers improve
these components. We also find (once again, separate) work
on reuse and integration of components. What we need is a
coherent overall process that combines all of these phases —
as well as suitable benchmarks for evaluating them in tandem
— since each is clearly dependent upon and affects the others.

Since all phases of the overall RE process could potentially
be partly automated as optimisation problems for SBSE, there
is also the eventual opportunity to combine all three phases
into an over-arching strategy. Using GP to evolve effective
strategies for RE, we could envisage a future for RE in which
the whole reverse engineering process is treated as a single
optimisation problem, for which we seek an optimal overall
strategy. The phases of this process are also sub-problems,
each of which can be formulated as an optimisation problem.

V. CONCLUSION

In this paper we have briefly described the application of
Search Based Software Engineering to reverse engineering.
The literature shows a recent upsurge in papers on Genetic Pro-
gramming (GP) for reverse engineering, with exciting results
on automated software repair, migration and improvement
using GP. We believe that there are many more equally fruitful
applications of GP in problems of slicing, transformation and
partial evaluation.

We also outlined, in more detail, the use of GP to achieve
automated and semi-automated software transplants and ad-
vocate its use in software product line extension and branch
merging. We believe GP may even provide a means to search
for overall reverse engineering strategies. Much of this re-
search agenda (a ‘GP4RE research agenda’) remains to be
explored. We are very interested to collaborate with other
researchers and practitioners on these and related topics.
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