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Abstract—GenProg implemented a novel method for automat-
ically evolving patches to repair test suite failures in legacy
C programs. It combined insights from genetic programming
and software engineering. Many of the original design decisions
in GenProg were ultimately less important than its impact as
an existence proof. In particular, it demonstrated that useful
patches for non-trivial bugs and programs could be generated
automatically. Since the original publication, research in auto-
mated program repair has expanded to consider and evaluate
many new methods, contexts and defects. As code synthesis and
debugging techniques based on machine learning have become
popular, it is informative to consider how views on perennial
issues in program repair have changed, or remained static, over
time. This retrospective discusses the issues of repair quality
(including the role of tests), use cases for automated repairs
(including the role of humans), and why these approaches work
at all.

Index Terms—Automatic programming, corrections, testing
and debugging, evolutionary computation

I. INTRODUCTION

The 2012 article “GenProg: A Generic Method for Auto-
matic Software Repair” described GenProg, a technique that
used genetic programming (GP) to automatically generate
patches for bugs in programs, identified by test cases. GP is
a stochastic search method inspired by biological evolution
that discovers computer programs tailored to a particular
task [1], [2]. It relies on computational analogs of biological
mutation and crossover to generate new program variations; in
GenProg, we referred to these variations as variants. A user-
defined fitness function evaluates each variant. GenProg uses
the provided test cases to evaluate variant fitness. Individuals
with high fitness are selected for continued evolution in an
iterative search process. The process is considered successful
when it produces a high-fitness variant according to the user-
defined function. For GenProg, this means a program that
passes all tests encoding required behavior, including those
that expose the bug.

That TSE’12 article was an invited extension of a 2009
Distinguished Paper at the International Conference on Soft-
ware Engineering (ICSE), “Automatically Finding Patches
Using Genetic Programming” [3]. The TSE article unified and
expanded on previous publications [4], [5], especially in terms
of the evaluation, including:

• New bugs and programs. The article reported on bugs
in five additional programs compared to the previous
evaluations, doubling the total amount of repaired code
evaluated to over 100k LOC. These new programs in-
cluded four new types of errors.

• Closed-loop repair. The TSE paper described, and pro-
vided a proof-of-concept evaluation of, a closed-loop
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repair system integrating GenProg with anomaly intrusion
detection.

• Repair quality. The evaluation significantly expanded the
original publication’s treatment of repair quality. This
included both a manual/qualitative assessment and a
quantitative study using indicative workloads, fuzz test-
ing, and variant bug-inducing input.

GenProg was impactful because it demonstrated the feasi-
bility of automating program transformation for bug repair on
large (for the time) corpora of real-world open-source software
used in production. Automating this type of programming had
been proposed, particularly in the evolutionary computation
research area, but never explored seriously for production
code. Over the subsequent decade or so, Automatic Program
Repair (APR) has developed into a significant research sub-
field at the intersection of program analysis and software
engineering. This work includes an adaptive radiation of
methods for finding bugs and generating repairs, some of
which have been integrated into industrial deployments [6],
[7]. The recent development of transformer-based language
models and generative AI, as applied to code, has accelerated
interest in this type of work.

In our view, many of the details of the GenProg algorithm,
as described in the article, are less important to its impact than
its status as an existence proof. Many design decisions were
under active investigation at the time, e.g., in the same year
that the TSE article was published, we also published a more
efficient representation, which evolved edits to programs, or
patches [8], rather than entire ASTs. This has turned out to be
a more enduring design choice.

However, at least two design choices were significant. First,
GenProg targeted a widely-used, general-purpose program-
ming language (C). This, coupled with the fact that its program
analysis strategy was relatively lightweight, allowed GenProg
to scale to nontrivial modules and programs. This emphasis on
real open-source code endures in the APR research literature,
which continues to emphasize empirical studies, evaluations on
corpora of bugs in open repositories, and comparisons among
methods.

Second, GenProg relied exclusively on test cases to enforce
correctness. Testing was (and remains) the most common
Quality Assurance technique in development practice. Relying
on tests rather than any kind of formal correctness specifica-
tions allowed GenProg to apply to a wide variety of programs,
bugs, and errors. Using tests as proxies for correctness specifi-
cations diverged strongly from common research wisdom and
practice at the time. It was a controversial design decision,
and led to significant ongoing debate and study. However,
the use of tests to inform and guide APR remains a de facto
standard in the program repair and transformation literature.
This includes techniques that, like GenProg, use test cases
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to guide repair directly and more recent approaches from
the ML/AI community which use tests to evaluate repairs in
response to issue or bug reports (e.g., [9]).

II. EVOLUTION OF REPAIR QUALITY

A major focus of the experiments unique to the TSE’12
article was repair quality. Although using tests to guide repair
allows techniques like GenProg to apply broadly, those tests
are also, by their nature, partial. It is always possible to
construct a program that satisfies a partial specification but
that does not generalize to the (unwritten) full specification.

Repair quality, often referred to as overfitting [10], has been
a major focus of subsequent work in program repair, both on
its own and as a component of evaluations of new techniques.
Generated tests, separate held-out tests, and fuzzing campaigns
have been used to evaluate repair quality, usually as an adjunct
to manual comparison to the developer-written “gold standard”
fix for a historical bug. This standard is more restrictive than
the one we applied in this article, when such experimental
norms had yet to be established, and as we argue below is
likely overly restrictive. Modern evaluations, therefore, define
“correct” differently from the TSE paper, even though both
types of assessment are effectively manual. Both approaches,
however, acknowledge the reality that tests provide only partial
arguments for quality. This is important to bear in mind
when evaluating and making claims about any new technique
for program transformation—whether based on more formal
reasoning, or on ML-based approaches.

That said, in the qualitative analysis of produced patches,
we carefully selected bugs that we considered illustrative; the
natural (or developer-provided, if available) fix; and the fix
produced by GenProg, if it differed. This is more subjective,
and less principled, than a strict comparison to a developer-
provided gold-standard patch, and it is impractical at the scale
of modern evaluations. However, there are benefits to such
narrative assessment of produced patches, especially for those
that do not perfectly reproduce the text of a historical fix. For
example, a GenProg repair to openldap fixes a denial-of-
service attack by removing a buggy loop that sanity-checks
very large request tags. This repair has the side effect of lim-
iting the range of request tags to 127, which is different from
the gold-standard repair (which removes extraneous assertion
failures in that same loop). However, since openldap only
has 30 defined tags, the patches produce identical behavior in
practice. Such narratives add color as to what the technique
can and did do, and it acknowledges the fact that there are
an infinite number of ways to fix any particular defect. This
theoretical diversity also manifests in practice, including when
multiple experienced developers repair the same defect [11].

These results, and the ongoing challenges faced by re-
searchers in evaluating program transformation techniques,
highlight a need for more nuanced studies of repair quality, and
standards for how to evaluate it experimentally. One recurring
observation was that the evaluation standards for generated
repairs often varied with the use case: a patch that would be
deployed automatically might be considered differently from
one that would serve as informal guidance to a human.

III. EVOLUTION OF USE CASES

Over the years, APR efforts have considered multiple use
cases for generated patches. One primary dimension of varia-
tion is the degree of human involvement. We consider a highly-
manual use case and a fully-automated one.

Perhaps surprisingly, our original model envisioned can-
didate patches being presented to developers as suggestions,
perhaps via IDE integration. This was the use case considered
in precursor work to GenProg [12]: Proposed patches would be
shown to developers as parts of bug reports, and even incorrect
patches might reduce development time by providing ideas.
Although that use case was quite speculative in 2006–2009,
the rise of cloud computing led to the widespread adoption
of continuous integration continuous delivery (CI/CD) tech-
niques. The ensuing tighter push, test, commit, review cycle
more naturally placed humans in front of small, proposed
changes. Human inspection as part of software evolution has
a rich history, but CI/CD has increased acceptance of a faster
feedback loop of small changes.

One aspect meriting particular attention is an apparent, very
recent, LLM-driven shift in developer tolerance for tools that
are explicitly not guaranteed to be correct. Informally, in
prior decades it was widely accepted that industrial developers
were intolerant of false positives [13], [14]. In our recent
conversations with industrial developers, however, they appear
to be more willing to receive and fix up slightly-incorrect
suggestions from synthesis tools like ChatGPT. This remains
an important use case and research topic, with a 2024 study
finding that access to correct APR suggestions increases the
odds of debugging success by a vastly larger margin as
compared to having access only to tests. Access to overfitting
suggestions decreases the odds of debugging success, but it
hurts less than having good suggestions helps [15].

A second family of use cases emphasizes the automated
deployment of patches without a human in the loop. The
TSE’12 article considered a case study of a long-running
webserver deployment, imagining a scenario in which inputs
that triggered an anomaly detection system would pause the
system, be passed to GenProg to produce a patch, and then
that patch would be deployed automatically on future inputs.

In the scenario, the webserver was running a version of php
vulnerable to a remote exploit against the str_replace
function, and 130,000 historical HTTP requests and 12,000
historical PHP requests were used. We first assessed the time
cost associated with pausing the webserver to conduct repairs,
determining that 2% of requests would be delayed. We also
assessed the requests lost to repair quality, as when a GenProg
repair closes the vulnerability but disables single-character
string replacements. In this setting, the fraction of PHP re-
quests that differed by even one byte was not statistically
different from zero. One lesson was that functionality-deleting
repairs do not always have an impact on the user experience.

This fully automatic use case has been less emphasized
in the research since the article was written. The latter case
study especially highlights that the role of repair quality is
subtle, and its importance can vary strongly by use case.
Deleting functionality to automatically prevent the exploitation
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of key vulnerabilities may be acceptable in some cases, such
as when a human operator is unavailable and the vulnerability
particularly severe. Many bugs and vulnerabilities appear on
less commonly-executed code paths; our case study suggests
that removing such paths may sometimes enhance security,
while not meaningfully impacting user experience. However,
these considerations are necessarily contextual, and thus much
more difficult to evaluate in the types of large-scale empirical
settings that have become common in program repair literature
since.

Use case and evaluation concerns are timeless. The overar-
ching question of where and to what degree human developers
should be ‘in the loop’ remains, and our answers to this
question are changing quickly as ML-based methods mature.

IV. EVOLUTION OF SOFTWARE

It is unsurprising that text prediction methods that work so
well for generating natural language should also work well for
generating program code, which has much smaller vocabulary
and simpler grammatical structure [16]. More surprising is
the fact that approaches based on random mutation, such as
GenProg and its successors, can succeed at all.

Independent of progress developing APR tools that can
repair more bugs more correctly than the original GenProg,
a separate line of work has asked why GenProg and its
successors succeed as often as they do. A key assumption
of the GenProg architecture is that the ingredients of a repair
are likely to already exist in the program [17], which enables
mutation operators to succeed that simply reorder, delete or
copy code. This assumption is known as the plastic surgery
hypothesis [18] and is an important enabler of the success of
GenProg and other mutation-based methods. In addition, many
researchers have observed that most bugs are “small” [19],
which helps explain why GenProg’s repairs, which usually
consist of one- or two-line edits, are often sufficient.

Other work considers the hypothesis that software has
certain properties that make it inherently “evolvable,” i.e.,
amenable to random mutation and selection. As just one
example, several studies [20]–[22] have measured mutational
robustness, i.e., how likely it is that a random mutation will
change the observed behavior of the program. These studies
have shown that, in programs written in different languages
and at different abstraction levels, software is highly robust to
mutation (e.g., ≈ 30% of mutations are non-harmful for source
code), which is comparable to observations made in some
biological systems [23]. In biology, mutational robustness is
believed to be a key enabler of evolution, because it allows
the search to explore the adaptive landscape more widely
without fatal consequences, and thus improves the chances of
discovering important innovations [24]. Why this robustness
exists in software, and what its effects are, are interesting and
unanswered questions.

In SE terms, mutational robustness can be thought of as
“neutral mutations considered helpful,” in contrast with the
subfield of mutation analysis, where neutral mutations com-
plicate the interpretation of mutation adequacy scores and are
usually considered negatively, as evidence of either a missing

test or semantic equivalence [25]. In many cases, however, mu-
tations can produce functionally-correct code improvements,
even if the result is not strictly equivalent semantically. For
example, a mutation that changes run-time behavior but still
produces correct results might be considered semantically dis-
tinct but functionally correct. This principle was leveraged in
follow-on work to GenProg that optimized quality properties,
such as energy efficiency or run-time, by discovering variants
that behave differently but acceptably [26], [27]. Beyond
mutational robustness, other aspects of software have been
shown to resemble natural biology as well, including epistasis
(interaction among genes), neutral landscapes, and bimodal
fitness distributions [27], [28].

More macroscopically, modern software development prac-
tices incorporate the three key mechanisms of Darwinian evo-
lution: variation, selection, and inheritance. Variations, random
or otherwise, are introduced whenever a developer or tool
changes a line of code. They are also introduced through
an analog of the biological process of crossover, whenever
two libraries, code snippets, or modules are combined from
different sources. Selection and inheritance occur each time a
piece of software is copied — successful software is copied
frequently and becomes prevalent in the software ecosys-
tem, and unsuccessful software fades away. Modern tools
and development practices, including everything from Stack
Overflow to GitHub to A/B testing of interfaces to continuous
integration all reinforce and accelerate this dynamic.

V. CONCLUSION AND LOOKING TO THE FUTURE

APR has evolved significantly, from the traditional GenProg
that used testsuites, GP, and focused on C to techniques that
use many methods (formal specifications, program synthesis,
machine learning, etc.) and apply to many languages. APR
has been transformed from academic research to industrial
deployment (e.g., Facebook’s SapFix [7] and Getafix), and was
a precursor to AI-driven code suggestion tools (e.g., Codex,
Copilot).

Looking back to GenProg’s theoretical underpinnings, given
the evidence that the mechanistic drivers of evolution are
all present in modern software practices, important questions
include: Can we measure these effects? How do evolutionary
dynamics affect or constrain the overall trajectory of software
development? What are best practices for leveraging these
evolutionary dynamics in the context of human- or AI-driven
software development?

While the potentials of APR are exciting in the modern
area of AI, there are still many challenges that need to
be addressed. For example, there is interest in using APR
techniques to debug AI models, potentially addressing issues
of AI trustworthiness and safety. While such applications (e.g.,
repairing deep neural networks) are exciting and have the
potential for significant impact, a number of domain-specific
challenges remain. These include scalability (AI models are
large), repair quality (while software behavior is often captured
by tests or specifications, AI is often defined by a training set
that is not as easily captured by traditional methods), and use
case (AI models are not easily interpretable, so how and how
much the human should be in the loop is less certain).
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Conversely, as AI continues to support code synthesis and
debugging, careful attention may be merited for some use
cases and defects. Some perceive that certain classes of de-
fects, like zero-day vulnerabilities that often have few analogs
in training sets, may be more difficult to solve with LLM-
based approaches. In addition, the human-in-the-loop aspect of
repair quality assessments and use cases is more critical with
ChatGPT interfaces and IDE tools like Codex. We speculate
that it will become increasingly important to train developers
to assess candidate patches and synthesis tools.

Finally, just as extending APR to AI models stretches
our notion of what a “program” is, years of work by many
researchers have stretched the notion of what a “bug” is.
In a recent article, we argued that the definition of a bug
includes subjectivity and judgment, notions that also inform
whether it should be fixed: “tests can fail for any number of
reasons—flakiness, failed code style checks—that we do not
ordinarily consider bugs. Further, there are almost always more
bugs reported than can be reasonably handled given available
resources, a fact baked into modern continuous-deployment
pipelines and bug triage processes.” [29] As APR is increas-
ingly stretched from its original conception of passing test
cases to more modern use cases of improving non-functional
properties or supporting AI models, the question of what we
want software to be—and how that differs from what it is
now—remains central.
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