
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 1

Specialising Software for Different Downstream
Applications Using Genetic Improvement and

Code Transplantation
Justyna Petke, Mark Harman, William B. Langdon and Westley Weimer

F

Abstract—Genetic improvement uses automated search to find im-
proved versions of existing software. Genetic improvement has previ-
ously been concerned with improving a system with respect to all pos-
sible usage scenarios. In this paper, we show how genetic improvement
can also be used to achieve specialisation to a specific set of usage
scenarios. We use genetic improvement to evolve faster versions of a
C++ program, a Boolean satisfiability solver called MiniSAT, specialising
it for three different applications, each with their own characteristics.
Our specialised solvers achieve between 4% and 36% execution time
improvement, which is commensurate with efficiency gains achievable
using human expert optimisation for the general solver. We also use
genetic improvement to evolve faster versions of an image processing
tool called ImageMagick, utilising code from GraphicsMagick, another
image processing tool which was forked from it. We specialise the format
conversion functionality to greyscale images and colour images only.
Our specialised versions achieve up to 3% execution time improvement.

Index Terms—genetic improvement, GI, code transplants, code spe-
cialisation, SAT, ImageMagick, GraphicsMagick

1 INTRODUCTION

G ENETIC improvement (GI) [1], [2], [3], [4], [5], [6],
[7] uses automated search to find improved versions

of existing software. We report on GI-based specialisation
applied to MiniSAT [8]1, a popular Boolean satisfiability
(SAT) solver, and to ImageMagick2, an open-source image
processing software.

MiniSAT is an open-source C++ program. It implements
the core technologies of modern SAT solving, including unit
propagation, conflict-driven clause learning and watched
literals [10]. We chose SAT solving as our target, because of
its widespread applicability in software engineering. More
specifically, we chose the SAT solving system MiniSAT
because it has been iteratively improved over many years
by expert human programmers. They have addressed the
demand for more efficient SAT solvers and also responded

J. Petke and W.B. Langodn are with University College London, United
Kingdom, e-mail: j.petke@ucl.ac.uk. M. Harman is with University College
London, United Kingdom. W. Weimer is with University of Virginia, Char-
lottesville, Virginia, United States.
Manuscript submitted October, 2015.

1. This paper is an extension of our previous EuroGP confer-
ence paper [9], which received the GECCO’14 Humie silver medal
(http://www.sigevo.org/gecco-2014/humies.html).

2. https://www.imagemagick.org/

to repeated calls for competition entries to the MiniSAT-
hack track of SAT competitions [11]. As such, the SAT
solver we seek to improve by specialisation is already highly
optimised by expert programmers, and therefore denotes
a significant challenge for any further automated improve-
ment.

We use the version of the solver from the first MiniSAT-
hack track competition, MiniSAT2-0707213, as our host sys-
tem to be improved by GI with transplantation. Further-
more, this competition, in which humans provide modifica-
tions to a baseline MiniSAT solver, provides a natural base-
line for evaluation. It also provides a source of candidate
‘genetic material’ (code fragments that can be transplanted),
which we call the code bank.

ImageMagick is an open source C program that has
been around for over 25 years. It can be used to create,
edit, compose, or convert bitmap images. It can also read
and write over 200 image file formats. Millions of website
use ImageMagick to process images. Many plugins de-
pend on the ImageMagick library, including, PHP’s imagick,
Ruby’s rmagick and paperclip, and nodejs’s imagemagick. An-
other popular image processing software, called Graphics-
Magick4, was forked from ImageMagick in 2002 and it’s still
in use today.

We use the 5.5.2 version of the ImageMagick software
as our host system to be improved by genetic improvement.
Furthermore, we use code from the first version of Graphics-
Magick. It was forked from ImageMagick-5.5.2. One of the
reason’s for the fork was to change coding practices to
improve the tool’s efficiency5.

Definition The problem of program specialisation is to
construct, automatically, from an original general program,
different specialised versions, each targeting a specific sub-
area of the original program’s application domain.

The motivation for automated specialisation comes from
the observation that programs might have been constructed
to target general-purpose solutions to whole classes of re-
lated problems [12], [13], [14]. Subsequently, a more specific
version of the program may be required for either a subset of
the original problem domain, or a slightly different problem

3. Solver available at: http://minisat.se/MiniSat.html.
4. http://www.graphicsmagick.org/
5. http://marc.info/?l=imagemagick-developer&m=104777007831767&w=2

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 2

domain than that initially envisaged by the programmer
[15], [16], [17], [18]. The multiplicity of different platforms,
devices and usage scenarios for software systems poses a
challenge due to the sheer number of different specialised
versions that may be required [19].

Early work on program specialisation focused on tech-
niques such as partial evaluation and mixed computation,
which have a long intellectual heritage dating back to 1970s
[20], [21], [22]. In a functional programming language, par-
tial evaluation can be achieved by partial application of a
function to a subset of its arguments [12], while in impera-
tive styles of programming language, some of the inputs to
the program are fully specified (and thereby become fixed
at compile time) while others remain free (to be instantiated
at runtime) [15].

Partial evaluation consists of ‘hardwiring’ the conse-
quences of the fixed arguments/inputs into the program
code, thereby specialising the program. Hitherto, all work
on partial evaluation has focused on the application of
program transformation rules to optimise the specialised
program for the application sub-domain of interest [12],
[23]. This has the advantage that the resulting specialised
program is correct, so long as the original program is correct
and all of the transformation steps are correct. However, it
means that specialisation can only find programs that result
from the sequence of meaning preserving transformations,
and the specialisation criterion needs to be specified as
a subset of input parameters (or a predicate over these
parameters [24]). The software engineer needs to decide
which of these parameters capture desired behaviour.

We seek to use GI to target a more general form of
specialisation. In our approach, the sub-application domain
is captured, not by instantiating particular arguments to a
function call, nor by selecting fixed values for input, but
by a set of test cases that capture the desired behaviour
of the specialised program. This allows us to specialise
according to any subset of test cases; our specialisation
criterion can therefore refer to both input and output (and
the relationships between them).

Using a set of test cases to capture the specialisation cri-
terion also has the advantage that it draws the specialisation
problem within reach of genetic programming [25], [26],
on which our GI is based. By using genetic programming
we are not restricted to the deterministic application of a
set of meaning-preserving transformations. Instead, we can
use evolution to explore the space of candidate specialised
programs within a neighbourhood of the original, defined
by our genetic operators.

Unlike traditional genetic programming [25], [26], but
in common with more recent work on GI [1], [3], [5], [7],
[9], [27], [28], GI-based specialisation seeks, not to construct
a program from scratch but rather, to improve an existing
program for a specific application domain.

Multiple specialisations can be performed, thereby yield-
ing different specific versions of a program from a single
general program. We take the general SAT solver, MiniSAT,
and specialise it for three different, real-world, downstream
applications. Our aim is that the three GI-evolved spe-
cialised MiniSAT versions should outperform any human-
optimised general version of MiniSAT, thereby demonstrat-
ing the potential of GI-based program specialisation.

We also use a very popular image processing software,
ImageMagick, and specialise it for two downstream ap-
plications. In particular, we focus on its conversion from
jpg to png format function that was identified to be
slow on various internet fora6. By allowing GI access to
code from GraphicsMagick, software that was forked from
ImageMagick-5.5.2, we demonstrate the potential of GI for
using code from various software variants in order to spe-
cialise it for a particular application.

The goal of our approach to automated specialisation
is to reduce the reliance on human software engineers
as the sole means by which different specialised versions
are constructed. Automated specialisation can recommend
interventions (small code changes, in our case one-line
changes) in order to optimise for a specialised scenario. The
software engineer can then decide which of these automati-
cally recommended interventions to adopt.

If the software engineer has high confidence in the test-
ing process [29], then they may simply trust the specialised
version. However, provided the number of interventions is
manageable, the programmer may find it reasonable to de-
cide upon whether to accept each one on a case-by-case ba-
sis. It is therefore important that an automated specialisation
approach does not produce too many interventions, yet can,
nevertheless, produce nontrivial performance improvement.
These observations motivate some of the questions we seek
to answer in our empirical evaluation.

The primary contribution of this paper is an empirical
evaluation that demonstrates that GI-based specialisation
can produce multiple human-competitive specialised soft-
ware versions specialised for various downstream software
engineering application domains. We demonstrate this by
specialising the 2009 incarnation of MiniSAT and the 2002
incarnation of ImageMagick.

We extend our previous conference paper [9] by provid-
ing further evidence for the effectiveness and efficiency of
GI-based specialisation: Whereas the conference paper con-
sidered only one downstream application, the present paper
extends this to three downstream applications for MiniSAT
and reports the results of applying GI to specialise another
piece of software, i.e., ImageMagick. Furthermore, while
the conference version reported only upon the performance
improvements due to GI (a subset of Research Question
1 in this paper), the present paper extends these results,
reporting, in detail, on the performance of the GI process
itself (RQs 2, 3, 4 and 5).

In summary, the ‘delta’ over previous (conference) ver-
sion is as follows: MiniSAT has been specialised for two
additional application domains (Automated Termination
Analysis of Term Re-write Systems and the problem of
Ensemble Computation); each experiment has been re-run
three times, varying the seed for GI; a detailed analysis
of the GI process has been investigated in Section 9; an
additional piece of software, called ImageMagick, has been
specialised for two downstream applications.

The rest of the paper is organised as follows: Section 2
describes our approach to GI. Section 3 describes our chosen
software for improvement, i.e., MiniSAT. Section 4 presents

6. http://www.imagemagick.org/discourse-
server/viewtopic.php?t=27580

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 3

three problem classes to which we apply the proposed
approach. Section 5 presents ImageMagick and the software
specialisation scenarios. Section 6 describes the research
questions posed. Section 7 presents our experiments, the
results of which are given in Section 8. In Section 9 we
analyse different aspects of our GI framework. In Section 10
we present threats to validity. Section 11 briefly outlines
related work and Section 12 concludes.

2 GENETIC IMPROVEMENT WITH MULTI-DONOR
TRANSPLANTATION AND SPECIALISATION

We describe our approach to genetic improvement (GI),
which uses code from multiple authors for transplantation
and specialises the genetically improved software for a
specific application domain by training GI on a specific set
of test cases. We use a population-based genetic program-
ming (GP) approach. Our work extends and adapts the
genetic improvement framework introduced by Langdon
and Harman [2]. Since we are using a different program, we
update the fitness function. We also modify just one C++ or
C file which contains the main solving algorithm. However,
unlike Langdon and Harman [2], we use multiple donors
and focus on specialising the program to improve it for a
specific application domain. An overview of the approach
for the MiniSAT solver is shown in Figure 1.

Program Representation: GI modifies the code (in this
case MiniSAT and ImageMagick) at the level of lines of
source code. A notation (inspired by BNF grammars) is used
to create a template containing all the lines from which new
individuals are composed [2]. Such a template is created
automatically and ensures that classes, types, functions and
data structures are retained. For instance, opening and clos-
ing brackets in C++ programs are forced to stay in the same
place, but the lines between them can be modified. More-
over, initialisation lines are also left untouched. An extract
of a template for MiniSAT is shown in Figure 2. Header files
and comments are not included in our representation. The
genome used in our GP is a list of mutations (see below).

Code Transplants: We evolve the host program by trans-
planting lines of code from other programs [30]. GI can also
modify both original and transplanted code. Thus our GP
has access to both the host program being evolved, as well as
the donor program(s). We call all the lines of code which GP
has access to the code bank. The donor code statements are
then available for mutations of the host instance, but need
not be used in the same order. For example, our search may
combine the first half of an optimisation from one version
of MiniSAT with the second half of an optimisation from
another and then specialise the resulting code to problems
from a particular application domain. This re-use and im-
provement of existing developer expertise is critical to the
success of our technique.
Mutation Operator: A new version of a program (i.e. a
new individual) is created by making multiple changes to
the original program. Each such mutation or, in other words,
update is either a DELETE, REPLACE or COPY operation. The
changes are made at the level of lines of source code (with a
special case for conditional and loop statements), which are
picked at random from the code bank. A DELETE operation
simply deletes a line of code, a REPLACE operation replaces

a line of code with another line of code from the code
bank and COPY operation inserts a line of code from the
code bank into the program. In the case of conditional and
loop statements, we focus on and modify their predicate
expressions7. For instance, the second part of a FOR loop
(e.g., i<0) can only be replaced with the second part of
another FOR loop (e.g., i<10) and any IF condition can be
replaced with any other IF condition. Examples of the three
mutation types are shown in Figure 3.
Initial Population: The initial population is generated at
random. Each individual in the initial population consists
of a single mutation, i.e., either a DELETE, COPY or REPLACE
operation, selected at random. Three examples of such
single-mutation individuals are presented in Figure 3.
Crossover Operator: We represent each individual as a list
of mutations, which we call the edit list. This representation
allows our technique to apply to programs of significant
size [31], since we do not keep the whole of each version
of the program in memory - just a list of changes. When
creating individuals for the next generation, a crossover
operation simply concatenates two individuals from the
current population by appending one list to another. The
first parent is chosen based on its fitness value while the
other is chosen uniformly among those individuals from the
breeding population, as in previous work [2].
Fitness Function: We evaluate the fitness of an individual
in terms of a combination of functional properties (those
related to software correctness) and non-functional proper-
ties (those related to performance, quality of service, etc.)
by observing its performance on SAT instances. Before the
GP starts, the training set of SAT instances is divided into
five groups by difficulty, which we measure in required
solving time and instance satisfiability8. In each generation
one test case is sampled uniformly from each group (or
‘bin’ following terminology in [2]) and all individuals are
run on the five selected test cases, following previous work.
This sampling helps to avoid over-fitting. To evaluate an
individual, the corresponding list of changes is applied
to the original program and the resulting source code is
compiled, producing a new SAT solver that can then be
executed (individuals that fail to compile are never selected
to be parents of the next generation).

To guide the GP search toward a more efficient version
of the program, our fitness function takes into account
both solution quality (in our case whether an instance is
satisfiable or not) and program speed. We note that it will
vary depending on the software application to be improved.
For internal fitness calculations, efficiency is measured in
terms of lines of code executed based on simple counter-
based program instrumentation. The use of line counts
(instead of CPU or wall-clock times) avoids environmental
bias and provides a deterministic fitness signal. Therefore,
we can use test cases that require a few seconds to compute.

7. In the case of a DELETE operation we replace the predicate expres-
sion with ‘0’.

8. The first group of test cases contains fast satisfiable SAT instances;
the second group contains fast unsatisfiable instances; the third group
contains satisfiable instances that require more time to solve; the fourth
group contains unsatisfiable instances that require more time to solve;
the fifth group contains a mixture of SAT instances requiring the most
amount of time to solve.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 4

Fig. 1. Overview of the Genetic Improvement framework used for the MiniSAT solver.

<Solver_156> ::= "{\n"
<Solver_157> ::= "Clause* c = Clause_new(ps, false);\n"
<_Solver_158>::= "clauses.push(c);"
<_Solver_159>::= "attachClause(*c);"
<Solver_160> ::= "}\n"

Fig. 2. Lines 156–160 from the Solver.C MiniSAT program
source file represented in our notation inspired by BNF gram-
mars. Lines marked with _Solver can be modified.

<_Solver_159>
Delete line 159

<for3_Solver_533><for3_Solver_772>
Replace the 3rd part of the ‘for’
loop (i.e., loop variable increment)
in line 533 with the 3rd part of
the ‘for’ loop in line 772

<_Solver_806>+<_Solver_949>
Add line 949 in front of line 806

Fig. 3. Examples of the three types of mutations.

For the final presentation of our empirical results, timing
measurements in seconds are also presented (see Section 8).
Selection: The GP process is run for a fixed number of
generations with a fixed population size. After the fitness
of each of the individuals is calculated, the fittest half of
the population is chosen, filtered to include only those
individuals that exceed a threshold fitness value. We focus
on exploiting high-quality solutions, and thus our fitness
threshold is set to select those individuals that either (1) re-
turn the correct answer in all cases, or (2) return the correct
answer in all but one case and produce the correct answers
at least twice as quickly as the original solver as measured
in terms of the number of lines of code executed.

Next, a set of offspring individuals is created using
crossover on those selected from the current population.
Also a new mutation is added to each of the parent individu-
als selected to create offspring. Both crossover and mutation
are applied with 50% probability. If mutation is chosen, one
of the three operations (i.e. REPLACE, COPY and DELETE) is
selected with equal probability. If mutation and crossover
do not create a sufficient number of individuals for the
next generation, new individuals are created consisting of
one mutation (selected randomly). Finally, the fitness of
the newly-created individuals is calculated, as described
above, and the process continues until the generation limit
is reached.

Filtering: We have observed that many program optimi-
sations are independent and synergistic. As a result, we
propose a final step that combines all mutations from the
fittest individuals evolved and retains all synergistic edits.
Exploring all subsets of edits is infeasible. Our prototype im-
plementation uses a greedy algorithm. Each mutation from
the best individuals from our experiments is considered
separately. We apply each operation to the original program
and evaluate its fitness. Next, we order the mutations by
their fitness value9 and iteratively consider these, adding
only those edits that increase fitness. Other efficient tech-
niques, such as constructing a 1-minimal subset of edits [32],
are possible.

3 SAT SOLVING IN SOFTWARE ENGINEERING

The Boolean satisfiability problem (SAT) is the problem of
deciding whether there is a variable assignment that satisfies
a propositional formula. An example formula in conjunctive
normal form (CNF) is: (x ∨ y) ∧ ¬z, where x, y and z are
Boolean variables; this formula is satisfiable, e.g., by the
following assignment: x = 1, y = 0 and z = 0, while z = 1
makes the formula unsatisfiable. Many problems involving
constraints can be encoded into CNF efficiently [33], thus al-
lowing SAT solvers to be used on a wide range of problems.

Due to the developments in the early 2000s SAT solvers
have become extremely efficient [34] and hence new appli-
cation domains emerged, including problems in software
engineering (SE). It would be infeasible to mention all the
work in SE that uses SAT solvers, thus we will only mention
a few problem domains. SAT solvers have been widely
used in software and hardware verification. They improved
the scalability of symbolic model checking, an important
technique in verification [35], [36], by acting as backend
solvers in the state-of-the-art model checkers. SAT solvers
have also been used for finding optimal solutions for test
suite minimisation [37] as well as optimal combinatorial
interaction test suites [38], [39], [40] by translating the whole
problem instance into SAT. Other applications involve test
suite prioritisation [41] and software product line engineer-
ing [42]. Moreover, work on a SAT-based constraint solver

9. Note that since each individual is represented by a list of edits (or
mutations) and at the filtering stage we consider one mutation in turn,
we use the word ‘mutation’ and ‘individual’ interchangeably.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 5

won the ACM SIGSOFT Distinguished Paper award at the
International Conference on Software Engineering 2015 [43].

MiniSAT is a well-known open-source C++ solver for
SAT. It implements the core technologies of modern SAT
solving, including: unit propagation, conflict-driven clause
learning and watched literals [10]. The solver has been
widely adopted due to its efficiency, small size and availabil-
ity of ample documentation. It is used as a backend solver in
several other tools, including Satisfiability Modulo Theory
(SMT) solvers, constraint solvers (for solving Constraint
Satisfaction Problems - CSP), Answer Set Programming
(ASP) systems and solvers for deciding Quantified Boolean
Formulae (QBF). MiniSAT has also served as a reference
solver in SAT competitions.

In the last few years progress in SAT solving technolo-
gies involved only minor changes to the solvers’ code. Thus
in 2009 a new track has been introduced into the SAT
competition, called MiniSAT-hack track. In order to enter
this track one needs to modify the code of MiniSAT. This
solver has been improved by many expert human program-
mers over the years, thus we wanted to see how well an
automated approach scales. We used genetic improvement
in order to find a more efficient version of the solver. In our
experiments we used the version of the solver from the first
MiniSAT-hack track competition - MiniSAT2-070721.

4 PROBLEM CLASSES

SAT solving has a wide range of applications ranging from
model checking through planning to automatic test-pattern
generation [34], [44]. Moreover, over 1000 benchmarks are
available from SAT competitions10. These are divided into
application, random and crafted categories.

We focus on three real-world problem domains to which
SAT solving has been applied. Moreover, a wide range of
benchmarks is available for each of the problem classes cho-
sen. These include easy instances, solvable within seconds,
that can be used within our GI framework during fitness
evaluation. The three SAT problem classes have also been
used by Bruce et al. [45] to optimise MiniSAT for energy
consumption.

4.1 Combinatorial Interaction Testing
SAT solving has recently been successfully applied to Com-
binatorial Interaction Testing (CIT) [38], [39], [40], allowing
us to experiment with GI for specialisation to that problem
domain. CIT is an approach to software testing that pro-
duces tests to expose faults that occur when parameters or
configurations to a system are combined [46]. CIT system-
atically considers all combinations of parameter inputs or
configuration options to produce a test suite. However, CIT
must also minimise the cost of that test suite. The problem
of finding such minimal test suites is NP-hard and has
attracted considerable attention [47], [48], [49], [50], [51].

SAT solvers have been applied to CIT problems [38],
[39], [40] but the solution requires repeated execution of the
solver with trial test suite sizes, making solver execution
time a paramount concern. We follow the particular formu-
lation of CIT as a SAT problem due to Banbara et al. [38],
since it has been shown to be efficient.

10. See http://www.satcompetition.org.

4.2 Automated Termination Analysis
Program termination is one of the most important properties
of software. Even though the problem is undecidable in
general, there are techniques that can determine if certain
programs will terminate automatically. There has been a
lot of research in the area of termination analysis of term
rewrite systems (TRS) [52]. Many programming languages
can be translated into TRSs, thus making tools for ter-
mination analysis of TRSs very popular. From 2006 SAT
solvers have been used to automate certain TRS termination
techniques [53], and now they are a key technique in the
field [54].

One of the systems for automated termination proofs of
term rewrite systems is the Automated Program Verification
Environment (AProVE)11. We use SAT benchmarks obtained
using this system that were also submitted to SAT competi-
tions in 2007, 2009 and 201112.

4.3 Ensemble Computation
SAT solving is used outside software engineering as well.
Thus we include another application in order to also inves-
tigate wider applications of genetic improvement for SAT
solving beyond software engineering.

SAT representation is a natural fit for modelling prob-
lems relating to logical circuits, for example, testing circuit
equivalence. In real-world circuits a key issue is minimising
the number of elementary computations for a given task.
This problem generalises to finding the smallest Boolean
circuit that computes multiple Boolean functions simulta-
neously. The Ensemble Computation problem is to decide
whether a certain number of arithmetic gates suffices to
evaluate all the computations on the required subsets of
input variables [55], [56].

Recently a SAT encoding has been introduced to model
the problem of deciding whether a given ensemble has a cir-
cuit of given size [56]. A generator of such instances is pro-
vided at: http://www.cs.helsinki.fi/u/jazkorho/sat2012/.
The website also provides a set of challenge instances that
are yet to be solved.

5 IMAGE PROCESSING

Image processing deals with transforming an image to cre-
ate a new image, for instance, to increase the image quality
or reduce it’s size. There exist hundreds of different image
file formats that offer different trade-offs. Image manipula-
tion is very important, since images can be used for various
tasks. These can range from posting holiday images on one’s
blog to storing medical images, such as MRI images.

ImageMagick, one of the most popular open source
software suites for image processing, is able to process
over 200 different file formats. It can animate an image
sequence, compare mathematically and visually annotate
the difference between an image and it’s reconstruction. It
allows for conversion between the various image formats as
well as image resizing, blurring, flipping and other. It can

11. See:http://aprove.informatik.rwth-aachen.de/index.asp?subform
=home.html.

12. SAT benchmarks obtained with AProVE that we used are avail-
able at: http://www.cs.ucl.ac.uk/staff/C.Fuhs/.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 6

display and report on the characteristics of the input image.
It can also create a composition of images by combining
several separate images.

GraphicsMagick, forked from ImageMagick at the end
of 2002, is a popular alternative to ImageMagick. There
are plenty of web articles and blogs comparing both tools.
They have similar functionality, yet their efficiency might
vary significantly depending on the type of images being
processed. We envision that GI could combine the two
programs to create a hybrid that would work best for all
image conversion tasks. In our experiments we focus on a
specific functionality, namely, conversion from jpg to png,
that was reported to be slow by users of ImageMagick.

Our chosen version of ImageMagick, i.e. 5.5.2, is an
incarnation of software that has been around for over
10 years. Even though the GraphicsMagick fork occurred
partly to improve software’s efficiency, the core functions
have largely remained the same between the two projects at
the time of the fork. Therefore, this version is already highly-
optimised by expert human developers. As mentioned be-
fore, we will use GI to improve efficiency of the jpg to png
file conversion. We use two sets of images for specialisation:
greyscale and colour images.

6 RESEARCH QUESTIONS

The primary research questions for any technique that seeks
to provide automated support to software engineers concern
the efficiency and effectiveness of the proposed technique.
Therefore, our first research question investigates this for
GI-based specialisation.
RQ1, Effectiveness and Efficiency: What is the effectiveness
and efficiency of GI-based specialisation?

This question consists of two subquestions, concerned
with effectiveness and efficiency. The effectiveness of GI-
based specialisation concerns the degree to which it can
create improved specialised versions:
RQ1a, Effectiveness: Can genetic improvement find faster
specialised software versions than any general version de-
veloped and optimised by expert human programmers?

The efficiency of GI-based specialisation is simply the
computational cost of the specialisation process:
RQ1b, Efficiency: What is the computation cost of the
specialisation process?

Note that a specialised version, once constructed, will
be used multiple times. Therefore, the overall approach re-
mains useful, even where efficiency gain for each execution
of a specialised version is considerably smaller than the
computational cost of producing it. However, the computa-
tional cost will, nevertheless, determine the ways in which
GI-based specialisation can be used in practice. Given the
complexity of the task in hand, it seems unreasonable to
expect specialisation to be instantaneous, but it will need
to be fast enough to incorporate into a development cycle
(for example, taking no longer than an overnight build, in
practice).

If our approach to GI-based specialisation proves to be
sufficiently efficient and effective to be potentially useful,
then this serves as a proof of concept. However, the nature
of the specialisation process immediately raises a number

of important subsidiary questions, concerning the factors
which may influence the quality and performance of GI-
based specialisation; questions to which we now turn.

Clearly, the larger the code bank, the larger is the po-
tential search space of possible program mutations. We
therefore investigate the relationship between the size of the
code bank and the performance of genetic improvement:
RQ2, Code Bank Size: How well does the genetic improve-
ment approach perform depending on the size of the code
bank?

Our GI-based specialisation uses a post-processing filter
to find the best individual mutations from all GI runs for
each problem class. The outcome of this filtering process
is the final set of modifications to be recommended for
the original program in order to improve it. This set of
modifications needs to be small enough to be practical,
if the genetic improvement technique is to be used as a
recommendation system (which recommends ‘specialisation
interventions’ to the software engineer). This motivates our
next research question:
RQ3, Number of Modifications Required: Does our fil-
tering technique produce the most efficient solver vari-
ants when compared with the ones evolved directly by
genetic improvement and how many interventions are rec-
ommended?

One would expect the specialisation technique to behave
differently for each downstream application. If the same
intervention is required for each and every application,
then the specialisation technique cannot truly be said to be
specialising. This motivates our fourth research question:
RQ4a, Specificity: Are the changes produced by GI
problem-specific?
RQ4b, Generality: Are the changes produced by GI general
efficiency improvements?

Finally, since our approach uses computational search as
the primary mechanism for identifying improvements, there
are a number of natural questions that arise concerning the
computational search strategy. These are addressed in our
final set of related research questions:

RQ5a, Fitness Function: What is the impact of the trade-off
between efficiency and effectiveness in fitness function on
finding a specialised software version using GI?
RQ5b, Comparison to Random Search (sanity check [57]):
How does the chosen search strategy compare with random
search?
RQ5c, Genetic Operators: What is the impact of various
mutation and crossover operator rates on GI efficacy?

In order to provide answers to the research questions
posed we conduct several genetic improvement runs de-
scribed in the next section.

7 EXPERIMENTAL SETUP

We present details of the genetic improvement framework
used in our experiments.
Host & Donor Programs: We evolve MiniSAT2-070721, in
particular the C++ file containing its main solving algo-
rithm (i.e., the Solver.C file). This version was used as

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 7

a reference solver in the first MiniSAT-hack competition,
organised in 2009. Unless otherwise noted, we use MiniSAT
and MiniSAT2-070721 interchangeably. The main solver al-
gorithm involves 478 of the 2419 lines in MiniSAT. For our
experiments we use two donor programs, which altogether
provide 104 new lines of source code. The first donor is the
winner of the MiniSAT-hack competition from 2009, called
“MiniSAT 09z”. We refer to this solver as MiniSAT-best09.
The second donor program is the “MiniSat2hack” solver,
the best performing solver from the competition when run
on our CIT and AProVE specific benchmarks13. In order to
conform with notation in our previous work [9] we refer to
this solver as MiniSAT-bestCIT.

We also evolve ImageMagick-5.5.214. We used callgrind15

and gprof16 to profile ImageMagick and find the most time
consuming part of the code when converting from jpg to
png file format. We found that majority of the time is spent
in the jpeg.c file, in it’s ReadJPEGImage function, hence we
target it for specialisation. Unless otherwise stated, we use
ImageMagick and ImageMagick-5.5.2 interchangeably. We
use GraphicsMagick-1.017 as the donor program. This is the
first version of the software based on a fork from Image-
Magick. We use GraphicsMagick-1.0 and GraphicsMagick
interchangeably. ImageMagick’s ReadJPEGImage function
contains 414 lines of code (of 1426 in the jpeg.c file). By
transplanting code from GraphicsMagick, the genetic im-
provement process has access to overall 439 lines of code.
Test Cases: Real-world SAT instances from the combina-
torial interaction testing area can take hours to run. Thus
we evaluate MiniSAT performance on a set of synthetic CIT
benchmarks. Using the encoding of Banbara et al. [38], we
translated 130 CIT benchmarks into SAT instances18. We
kept the number of values for each of the parameters the
same in every instance. This allows us to verify observed
results against public catalogues of best known results [48].
We use about half of these CIT benchmarks in the training
set (which is divided into five groups, as discussed in
Section 2) and used the rest in the verification set.

We chose 56 real-world SAT benchmarks from the au-
tomated termination analysis field (based on runtime), 24
of which are used as our training set. Once again we use
execution time to define instance difficulty and divide the
training set into five groups, where the second and fourth
group contain unsatisfiable instances only, while the first
and third contain only satisfiable ones.

Instances for the problem of finding efficient circuits
for ensemble computation have been produced using the
instance generator provided (see Section 4.3). A subset of
benchmarks from the ‘smallest’ category available on the
website is also used. The test set contains altogether 50 test
cases, half of which are used by GI.

13. Both solvers are available from the SAT competitions’ website:
http://www.satcompetition.org/.

14. Software available at: https://sourceforge.net/projects/
imagemagick/files/old-sources/5.x/5.5/

15. http://valgrind.org/docs/manual/cl-manual.html
16. https://sourceware.org/binutils/docs-2.16/gprof/
17. Software available at: http://78.108.103.11/MIRROR/ftp/

GraphicsMagick/1.0/
18. Benchmarks as well as the different MiniSAT versions are avail-

able by e-mail from Justyna Petke at j.petke@ucl.ac.uk.

In each of the three cases we use execution time to
define instance difficulty and divide the training set into
five groups based on that measure. The largest instances
in the training sets contain over 1 million SAT clauses.
Nevertheless, MiniSAT is able to produce an answer for each
of these within two minutes on the desktop machine used.

We evaluate ImageMagick’s performance on five sets of
greyscale and colour images. Each set consists of 20 images
coming from the following five sources: geometric shapes
used in previous work by the authors19, face images taken
from University of Massachusetts ‘Labelled Faces In The
wild’ dataset20, ‘Pasadena Houses 2000’ dataset used by
the Computational Vision Group at California Institute of
Technology21, images of galaxies posted by the National
Optical Astronomy Observatory22 and a set of personal
photographs showing scenes from everyday life23.

As in the case of MiniSAT, we divided the images based
on their type into 5 groups. In each generation we randomly
sample an image from each group to avoid over-fitting. We
specialise ImageMagick for two cases: greyscale and colour
images. In the first set of experiments with ImageMagick
we use 100 randomly selected greyscale images, 20 for
each image type (i.e., house, galaxy, face, geometric shape,
personal) in the training set. We randomly select another 100
for the test set. We repeat this procedure for the second set
of experiments were we use colour images.
Code Transplants: In our experiments the source code of
high-level human optimisations targeting a generic bench-
mark set serve as donor code and are selected and recom-
bined with novel changes to produce a specialised host SAT
solver. Adding a donor statement X to the code bank is
equivalent, in terms of the search space explored, to adding
IF (0) X to the input program in a preprocessing step.

In our previous work [9] we obtained the best results
when using the best version of MiniSAT for the CIT domain
as the donor. Thus we first evaluate which version of the
solver is best for the three problem classes. Next, we use that
version of the solver as the donor and run the GI framework.
In the second experiment we add all three MiniSAT versions
to the code bank in each case. We repeat all GI runs three
times.

In the case of ImageMagick, we use code from Graphics-
Magick as the donor code. In all experiments code from
GraphicsMagick is in the code bank along with the original
code from ImageMagick. We specialise the conversion from
jpg to png by modifying the ReadJPEGImage function.
Software Comparison: SAT instances produce either a ‘Sat-
isfiable’ or ‘Unsatisfiable’ result. Therefore, output compar-
ison of the original MiniSAT and the modified one is easily
comparable. We note that we also check that the satisfiable
answer returned by the evolved solvers is also correct.

As far as ImageMagick is concerned, we first specialise
it for the set of greyscale images without allowing for any
variation in the quality of the png image produced. We
use the Mean-Squared Error metric for our comparison,

19. Available upon request.
20. http://vis-www.cs.umass.edu/lfw/lfw.tgz
21. http://www.vision.caltech.edu/archive.html
22. https://www.noao.edu/image gallery/galaxies.html
23. Available upon request.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 8

frequently used for image comparison24. The fitness func-
tion takes into account values for all the RGB dimensions
produced by the metric. We also investigate the trade-off
between image quality and efficiency gain. Therefore in the
next experiments, we allow for 50% difference in each of
the red, green and blue values according to the MSE metric.
We repeat these experiments for colour images. Each of the
four GI runs is repeated three times and the best results are
reported.

We compare our evolved software with both the host
and donor programs in each of the experiments. We call our
evolved software MiniSAT-gp and ImageMagick-gp, respec-
tively. Finally, we refer to the software that results from our
post-processing filtering step (see Section 2) as MiniSAT-gp-
combined and ImageMagick-combined, respectively.

8 RESULTS

To evaluate the efficacy of our technique, we evolve im-
proved and specialised versions of MiniSAT and Image-
Magick and compare them to human-improved SAT solvers
and ImageMagick, respectively, in terms of both runtime
cost and solution quality.

When specialising MiniSAT we conduct two sets of
experiments for each application described in Section 4,
varying the donor code bank. When specialising Image-
Magick, we vary the image quality threshold in the fitness
function for both greyscale and colour images. Each GI run
is repeated three times (with different seed for mutation and
crossover). The results are reproducible if the same seed,
GI framework, population size and number of generations
are used. While internal fitness calculations are measured in
terms of lines of code executed, all final results are presented
in terms of CPU time data based on runs on a Dell OptiPlex
9010 desktop with 8GB RAM and a single 3.40GHz Intel
Core i7-3770 CPU in the case of MiniSAT and a 1.6GHZ
Lenovo 3000 N200 laptop with an Intel Core 2 Duo processor
and 2GB of RAM in the case of ImageMagick.

The GI framework was run with a population size of 100
for 20 generations. In each generation in the MiniSAT set of
experiments the top fitness value was shared by up to 75
individuals. Note that individuals with the highest fitness
among all generations might not always be the best, since in
each generation a set of test cases is picked at random from
the training set. Therefore, we used the following strategy
to identify the best evolved solver: pick the best solver in
each generation based on the total number of lines executed;
evaluate these evolved solvers on the whole training set;
select the one that requires the least number of lines to be
executed as the best overall evolved solver. As before, we
used the lines of code execution measure to determine the
best evolved solver to avoid environmental bias.

We note that the best individual in terms of runtime
might still be missed. However, we will get deterministic
results. The same approach was used to evaluate each mu-
tation (and combinations of mutations) during the filtering
stage. In all experiments the compilation rate (using Mini-
SAT’s and ImageMagick’s provided Makefile) was high, be-
tween 68% and 95%. This high compilation rate results from

24. We use ImageMagick’s ‘-metric MSE’ and ‘-colorspace Lab’ op-
tions.

TABLE 1
Normalised runtime comparison of MiniSAT versions,

specialised for CIT, based on averages over 10 runs. The
“Donor” column indicates the source of the donor code

available in the code bank. “Lines” indicates lines of code
executed, “Time” indicates CPU time executed. Left column

contains the best MiniSAT versions from 3 runs of the GI
framework. (Lower is better, all measurements normalized to

original MiniSAT).

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-gp bestCIT 0.97 0.99
MiniSAT-gp bestCIT+best09 0.73 0.85

MiniSAT-gp-combined bestCIT+best09 0.72 0.84

our use of a specialised notation for edits, which prevents
syntax errors, which was previously used by Langdon and
Harman [2]. An example of which is shown in Figure 2.

8.1 MiniSAT: Combinatorial Interaction Testing
In our previous work we identified “MiniSat2hack” solver
as the best performing solver from the MiniSAT-hack track
2009 competition when run on our CIT-specific benchmarks.
In order to conform with notation in our previous work [9]
we refer to this solver as MiniSAT-bestCIT.

8.1.1 Transplanting from MiniSAT-bestCIT
In this experiment the code bank contained source code
both from the original MiniSAT solver as well as MiniSAT-
bestCIT. It was re-run three times varying the random seeds
for genetic operators. To pick the best solver from the three
GI runs, each of the evolved versions was run 10 times
on the whole training set. Average runtimes were used to
establish the best solver.

Runtime comparison with the fastest evolved solvers
(called MiniSAT-gp each) for all 130 benchmarks used for
the CIT problem domain is shown in Table 1. The best
evolved version of MiniSAT is, on average, 1% faster than
the original solver. Given that the best solver in our previous
experiment [9] provided 17% improvement, this shows the
importance of producing repeated runs.

It is unclear what impact certain mutations have on the
solving process. However, we identified that 3 out of 6 line
deletions simply removed assertions, which are indeed not
needed in the solving process. This optimisation is rather
trivial. These can be easily removed from the GI process by
removing assertions from the code bank, so that GI searches
for efficiency gains elsewhere in the code.

Moreover, 6 out of 11 loop condition replacements have
not introduced any important changes to the code, for
example, i++ was substituted with i++.

The performance of our evolved version and the human-
written version are not much different. Changes made by
the GI process are shown in Table 2.

8.1.2 Transplanting from MiniSAT-bestCIT & MiniSAT-
best09
In the second experiment for the CIT domain we added
the version of MiniSAT that won the 2009 MiniSAT-hack

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 9

TABLE 2
Mutations occurring in the best genetically improved solver, specialised

for CIT, from three GI runs. (Donor: MiniSAT-bestCIT.)

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 2

REPLACE IF statement condition 2
DELETE line of code 6

COPY line of code 1
DELETE FOR loop condition 4

REPLACE FOR loop condition 11

total 26

TABLE 3
Mutations occurring in the best genetically improved solver, specilaised

for CIT, from three GI runs. (Donor: MiniSAT-bestCIT &
MiniSAT-best09.)

solver mutation mutated code changes

MiniSAT-gp
REPLACE IF statement condition 1

total 1

competition to the code bank. We repeated the GI run
three times and used the same evaluation criteria as in the
previous experiment.

In contrast to previous work [9] this led to a faster
version of MiniSAT than when only MiniSAT-bestCIT donor
was used. The evolved version improved MiniSAT runtime
by 15% as shown in Table 1. Details of the changes in
this best evolved solver are presented in Table 3. The IF
statement condition replacement triggered 95% of the code
from MiniSAT-bestCIT donor, modifying the conflict analy-
sis stage of the SAT solving process. The same change was
discovered by GI run in our previous work [9].

8.1.3 Combining Results
Many mutations in the best evolved individuals are in-
dependent, that is, different one-line mutations, as shown
in Figure 3, occur in various software versions. Thus our
approach based on filtering holds out the promise of com-
bining the best parts of all variants discovered.

In the previous experiment the GI identified a ‘good
change’: a one-line modification that allowed 95% of the
code of MiniSAT-bestCIT donor to be executed. Even though
the GP process produced individuals containing such a
change, other mutations within all such individuals caused
slower runtime or compilation errors.

We use our filtering technique described in Section 2
to combine the best mutations. We started with the indi-
vidual composed of one mutation with the best runtime
performance in terms of lines of source code executed
and iteratively added mutations from the next performant
individual. Only changes that decrease the number of lines
executed and preserve correctness (in terms of output va-
lidity on the set of test cases) are retained. We tried all 27
mutations from the best two solvers evolved in the previous
experiments.

The resulting ‘combined’ solver is on average 16% faster
than the original MiniSAT, as shown in Table 1. In total,
this version involved 7 evolved mutations. Details of all the

mutations selected are presented in Table 4 and in Figure 4.
Note that new donor code was instrumented by means of
IF (0) statements and marked with /**/.

TABLE 4
Mutations occurring in the combination of the fastest genetically
improved solvers, specialised for CIT, also presented in Figure 4.

mutation mutated code number of changes

DELETE IF statement condition 2
DELETE line of code 4

REPLACE IF statement condition 1
total 7

The one IF condition replacement is the one that led to
15% speed-up in the second experiment. Two line deletions
were one-line assertion removals. The other two corre-
sponded to: deletion of a subtraction operation on a variable
used for statistics; and removal of clause optimisation which
removes false and duplicate literals. The last two changes
remove conditions that check if the solver is in a conflicting
state.

By combining the synergistic optimisations found in the
three best evolved individuals, our approach produced the
fastest specialised SAT solver for CIT among all solvers
developed by expert human programmers that were entered
into the 2009 MiniSAT-hack competition.

Since small benchmarks were chosen for the training set,
the evolved individual might not scale to larger problems.
Manual inspection suggests that optimisations relevant to
large instances may not be retained, but a systematic eval-
uation on separate instances is left to future work. How-
ever, we note that the evolved individual retained required
functionality on all the instances that were held out for
verification, even though it was not exposed to any of them
during evolution.

Ideally, we would like genetic improvement to be used
as part of the build cycle, to recommend improvements
to the software engineer. In the Combinatorial Interaction
Testing case, the one IF condition replacement (leading to
15% speed-up) would be put forward as a recommended
software change given its significant impact on solver per-
formance.

The execution times are those for a standard desktop
computer. Practising software engineers will likely have
more powerful computational resources available for their
build process, and we can expect engineering improvements
to improve the performance of our implementation, which
is mearly a research prototype. Therefore, we believe these
results provide encouraging initial evidence that the com-
putational time required by GI-based specialisation would
allow it to be incorporated in many practical software engi-
neering build processes.

8.2 MiniSAT: Automated Termination Analysis

We ran all solvers from the MiniSAT-hack track competition
on the benchmarks obtained from the AProVE termination
analysis tool. We identified that the best solver for this set of
instances is “MiniSat2hack”, that is, the same solver that is
the best human-developed solver for the CIT domain, hence
we use it as the donor again.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 10

<IF_Solver_370><IF_Solver_400>
replace ‘if (1)’ in line 370

with ‘if (0)’ from line 400

370: if (1) -> if (0)
{
for (i = j = 1; i < out_learnt.size(); i++)
{
if (reason[var(out_learnt[i])] == NULL ||
!litRedundant(out_learnt[i], abstract_level))

{
out_learnt[j++] = out_learnt[i];
}

}
}
else
{

/**/ i = out_learnt.size();
/**/ int found_some = find_removable(out_learnt,

i, abstract_level);
/**/ if (found_some)

{
/**/ j = prune_removable(out_learnt);

}
/**/ else

{
/**/ j = i;

}
}

<_Solver_191>
remove line 191

191: learnts_literals -= c.size();

<_Solver_168>
remove line 168

168: assert(c.size() > 1);

<_Solver_142>
remove line 142

142: ps.shrink(i - j);

<_Solver_185>
remove line 185

185: assert(find(watches[toInt(˜c[0])], &c));

<IF_Solver_720>
replace if condition in line 720 with 0

720: if (!ok || propagate() != NULL) -> if (0)
{
return ok = false;
}

<IF_Solver_989>
replace if condition in line 989 with 0

989: if (conflict.size() == 0) -> if (0)
{

ok = false;
}

Fig. 4. Details of the 7 mutations of MiniSAT solver for the CIT domain.

8.2.1 Transplanting from MiniSAT-bestCIT

We conduct three GI runs, varying the random number seed.
By using runtime averages over the whole training set we
determine the fastest evolved solver out of the three runs.
The best evolved version is 2% times faster than the original
MiniSAT solver, as shown in Table 5.

TABLE 5
Normalised runtime comparison of MiniSAT versions,

specialised for AProVE, based on averages over 10 runs. The
“Donor” column indicates the source of the donor code

available in the code bank. “Lines” indicates lines of code
executed, “Time” indicates CPU time executed. Left column

contains the best MiniSAT versions from 3 runs of the GI
framework. (Lower is better, all measurements normalized to

original MiniSAT).

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-gp bestCIT 0.87 0.98
MiniSAT-gp bestCIT+best09 1.00 1.00

MiniSAT-gp-combined bestCIT+best09 0.87 0.96

Mutations present in the best individual are given in Ta-
ble 6. Note that 49% of the mutations are DELETE operations.
Given that only 2% runtime improvement was achieved, we
suspect that a lot of these mutations might actually have no
impact or even a negative impact on solver performance.
These might also delete functionality not covered by test
cases. This hypothesis will be tested at the filtering stage
when we combine best mutations from evolved individuals.

TABLE 6
Mutations occurring in the best genetically improved solver, specialised

for AProVE, in three GI runs. (Donor: MiniSAT-bestCIT

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 4

REPLACE IF statement condition 9
DELETE line of code 34

REPLACE line of code 5
COPY line of code 8

DELETE FOR loop condition 3
REPLACE FOR loop condition 20

total 83

8.2.2 Transplanting from MiniSAT-bestCIT & MiniSAT-
best09

In the next experiment we added MiniSAT-best09 donor
to the code bank. When specialising for CIT, addition of
new code led to a version of MiniSAT that was best overall
for the CIT domain. However, for the AProVE domain the
reduction both in lines of source code executed as well
as runtime has not been significant as shown in Table 5.
Mutations occurring in the best evolved version of the solver
are presented in Table 7.

TABLE 7
Mutations occurring in the best genetically improved solver, specialised

for AProVE, in three GI runs. (Donor: MiniSAT-bestCIT &
MiniSAT-best09)

solver mutation mutated code changes

MiniSAT-gp
DELETE line of code 1

REPLACE FOR loop condition 1

total 2

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 11

Only two mutations were present in the best evolved
solver version. One assertion was removed. The FOR loop
condition replacement actually had no impact on runtime,
since the expression i++ was replaced with i++ from a
different line of code.

8.2.3 Combining results
We use our filtering process for greedily combining mu-
tation from the best evolved solvers from the two exper-
iments. This technique leads to a solver that is 4% faster
than the original MiniSAT on the set of instances from
Automated Termination Analysis of Term Re-write Systems
problem class as shown in Table 5. The mutations retained
are shown in Table 8.

TABLE 8
Mutations occurring in the combination of the fastest genetically

improved solvers.

mutation mutated code number of changes

DELETE IF statement condition 2
DELETE line of code 14

total 16

Out of 85 mutations, 16 were retained. These were: 10
assertion removals; deletion of a variable assignment to 0;
removal of three addition operations on variables used for
statistics; and deletion of two if conditions checking if the
solver is in a conflicting state. Each individual change led
to less than 1% improvement with top 5 being assertion
removals. Therefore, it would be up to software developers
whether additional time gain is worth getting rid off these
assertions.

8.3 MiniSAT: Ensemble Computation
A SAT encoding of the problem of whether a given cir-
cuit computes an ensemble consisting of only SUM or OR
gates was only proposed as recently as 2012 [56]. In our
experiments for this problem domain we used the winner
of the MiniSAT-hack track from 2009, since it turned out to
be the most efficient out of the human-developed versions
of MiniSAT available in the competition. Results for the
best evolved MiniSAT versions obtained in the experiments
described below are presented in Table 9.

8.3.1 Transplanting from MiniSAT-best09
In the first experiment MiniSAT-best09 and the original
solver were used as donors. We conducted three GI runs
with different pseudo random number seeds. Once again
average runtimes on the whole training set were used to
determine the best evolved solver from the three runs.
The evolved MiniSAT version is 33% faster on the whole
Ensemble Computation set as shown in Table 9. The evolved
mutations are presented in Table 10.

The best versions of solvers evolved in the three experi-
ments contained one mutation that was responsible for the
biggest runtime improvement. It removed a line of code in
a CASE statement that led to reversing the polarity mode of
MiniSAT. When an unassigned variable is picked by the
solver for assignment, MiniSAT sets it to false by default.
The one line removal changed that decision to true. This

TABLE 9
Normalised runtime comparison of MiniSAT versions,

specialised for Ensemble Computation, based on averages
over 10 runs. The “Donor” column indicates the source of the

donor code available in the code bank. “Lines” indicates lines of
code executed, “Time” indicates CPU time executed. Left

column contains the best MiniSAT versions from 3 runs of the
GI framework. (Lower is better, all measurements normalised

to original MiniSAT).

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-gp best09 0.54 0.67
MiniSAT-gp bestCIT+best09 0.51 0.64

MiniSAT-gp-combined bestCIT+best09 0.62 0.70

TABLE 10
Mutations occurring in the genetically improved solver from three GI

runs, specialised for Ensemble Computation. (Donor: MiniSAT-best09)

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 7

REPLACE IF statement condition 4
DELETE line of code 25

REPLACE line of code 5
COPY line of code 7

DELETE FOR loop condition 5
REPLACE FOR loop condition 15
DELETE WHILE loop condition 1

total 69

change is non-trivial, given that only around 30% of literals
in all instances are positive, i.e., satisfied by assigning value
true to them.

Moreover, 55% of the mutations in the best individual are
deletion operations, a lot of which remove dead code. Note
that by instrumenting the solver with IF (0) statements, to
introduce new code as described in Section 4, we introduce
code that is never executed. The GI process is able to
discover the unused lines of code.

8.3.2 Transplanting from MiniSAT-bestCIT & MiniSAT-
best09
By allowing GI to have access to code from all three solver
versions, a MiniSAT version was evolved that is 36% faster
than the original as shown in Table 9. Details of mutations
in this best individual are presented in Table 11. Again the
best individual contained replacement of a line of code in
the CASE statement that reversed polarity of MiniSAT. On
about a third of the 50 test cases the best evolved version
produced worse runtimes than the original solver, but the
advantage of reversed polarity for the rest of the instances
compensated for this loss.

8.3.3 Combining results
Finally, we applied the filtering step to the two best solver
versions evolved in our previous experiments. The resultant
solver is 30% faster than the original, Mutations present in
the combined version of the solver are shown in Table 8.
From a total of 160 mutations only 39 decreased the num-
ber of lines executed. After adding each of them in turn

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 12

TABLE 11
Mutations occurring in the genetically improved solvers in three GI

runs, specialised for Ensemble Computation. (Donors:
MiniSAT-best09+MiniSAT-bestCIT)

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 10

REPLACE IF statement condition 9
DELETE line of code 28

REPLACE line of code 9
COPY line of code 7

DELETE FOR loop condition 8
REPLACE FOR loop condition 20

total 91

TABLE 12
Mutations occurring in the combination of the fastest genetically

improved solvers.

mutation mutated code number of changes

DELETE IF statement condition 2
DELETE line of code 26

REPLACE line of code 2
DELETE FOR loop condition 1

total 31

(according to the minimum number of lines executed) and
checking whether the number of lines decreases, 31 of the
39 mutations remained.

Interestingly the best evolved solver in this experiment
is 6% slower than a previously evolved version, as shown
in Table 9. Thus we suspect there exist a mutation or a
set of mutations that executes fewer lines, but eventually
leads to increase in runtime. Another explanation would be
existence of a certain combination of mutations that provide
better improvement when applied concurrently rather than
individually.

We have looked at all the 31 mutations. Most of these
were assertions or operations on statistical variables re-
movals. We identified three mutations responsible for the
slowdown: two removed a call to a method, REMOVESATIS-
FIED, that removes clauses that are already satisfied, while
the third caused the main loop in that method not to be exe-
cuted. These three changes accounted for a slowdown, since
information for the satisfied clauses is still maintained, thus
they are unnecessarily processed during the search process.
To verify our findings, we removed the three mutations from
the evolved solver and run it on our test set. This version
achieved 37% speed-up over the original solver.

This finding triggers the question whether there should
be a human-in-the-loop in the GI process, so that they could
identify parts of the program that should be left unchanged
by evolution. Alternatively larger test cases could have been
chosen, however, this might not guarantee that all optimi-
sations for large instances will be retained and the overall
runtime overhead would be worth it. Ultimately we can
recommend individual changes to the code and leave it for
the software engineer to decide which should be deployed.
For example, polarity mode switch would be suggested for
the Ensemble Computation problem class.

TABLE 13
Normalised runtime comparison of ImageMagick versions,

specialised for greyscale images, based on averages over 10
runs. The “Donor” column indicates the source of the donor

code available in the code bank. “Lines” indicates lines of code
executed, “Time” indicates CPU time executed. Left column

contains the best ImageMagick versions from 3 runs of the GI
framework. (Lower is better, all measurements normalized to

original ImageMagick).

Software Donor Fitness Lines Time
threshold

ImageMagick (original) — — 1.00 1.00

ImageMagick-gp Graphicks- 0% 0.75 1.00
Magick

ImageMagick-gp Graphicks- 50% 0.75 0.97
Magick

8.4 ImageMagick: Grayscale Images

We used two profiling tools, gprof and callgrind, to identify
the most time consuming part of ImageMagick when used
for converting jpg to png images. We identified the Read-
JPEGImage function in the jpeg.c file to be the target for GI
optimisation. In all experiments the code bank contains the
original code from ImageMagick and additional code from
GraphicsMagick from its jpeg.c file. Each GI run was re-run
three times varying the random seeds for genetic operators.

8.4.1 Transplanting from GraphicsMagick

We ran two sets of experiments for greyscale images. In the
first one we only allowed GI-modified versions of Image-
Magick to move to the next generation, if the output png
was the same as the one produced by the original software.
We say that the fitness threshold is set at 0%. In the second
set we allowed for 50% difference in the output image RGB
values, using the mean-squared error metric. We say that
the fitness threshold is set at 50%.

Runtime comparison with the fastest evolved software
for all 100 greyscale testset benchmarks used is shown in
Table 13. All versions of the software that are reported in
Table 13 produce identical output as the original software.
The best evolved version of ImageMagick is, on average,
3% faster than the original software. Interestingly, 25% re-
duction in the number of lines executed is achieved. This
is because GI removes lines in a for loop that is used
very frequently. In particular, if statement conditionals are
removed from inside the loop. The condition evaluation
might be quick, yet the if statement body is never actually
executed, hence doesn’t contribute much towards runtime.

The performance of our evolved version and the human-
written version are not different in a statistically significant
sense. Changes made by the GI process are shown in Ta-
bles 14 and 15.

Interestingly, only 2 of 12 line deletions in the first
experiment (with fitness threshold 0%) and 1 out of 16 line
deletions in the second experiment (with fitness threshold
50%) removed an assertion. Most of the code removed was
composed of assignment statements. The impact of those
changes is, however, unclear.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 13

TABLE 14
Mutations occurring in the best genetically improved image processing
software, specialised for greyscale images, from three GI runs. (Donor:

GraphicksMagick. Fitness threshold: 0%)

solver mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 4

REPLACE IF statement condition 7
DELETE line of code 12

REPLACE line of code 10
COPY line of code 6

DELETE FOR loop condition 2
REPLACE FOR loop condition 6

total 47

TABLE 15
Mutations occurring in the best genetically improved image processing
software, specialised for greyscale images, from three GI runs. (Donor:

GraphicksMagick. Fitness threshold: 50%)

mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 8

REPLACE IF statement condition 7
DELETE line of code 16

REPLACE line of code 11
COPY line of code 12

DELETE FOR loop condition 5
REPLACE FOR loop condition 8

total 67

8.4.2 Combining Results

As in the case with our experiments with MiniSAT, we note
that many mutations in the best evolved individuals are
independent. We use a filtering strategy to identify the best
mutations.

We started with the individual composed of one muta-
tion with the best runtime performance in terms of lines of
source code executed and iteratively added mutations from
the next performant individual. Only changes that decrease
the number of lines executed and preserve correctness are
retained. We tried all 110 individual mutations from the best
two ImageMagick versions evolved in the previous experi-
ments (4 were the same). 20 of these caused a reduction in
lines used. The biggest one was caused by one-line deletion
that seems to update a pointer offset from an IndexPacket
variable. We conjecture that either the update never happens
or the action is immediate hence does not influence the
overall runtime significantly.

We also investigated runtimes of the individuals com-
posed of single-line mutations. None of these produced a
faster version of software when compared with the original.
ImageMagick consists largely of if statements and for loops.
The mutations that led to improvment in terms of lines used
modified a statement within a for loop or disabled an if con-
dition. Since the png images produced by mutated software
did not vary from the one produced by original Image-
Magick, we conjecture that those if conditions evaluate to
false in the original software. GI-modified software simply
avoids unnecessary checks. Therefore, shows potential for
improving legacy software.

TABLE 16
Normalised runtime comparison of ImageMagick versions,

specialised for colour images, based on averages over 10 runs.
The “Donor” column indicates the source of the donor code
available in the code bank. “Lines” indicates lines of code

executed, “Time” indicates CPU time executed. Left column
contains the best ImageMagick versions from 3 runs of the GI
framework. (Lower is better, all measurements normalised to

original software).

Software Donor Fitness Lines Time
threshold

ImageMagick (original) — — 1.00 1.00

ImageMagick-gp Graphicks- 0% 0.97 1.00
Magick

ImageMagick-gp Graphicks- 50% 0.97 1.00
Magick

8.5 ImageMagick: Colour Images

We repeated the set of experiments outlined in the previ-
ous subsection with a different training set. This time we
focused on colour images and the jpg to png conversion
functionality of ImageMagcik as before. We also used two
fitness functions. Only those individuals that produced a
valid png image that was identical to the output of the
original software were moved onto the next generation. To
allow GI to explore a larger search space we relaxed this
condition by allowing 50% difference in the RGB values
when comparing using the MSE image comparison metric.
In both experiments GI evolved versions of software that
preserve image output characteristics. We report on the
fastest of such ImageMagick software variants in Table 16.

8.5.1 Transplanting from GraphicsMagick

In both sets of experiments we use GraphicsMagick as a
source of the donor code. Mutations produced by the two
best evolved versions are presented in Tables 17 and 18.

TABLE 17
Mutations occurring in the genetically improved solver from three GI

runs, specialised for colour images. (Donor: GraphicksMagick, Fitness
threshold: 0%)

mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 10

REPLACE IF statement condition 12
DELETE line of code 34

REPLACE line of code 14
COPY line of code 16

DELETE FOR loop condition 8
REPLACE FOR loop condition 12

total 106

Neither of the best evolved individuals, in terms of
lines used, led to runtime improvements. It is worth men-
tioning, however, that an if statement that was previously
in GraphicsMagick was transplanted into ImageMagick.
However, that mutation did not lead to any statistically
significant runtime improvement.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 14

TABLE 18
Mutations occurring in the genetically improved solver from three GI

runs, specialised for colour images. (Donor: GraphicksMagick, Fitness
threshold: 50%)

mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 9

REPLACE IF statement condition 17
DELETE line of code 23

REPLACE line of code 15
COPY line of code 25

DELETE FOR loop condition 3
REPLACE FOR loop condition 11

total 103

8.5.2 Combining results
Finally, we evaluated each mutation from the best individu-
als in turn. However, since none of them produced runtime
improvments on the test set, we did not proceed with the
filtering step as in the case of MiniSAT.

8.6 Summary
We summarise our findings and answer the following re-
search question posed at the beginning of this paper.
RQ1, Effectiveness and Efficiency: What is the effectiveness
and efficiency of GI-based specialisation?
RQ1a, Effectiveness: Can genetic improvement find faster
specialised software versions than any general version de-
veloped and optimised by expert human programmers?
RQ1b, Efficiency: What is the computation cost of the
specialisation process?

To sum up, we found MiniSAT solver versions achieving
between 4% and 36% runtime improvement. We verified
these results with uninstrumented versions of MiniSAT
(without source code calculating lines of code, IF(0) state-
ments etc.). We manually inserted changes produced in the
final evolved solver versions into the original Solver.C file
and noted only up to 2% discrepancy (based on averages
over 20 runs).

Additionally, these automatically evolved solvers are
faster than any of the general purpose human-optimised
general solvers from the first edition of the MiniSAT-hack
track competition for the three applications investigated.

Efficiency gain of ImageMagick was less significant. The
best individual achieved up to 3% runtime improvement.
However, the number of executed lines by the best evolved
version of ImageMagick reduced the number of lines by
25%.

This thus provides an answer to RQ1a, that is, genetic
improvement can find faster specialised software versions. The
efficiency improvement can, however, vary.

Answering RQ1b, in the Combinatorial Interaction Test-
ing case, each run of the genetic framework took 9 hours, while
for the other two problem classes each GI run took just under
two days. The reason for this runtime difference is that the
instances from the Automated Termination Analysis and
Ensemble Computation sets that were used for training
simply take longer to run than the CIT instances. This shows
that the efficiency of GI is highly dependant on the training
set. Since significant improvement was achieved for CIT,

we believe that using small instances is enough to apply
the GI framework. However, evolution might target certain
optimisations for large instances. This poses a challenge to
the current GI framework. Evaluations of ImageMagick on
100 small images (less than 1MB) took 5 hours each. This
raises the question of trade-off between the GI effort and
potential optimisation gains.

RQ2, Code Bank Size: How well does the genetic improve-
ment approach perform depending on the size of the code
bank?

Furthermore, Tables 1, 5 and 9 provide an answer to
RQ2, namely, the size of the code bank has negligible impact
on the performance of the genetic improvement framework. In
particular, a more efficient version of the solver was found
when larger code bank was used in the Combinatorial
Interaction Testing case, but the reverse was true for the Au-
tomated Termination Analysis problem class. By allowing
GI access to a larger code bank, we enlarge the search space
for possible changes. Therefore, efficient optimisations from
other software variants might be harder to find. One could
approach this problem by either adding weights to the code
that’s transplanted, so that it is mutated more frequently,
or increase population and generation size. Further research
needs to be done to address this issue.

RQ3, Number of Modifications Required: Does our fil-
tering technique produce the most efficient solver vari-
ants when compared with the ones evolved directly by
genetic improvement and how many interventions are rec-
ommended?

Experiments conducted for the Ensemble Computation
problem class provide an answer to RQ3. Our filtering
technique does not always produce the most efficient solver variant
when compared with the ones evolved directly by genetic improve-
ment. In that case, as shown in 9, the filtering step produced
a less efficient program than the one evolved directly by the
genetic improvement approach. In the case of ImageMagick,
the runtimes of the best evolved individuals were almost
identical with the run of the original software.

RQ4a, Specificity: Are the changes produced by GI
problem-specific?
RQ4b, Generality: Are the changes produced by GI general
efficiency improvements?

Overall, in all experiments there were certain general-
ist mutations such as assertion removals and deletion of
operations on variables used for statistics (such as learnt
clauses counter). However, GI also found a few domain-
specific changes. For the CIT domain, transplantation of
functionality from another MiniSAT variant turned out the
most fruitful, whilst polarity mode switch was the most
effective for the Ensemble Computation domain, as shown
in Section 8. This switch was not efficient for the CIT
and Automated Termination Analysis as shown in previous
work on energy optimisation of MiniSAT using genetic im-
provement [45]. In the ImageMagick experiments, different
mutations were promoted, depending on whether greyscale
or colour images were targeted for conversion optimisation.
Answering RQ4, the genetic improvement approach produces
mutations that are problem-specific, but is also able to evolve
changes leading to general efficiency improvements.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 15

9 ANALYSIS

Next we report results of modifying various aspects the ge-
netic improvement framework. We focus on the experiments
involving MiniSAT only, since the evolved solver versions
showed a range of efficiency behaviour based on the seed to
the GI process and the downstream application.

9.1 Tuning the Fitness Function
We investigated various fitness function parameters to an-
swer the following research questions: RQ5a, Fitness Func-
tion: What is the impact of the trade-off between efficiency
and effectiveness in fitness function on finding a specialised
software version using GI?
RQ5b, Comparison to Random Search (sanity check [57]):
How does the chosen search strategy compare with random
search?

Before we set the fitness in our experiments, we varied
the trade-off between efficiency and correctness (and did not
use donor transplantation technique) in order to identify a
fitness function that would guide GP towards faster (but
still correct) individuals. We performed GP runs with the
following sets of fitness thresholds:

1) the evolved individual must be at least as quick as
the original solver

2) the evolved individual must be correct in 2 out of
5 test cases and must be at least as quick as the
original solver

3) the evolved individual must be correct in 3 out of
5 test cases and must be at least as quick as the
original solver

4) the evolved individual must be correct in 4 out of
5 test cases and must be at least as quick as the
original solver

The answer to RQ5a is as follows: in cases 1), 2) and 3)
the individuals with highest fitness values were those that
always produced a SATISFIABLE or UNSATISFIABLE an-
swer. In those cases the DELETE mutation was used the most
frequently. The functionality of the solver algorithm was
being switched off, leaving just the ‘return SATISFIABLE’ or
‘return UNSATISFIABLE’ statements. Similar results were
obtained in experiment 4), however, at least a few correct
individuals were created, but their performance was sta-
tistically similar to the original, producing better runtime
results for only 2% of instances.

We also performed a comparison with random search
by switching off individual selection based on fitness value
in our GI framework. After five generations the search pro-
duced entire populations of individuals that simply did not
compile or produced errors and thus had zero fitness, which
answers RQ5b. The result of the experiment conducted
is shown in Figure 5. By using a fitness-guided selection
strategy we were able to evolve multiple individuals that
met the fitness threshold and were faster than the original
program.

9.2 Tuning the Genetic Operation Rates
We also asked:
RQ5c, Genetic Operators: What is the impact of various

Fig. 5. Maximum fitness comparison with random search. GI framework
was run on MiniSAT2-070721 with CIT test cases, varying individual
selection strategy. After five generations all individuals had fitness value
0, i.e. did not compile or always returned an invalid output.

mutation and crossover operator rates on GI efficacy?
We have noticed that frequently a few mutations have

a huge impact on MiniSAT performance. Therefore, we
tried the following mutation and crossover rates: {mutation:
75%, crossover: 25%} and {mutation: 25%, crossover: 75%}.
However, none of these experiments led to a version of
MiniSAT that was better than the one evolved in the work
described in Section 8. This answers RQ5c. It is unclear
when crossover would be helpful in GI work. Given the
result by Gabel at el. [58] about software uniqueness, it is
possible that at least 6 one-line changes need to be made to
have a significant influence on runtime. In the current setup
crossover plays a major role in the number of mutations in
individual software variants. Further investigations into the
impact of crossover and mutation in genetic improvement
work needs to be undertaken. Another issue is the choice
of genetic operators. Perhaps a more fine-grained mutation,
that provided expression-level changes, would yield better
results. Deep parameter tuning work would be suggested as
a future direction [59].

9.3 Test Case Selection
In our previous work we produced a version of MiniSAT
that was 17% faster on instances from the CIT application
domain [9]. However, some mutations did not scale to large
real-world CIT instances. Thus we re-ran the GI framework
with larger instances. This experiment has taken proportion-
ally longer to run and has not produced a faster version with
more generalisable mutations. Best results were obtained
efficiently with small test cases.

Moreover, mutations produced by our GI framework are
at the source code level, hence are easily readable. Therefore,
programmers can then decide which changes should be
applied.

Current GI process relies heavily on the assumption that
the test cases capture the desired software behaviour. There-
fore, more work is needed to help the developer decide
which ones to select for the GI process.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 16

9.4 Output Validity

Since program correctness is measured by the pass rate
of test cases, the evolved version might potentially not be
valid on other, non-tested cases. However, we verified each
solution produced by the final evolved solvers using the
EDACC verifier tool available from SAT 2013 competition
website: http://www.satcompetition.org/2013/downloads.
shtml. Furthermore, for the CIT domain, for example, out-
put validity can be checked in polynomial-time; it is the time
to generate CIT test suites that is an issue.

Hence, depending on the application, it might be benefi-
cial to have a program that is, say, 30% faster, but correct in 9
out of 10 cases (as long as output can be verified efficiently).
Multi-objective optimisation could be applied to investigate
the various trade-offs.

Furthermore, GI-generated changes have already been
adapted into development. Langdon et al. [60] sped-up
a DNA sequence mapping program using GI. The gen-
erated edits were submitted to the software development
team, who incorporated these into the next software release.
This shows that GI can already serve as a recommender
system for software developers. Furthermore, since certain
mutations produced by the GI framework are non-obvious
to human developers, an automated approach that could
verify such changes would overcome the issue of validity.
Another idea would be to introduce an automated rollback
functionality.

9.5 Masking Effect

In section 8.3.2 we observed that if an individual contains a
mutation that greatly increases it’s fitness value, it may also
contain mutations that actually hinder solver performance
and still be selected in the next generation. One way to avoid
this, would be to dynamically adapt the fitness function,
based on fitness of the best individual found so far. Another
idea would be to employ a hill-climbing algorithm instead
of genetic algorithm in the search process. However, strict
hill climbing could miss individuals where certain combina-
tions of mutations lead to program speed-up.

9.6 Search Strategy

We used genetic programming within our GI framework
to find specialised program versions. Plots of the mean
fitness values in three of our six experiments (with 0-fitness
value individuals excluded) are shown in Figure 6. Given
that there isn’t an obvious increase in fitness value with
the number of generations and that there exist individual
mutations that lead to a significant runtime improvement,
as shown in Section 8, a question arises whether the GI
framework could benefit from another search strategy, such
as hill climbing. Furthermore, the graphs show that there’s
little gain to be had in later generations. Perhaps deep
learning strategies could be used to obtain a more fine-
grained fitness function that would lead to better results
with the genetic programming approach used. It would be
good if the fitness function could be specified based on the
application. As solution quality and speed should not have
the same priority always for all applications.

Fig. 6. Mean fitness values throughout 20 generations with 0-fitness
individuals excluded. GI framework was run on MiniSAT2-070721.

9.7 Benchmark Structure

The best improvement was obtained for the Ensemble Com-
putation problem class. For this set of benchmarks the win-
ner of the 2009 MiniSAT-hack track competition was the best
human-developed version of the solver, in contrast to the
other two problem classes. Given that the biggest runtime

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 17

improvement was obtained by simply switching the polarity
mode of MiniSAT from false to true, one might argue that
the instances from the Ensemble Computation class simply
contain more positive literals than negative ones. This is,
however, not the case.

Even though the general SAT problem is NP-complete,
SAT solvers are generally extremely fast at solving industrial
instances. It has been shown that such real-world bench-
marks usually contain a small set of variables, that once
set correctly, make the rest of the instance easily solvable.
These are known as backdoors [61]. Perhaps reversing the
polarity mode caused the backdoor variables to be set to
correct values more quickly than when using the default
settings.

More recently, a strong connection was found between
MiniSAT’s runtime and graph modularity of SAT instances,
denoted by Q [62], [63]. In particular, SAT instances with
0.05 ≤ Q ≤ 0.13 are much harder to solve for MiniSAT
than others. Industrial instances were found to have high
graph modularity, frequently above 0.3. We calculated the
Q values for all instances used in our experiments using
SATGraf25. For the CIT instances, the mean Q value is 0.24;
for the AProVE instances, the mean Q value is 0.46; while
for the Ensemble Computation class the mean Q value is the
highest: 0.52. Given that several CIT instances had Q values
in the ‘hard-to-solve’ range, the 16% improvement achieved
by our GI approach (see Table 1) shows great potential for
using transplantation as means of specialising software.

9.8 Code Bank

In our work we used code that has been developed by
expert human programmers. Several software variants
were available from the competition devoted to optimising
MiniSAT. The question arises what is a good source for the
code bank. As shown in previous work on bug fixing, the
original software is a good source of such code (the ‘plastic
surgery hypothesis’ [64]). We advocate that our approach
for software specialisation generalises to instances where
one has access to multiple software variants. Where such
variants do not exist, we cannot apply the transplantation
approach. However, software variants can be found, for
instance, in software revision histories or related projects
(multiple pieces of software performing the same task,
e.g., in open-source repositories). We picked an example of
forking for the second set of experiments to show another
area where the approach can be applied to.

10 THREATS TO VALIDITY AND LIMITATIONS

Our experiments show that, indeed, it is possible to auto-
matically modify existing, highly-optimised code, in order
to achieve runtime improvements. We used genetic im-
provement with software transplantation to achieve this.
The range of results varies, depending on the downstream
application and software of choice, of course. We have
only reported results for two applications and a total of

25. SATGraf tool is available at https://ece.uwaterloo.ca/∼vganesh/
EvoGraph/Download.html. We used the ‘cnm’ algorithm.

five downstream specialisation scenarios. More research is
required to investiage the degree to which these generalise.

Genetic improvement is a new research area, hence there
are not yet any guidelines in terms of how to setup a GI
framework to evolve an optimised software version effec-
tively and efficiently. In the previous section we mentioned
several issues that might influence the success of genetic
improvement techniques for runtime improvements. We
presented empirical data, yet there is more work to be done.

The set of test cases that preserve software behaviour is
not yet well defined. Furthermore, many programs do not
come with test suites that provide good coverage. Therefore,
the approach would not be immediately applicable.

One needs to consider each software improvement
framework separately. In the case of MiniSAT, we were able
to quickly verify the output of software. A SAT instance
can be either satisfiable or not and we used benchmarks for
which satisfiability is known. In the case of ImageMagick
we chose a particular image comparison metric. However,
one might argue that image quality might be sacrificed, for
example, by 1%, if the software can process images much
faster than the original software. The number of test cases
needed for GI also requires further understanding of the
genetic improvement process.

Traditionally, small mutations are applied to the code
in the form of one-line copy, replace and delete operations.
These have shown some success, including in this work,
yet further research needs to be done into at which level of
granularity the changes should be made. Another question
relates to the crossover rate. In the MiniSAT experiments,
the earlier generations produced the best results. The trend
was reverse for the ImageMagick software.

Finally, output validity was measured by the number of
test cases passed as a proxy for correctness in the fitness
function. We argue that GI can draw here from the literature
on genetic programming. However, we hope that the GI
techniques will also investigate other search-based tech-
niques in the quest of exploring the vast space of possible
software mutations.

11 RELATED AND FUTURE WORK

Our approach to program specialisation is based on Genetic
Improvement. GI uses computational search to improve
existing software while retaining its partial functionality. GI
has been successfully used to automate the process of bug
repair [28], in which the improved program has one or more
bugs fixed that were present in the original program. The
achievements of genetic programming to improve existing
programs (by patching their bugs) has led to an explosion
of interest in automated program repair [4]. It has also been
successful in other areas of software engineering, such as
reverse engineering [30].

GI described here is a specific instance of the applica-
tion of evolutionary computation to software engineering
problems [65], an area that has come to be known as
Search Based Software Engineering (SBSE) [66], [67], [68],
[69]. SBSE has been applied to many problems in software
engineering such as project management [70], requirements
engineering [71], design [72], [73], testing [29], [74], [75],
maintenance [76], reverse engineering [30], refactoring and

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 18

code smell detection [77], [78], [79]. Whereas many areas of
SBSE target software engineering processes and non-code-
based aspects of the overall software system, GI targets the
source code itself, so it is a form of source code analysis and
manipulation [80].

GI has been used to improve non-functional properties
of relatively small laboratory programs [5], [7], [27], as well
as larger real-world systems [2], [3], [81], [82], [83], [84]. It
has also been used to automatically migrate a system from
one platform to another [3], to improve energy consumption
[45], [85] and to graft novel functionality into large existing
systems [86], [87], [88].

Previous work on genetic improvement was concerned
with a single program; the program to be improved. Code
is extracted, perhaps modified and then reinserted back into
the program at a different location. In most cases, the code to
be inserted is taken from elsewhere in the original program
[2], [3], [5], [6], [7], [27], [28], [81], but can also come from
other programs written by human programmers [89], or be
grown from scratch by genetic programming [86], [87].

Our focus is on transplantation from multiple programs
for specialisation. This is an important departure from the
previous literature in GI. As a result of multiple transplan-
tation, GP is no longer concerned with a single program
to be improved, but multiple donor programs, from which
code can be extracted to help guide genetic improvement.
The idea of code transplantation using GP was proposed by
Harman et al. [30] and first implemented by Petke et al. [9].
In subsequent work, Barr et al. successfully transplanted
a feature from one program into another using genetic
improvement [89]. Program transplantation is a general
approach (taking code from one human-written system and
inserting it into another), but here we use it for GI-based
specialisation.

The idea of transplanting code to improve its behaviour
has also been investigated in the context of replacing legacy
code with external components [90], [91], [92], [93]. Our ap-
proach could also be applied to this problem. Furthermore,
it is more flexible in terms of granularity of the changes.
For example, just one line of code from the donor could be
transplanted using GI.

The goal of improvement adopted here also differs from
that of most previous GI work, which focused on improving
functional properties (by bug repair [4] and grafting [86])
or non-functional properties (such as execution time [2], [3],
[5], [7], [27], [81], [82], [83] and energy consumption [6], [45],
[85], [94], [95]).

In all of this previous GI work, the full functionality
of the original program (notwithstanding any buggy be-
haviour) was to be retained in the genetically improved ver-
sion of the program. By contrast, we explore GI’s potential to
specialise a program to a particular application domain. The
specialised program need not retain the full functionality of
the original. Therefore, it can optimise, outperforming the
original program for the specific task for which it has been
evolved.

In preliminary experiments with MiniSAT [96], optimisa-
tion through genetic improvement of general SAT competi-
tion instances was conducted. However, this approach led to
only very modest runtime improvements of up to 2%. Using
transplantation from various different versions of MiniSAT,

we have been able to use GI-based specialisation to achieve
a (human-competitive) improvement of 17% for the spe-
cialised application subdomain of Combinatorial Interaction
Testing [9]. Here we extend our previous work [9] to show
that MiniSAT can be specialised for multiple downstream
application subdomains and add results for another piece
of software, i.e., ImageMagick.

GI-based specialisation shares the goal of previous work
on partial evaluation [12], [13], [14]. That is, both GI-based
specialisation and partial evaluation seek to produce, from
an original general program, multiple specialised versions
that target some subset of the original’s application domain.

However, the criterion for specialisation, the techniques
used to specialise, and the specialised programs that result
from each of the two approaches are all very different. That
is, unlike partial evaluation, GI-based specialisation uses
evolution, in the form of genetic programming, to search for
specialised programs, whereas partial evaluation uses a se-
quence of meaning preserving transformations. The special-
isation criterion for partial evaluation is a subset of inputs,
or some predicate over the input space, where as for GI-
based specialisation, the specialisation criterion is captured
by a set of test cases (inputs and the corresponding desired
output). Partial evaluation is also deterministic, whereas GI-
based specialisation presented in this work is inherently
stochastic, since it is based on evolutionary computation.

The vast majority of current genetic improvement work
relies on a genetic programming algorithm. This has proven
very successful in the automated program repair work [28].

However, GI can also use other SBSE approaches in order
to search the space of different software variants. These,
however, are yet to be tried.

We have chosen the original program to be the test
oracle [97], determining the output corresponding to each
input, and thereby constructing the test cases that guide
genetic programming. This means that each specialisation
targets some sub-problem within the overall problem space
attacked by the original program. However, our formulation
of specialisation as a problem for GI allows us to apply
specialisation to problems where the specialised program
must behave differently to the original program.

This could be useful in situations where the original
program is not only too general for a particular problem
(and therefore unnecessarily slow), but where it also fails
to quite fit the specialised problem; the original program
needs to be specialised and (slightly) adapted. By careful
inclusion of a few additional test cases (that capture the
desired new behaviour) we may be able to specialise the
program and simultaneously adapt it, using the same GI-
based specialisation process advocated here. It is worth
noting that there is a time cost associated with setting
up and running the GI framework. Investigation of this
specialise-and-adapt problem and its efficiency remains an
open challenge for future work.

12 CONCLUSIONS

We evolved specialised versions of the C++ program, Mini-
SAT, and ImageMagick, image processing software, using
genetic improvement with transplants. Genetic improve-
ment specialised MiniSAT for three particular hard problem
classes and ImageMagick for two different types of images.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 19

The MiniSAT-hack track of SAT competitions is specif-
ically designed to encourage human scientists and engi-
neers to adapt and develop MiniSAT code to find runtime
improvements, and hence lead to new insights into SAT
solving technology. The competition provides a natural
source of genetic material for code transplants, as well as a
natural baseline for assessing the competitiveness of the GI-
specialised versions against the general versions optimised
by expert humans.

We applied GI-based specialisation to three problem do-
mains: Combinatorial Interaction Testing, Automated Ter-
mination Analysis of Term Re-write Systems and the prob-
lem of Ensemble Computation. The evolved MiniSAT ver-
sions achieved between 4% and 36% runtime improvement
over the best general solver optimised by humans. For all
three problem domains, the evolved solvers outperform all
of the general human-written solvers entered into the 2009
MiniSAT-hack track competition, when applied to problems
from the specialised domain.

We also applied the genetic improvement approach to
ImageMagick. We targeted optimisation of the JPG to PNG
conversion function. We used code from GraphicsMagick,
that was forked from ImageMagick. That code was used as
a pool of source code from which to draw candidates for
transplantation. The best evolved individual achieved a 3%
runtime improvement with respect to the original software.
Future work may explore relaxed forms of equivalence that
woud permit greater degrees of speed up.

We believe that these findings provide compelling evi-
dence to support the claim that GI-based specialisation is
a promising approach to automated program specialisation.
We also believe that more research needs to be done into
finding optimal GI setups for a given software application.

REFERENCES

[1] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the Pareto
program surface using genetic programming to find better pro-
grams (keynote paper),” in 27th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2012), Essen, Germany,
September 2012.

[2] W. B. Langdon and M. Harman, “Optimising existing software
with genetic programming,” IEEE Transactions on Evolutionary
Computation, 2015.

[3] ——, “Evolving a CUDA kernel from an nVidia template,” in 2010
IEEE World Congress on Computational Intelligence, P. Sobrevilla, Ed.
Barcelona: IEEE, 18-23 Jul. 2010, pp. 2376–2383.

[4] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software Quality Journal, vol. 21, no. 3,
pp. 421–443, 2013.

[5] M. Orlov and M. Sipper, “Flight of the FINCH through the Java
wilderness,” IEEE Transactions Evolutionary Computation, vol. 15,
no. 2, pp. 166–182, 2011.

[6] D. R. White, J. Clark, J. Jacob, and S. Poulding, “Searching for
resource-efficient programs: Low-power pseudorandom number
generators,” in 2008 Genetic and Evolutionary Computation Confer-
ence (GECCO 2008). Atlanta, USA: ACM Press, Jul. 2008, pp.
1775–1782.

[7] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improve-
ment of programs,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 4, pp. 515–538, 2011.

[8] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory
and applications of satisfiability testing. Springer, 2004, pp. 502–518.

[9] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using
genetic improvement and code transplants to specialise a C++ pro-
gram to a problem class,” in Genetic Programming - 17th European
Conference, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised
Selected Papers, 2014, pp. 137–149.

[10] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause
learning SAT solvers,” in Handbook of Satisfiability, ser. Frontiers in
Artificial Intelligence and Applications, A. Biere, M. Heule, H. van
Maaren, and T. Walsh, Eds. IOS Press, 2009, vol. 185, pp. 131–153.

[11] “MiniSAT-hack track of SAT competition,” 2009, In 2009 this
was part of the 12th International Conference on Theory
and Applications of Satisfiability Testing. [Online]. Available:
http://www.satcompetition.org/2009/

[12] D. Bjørner, A. P. Ershov, and N. D. Jones, Partial evaluation and
mixed computation. North–Holland, 1987.

[13] D. Binkley, S. Danicic, M. Harman, J. Howroyd, and L. Ouarbya,
“A formal relationship between program slicing and partial eval-
uation,” Formal Aspects of Computing, vol. 18, no. 2, pp. 103–119,
2006.

[14] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. London, England: Prentice-Hall
International, 1993.

[15] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and
E.-N. Volanschi, “Partial evaluation for software engineering,”
ACM Computing Surveys, vol. 30, no. 3, Sep. 1998, article
20. [Online]. Available: http://www.acm.org:80/pubs/citations/
journals/surveys/1998-30-3es/a20-consel/

[16] S. Draves, “Partial evaluation for media processing,” ACM
Computing Surveys, vol. 30, no. 3, Sep. 1998, article
21. [Online]. Available: http://www.acm.org:80/pubs/citations/
journals/surveys/1998-30-3es/a21-draves/

[17] M. Dwyer, J. Hatcliff, and M. Nanda, “Using
partial evaluation to enable verification of concurrent
software,” ACM Computing Surveys, vol. 30, no. 3, Sep.
1998, article 22. [Online]. Available: http://www.acm.org:
80/pubs/citations/journals/surveys/1998-30-3es/a22-dwyer/

[18] C. K. Gomard and N. D. Jones, “Compiler generation by partial
evaluation,” in 11th IFIP World Computer Congress on Information
Processing, G. X. Ritter, Ed., IFIP. Amsterdam: North-Holland,
1989, pp. 1139–1144.

[19] C. Cadar, P. Pietzuch, and A. L. Wolf, “Multiplicity computing:
a vision of software engineering for next-generation computing
platform applications,” in Workshop on Future of Software Engineer-
ing Research (FoSER 2010), G.-C. Roman and K. J. Sullivan, Eds.
ACM, 2010, pp. 81–86.

[20] L. Beckman, A. Haraldson, O. Oskarsson, , and E. Sandewall, “A
partial evaluator, and its use as a programming tool,” Artificial
Intelligence, vol. 7, no. 4, pp. 319–357, 1976.

[21] A. P. Ershov, On the essence of computation. North–Holland, 1978,
pp. 391–420.

[22] Y. Futamura, “Partial evaluation of computation process – an
approach to a compiler-compiler,” Systems, Computers, Controls,
vol. 2, no. 5, pp. 721–728, Aug. 1971.

[23] A. Haraldsson, “A partial evaluator, its use for compiling itera-
tive statements in Lisp,” in Conference Record of the Fifth Annual
ACM Symposium on Principles of Programming Languages, Tucson,
Arizona, Jan. 1978, pp. 195–202.

[24] Y. Futamura and K. Nogi, “Generalized partial computation,” in
IFIP TC2 Workshop on Partial Evaluation and Mixed Computation,
D. Bjrner, A. P. Ershov, and N. D. Jones, Eds. North–Holland,
1987, pp. 133–151.

[25] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. Lulu Enterprises, UK Ltd, 2008.

[26] J. R. Koza, Genetic programming - on the programming of computers
by means of natural selection, ser. Complex adaptive systems. MIT
Press, 1993.

[27] A. Arcuri, D. R. White, J. A. Clark, and X. Yao, “Multi-objective
improvement of software using co-evolution and smart seeding,”
in 7th International Conference on Simulated Evolution and Learn-
ing (SEAL 2008), ser. Lecture Notes in Computer Science, X. Li,
M. Kirley, M. Zhang, D. G. Green, V. Ciesielski, H. A. Abbass,
Z. Michalewicz, T. Hendtlass, K. Deb, K. C. Tan, J. Branke, and
Y. Shi, Eds., vol. 5361. Melbourne, Australia: Springer, December
2008, pp. 61–70.

[28] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions
on Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[29] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in 8th IEEE In-
ternational Conference on Software Testing, Verification and Validation,
ICST 2015, Graz, Austria, April 13-17, 2015, 2015, pp. 1–12.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 20

[30] M. Harman, W. B. Langdon, and W. Weimer, “Genetic program-
ming for reverse engineering,” in 20th Working Conference on
Reverse Engineering (WCRE 2013), R. Oliveto and R. Robbes, Eds.
Koblenz, Germany: IEEE, 14-17 October 2013.

[31] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each,” in International Conference on Software
Engineering (ICSE 2012), Zurich, Switzerland, 2012.

[32] A. Zeller, “Yesterday, my program worked. Today, it does not.
Why?” in Foundations of Software Engineering, 1999, pp. 253–267.

[33] S. D. Prestwich, “CNF encodings,” in Handbook of Satisfiability,
ser. Frontiers in Artificial Intelligence and Applications, A. Biere,
M. Heule, H. van Maaren, and T. Walsh, Eds. IOS Press, 2009,
vol. 185, pp. 75–97.

[34] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook
of Satisfiability, ser. Frontiers in Artificial Intelligence and Applica-
tions, vol. 185. IOS Press, 2009.

[35] Y. Vizel, G. Weissenbacher, and S. Malik, “Boolean satisfiability
solvers and their applications in model checking,” Proceedings of
the IEEE, vol. PP, no. 99, pp. 1–15, 2015.

[36] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey
of automated techniques for formal software verification,”
IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 27, no. 7, pp. 1165–1178, 2008. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2008.923410

[37] F. Arito, F. Chicano, and E. Alba, “On the application of
SAT solvers to the test suite minimization problem,” in Search
Based Software Engineering - 4th International Symposium, SSBSE
2012, Riva del Garda, Italy, September 28-30, 2012. Proceedings,
2012, pp. 45–59. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-33119-0 5

[38] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue, “Generating
combinatorial test cases by efficient SAT encodings suitable for
CDCL SAT solvers,” in 17th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Yogyakarta, India,
2010, pp. 112–126.

[39] T. Nanba, T. Tsuchiya, and T. Kikuno, “Constructing test sets
for pairwise testing: A SAT-based approach,” in ICNC. IEEE
Computer Society, 2011, pp. 271–274.

[40] A. Yamada, T. Kitamura, C. Artho, E. Choi, Y. Oiwa,
and A. Biere, “Optimization of combinatorial testing by
incremental SAT solving,” in 8th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015, 2015, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2015.7102599

[41] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
and Y. L. Traon, “Bypassing the combinatorial explosion: Using
similarity to generate and prioritize t-wise test suites for large
software product lines,” CoRR, vol. abs/1211.5451, 2012.

[42] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis
of feature models 20 years later: A literature review,” Inf.
Syst., vol. 35, no. 6, pp. 615–636, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2010.01.001

[43] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*: A
general-purpose higher-order relational constraint solver,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1, 2015, pp. 609–619.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2015.77

[44] J. Marques-Silva, “Practical applications of Boolean satisfiability,”
in Discrete Event Systems, 2008. WODES 2008. 9th International
Workshop on, May 2008, pp. 74–80.

[45] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consump-
tion using genetic improvement,” in Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2015, Madrid, Spain,
July 11-15, 2015, 2015, pp. 1327–1334.

[46] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 11:1 – 11:29, 2011.

[47] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: an approach to testing based on combinatorial
design,” IEEE Transactions on Software Engineering, vol. 23, no. 7,
pp. 437–444, 1997.

[48] C. Colbourn, “Covering Array Tables. http://www.public.asu.
edu/∼ccolbou/src/tabby/catable.html,” 2013.

[49] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating im-
provements to a meta-heuristic search for constrained interaction
testing,” Empirical Software Engineering, vol. 16, no. 1, pp. 61–102,
2011.

[50] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG/IPOG-D: efficient test generation for multi-way combina-
torial testing,” Softw. Test., Verif. Reliab., vol. 18, no. 3, pp. 125–148,
2008.

[51] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Efficiency and
early fault detection with lower and higher strength combinatorial
interaction testing,” in European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13. Saint Petersburg, Russian Federation:
ACM, August 2013, pp. 26–36.

[52] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge
University Press, 1998.

[53] M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann, “SAT
solving for termination proofs with recursive path orders and
dependency pairs,” J. Autom. Reasoning, vol. 49, no. 1, pp. 53–93,
2012.

[54] C. Fuhs, “SAT-based termination analysis for Java bytecode with
AProVE,” 2011.

[55] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[56] M. Järvisalo, P. Kaski, M. Koivisto, and J. H. Korhonen, “Finding
efficient circuits for ensemble computation,” in SAT, ser. Lecture
Notes in Computer Science, A. Cimatti and R. Sebastiani, Eds., vol.
7317. Springer, 2012, pp. 369–382.

[57] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based soft-
ware engineering: Techniques, taxonomy, tutorial,” in Empirical
software engineering and verification: LASER 2009-2010, B. Meyer and
M. Nordio, Eds. Springer, 2012, pp. 1–59, LNCS 7007.

[58] M. Gabel and Z. Su, “A study of the uniqueness of source code,”
in Proceedings of the 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2010, Santa Fe, NM, USA,
November 7-11, 2010, 2010, pp. 147–156.

[59] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep param-
eter optimisation,” in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2015, Madrid, Spain, July 11-15,
2015, 2015, pp. 1375–1382.

[60] W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving
CUDA DNA analysis software with genetic programming,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2015, Madrid, Spain, July 11-15, 2015, 2015, pp. 1063–1070.

[61] R. Williams, C. P. Gomes, and B. Selman, “Backdoors to typical
case complexity,” in IJCAI, G. Gottlob and T. Walsh, Eds. Morgan
Kaufmann, 2003, pp. 1173–1178.

[62] C. Ansótegui, J. Giráldez-Cru, and J. Levy, “The community
structure of SAT formulas,” in Theory and Applications of
Satisfiability Testing - SAT 2012 - 15th International Conference, Trento,
Italy, June 17-20, 2012. Proceedings, 2012, pp. 410–423. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-31612-8 31

[63] Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and
L. Simon, “Impact of community structure on SAT solver
performance,” in Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings, 2014, pp. 252–268. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-09284-3 20

[64] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro,
“The plastic surgery hypothesis,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, 2014,
pp. 306–317.

[65] M. Harman, “Software engineering meets evolutionary computa-
tion,” IEEE Computer, vol. 44, no. 10, pp. 31–39, Oct. 2011.

[66] T. E. Colanzi, S. R. Vergilio, W. K. G. Assuncao, and A. Pozo,
“Search based software engineering: Review and analysis of the
field in Brazil,” Journal of Systems and Software, vol. 86, no. 4, pp.
970–984, April 2013.

[67] F. G. Freitas and J. T. Souza, “Ten years of search based software
engineering: A bibliometric analysis,” in 3rd International Sympo-
sium on Search based Software Engineering (SSBSE 2011), 10th - 12th
September 2011, pp. 18–32.

[68] M. Harman and B. F. Jones, “Search based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
Dec. 2001.

[69] M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: Trends, techniques and applications,” ACM Comput-
ing Surveys, vol. 45, no. 1, pp. 11:1–11:61, November 2012.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 21

[70] F. Ferrucci, M. Harman, and F. Sarro, “Search-based software
project management,” in Software Project Management in a Changing
World. Springer, 2014, pp. 373–399.

[71] Y. Zhang, A. Finkelstein, and M. Harman, “Search based require-
ments optimisation: Existing work and challenges,” in International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ’08), vol. 5025. Montpellier, France: Springer
LNCS, 2008, pp. 88–94.

[72] O. Räihä, “A survey on search–based software design,” Computer
Science Review, vol. 4, no. 4, pp. 203–249, 2010.

[73] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang,
“Search based software engineering for software product line en-
gineering: a survey and directions for future work,” in Proceedings
of the 18th International Software Product Line Conference-Volume 1.
ACM, 2014, pp. 5–18.

[74] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation
of search-based test-case generation,” IEEE Transactions on Software
Engineering, pp. 742–762, 2010.

[75] P. McMinn, “Search-based software test data generation: A sur-
vey,” stvr, vol. 14, no. 2, pp. 105–156, Jun. 2004.

[76] M. D. Penta, “SBSE meets software maintenance: Achievements
and open problems,” in 4th International Symposium on Search Based
Software Engineering (SSBSE 2012), 2012, pp. 27–28.

[77] U. Mansoor, M. Kessentini, B. Maxim, and K. Deb, “Multi-
objective code-smells detection using good and bad design ex-
amples,” Software Quality Journal, pp. 1–24, 2 2016.

[78] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó.
Cinnéide, “High dimensional search-based software engineering:
finding tradeoffs among 15 objectives for automating software
refactoring using NSGA-III,” in Genetic and Evolutionary Compu-
tation Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16,
2014, 2014, pp. 1263–1270.

[79] A. Ouni, M. Kessentini, H. A. Sahraoui, K. Inoue, and K. Deb,
“Multi-criteria code refactoring using search-based software en-
gineering: An industrial case study,” ACM Trans. Softw. Eng.
Methodol., vol. 25, no. 3, pp. 23:1–23:53, 2016.

[80] M. Harman, “Why source code analysis and manipulation will
always be important (keynote),” in 10th IEEE International Working
Conference on Source Code Analysis and Manipulation, Timisoara,
Romania, 2010.

[81] W. B. Langdon, M. Modat, J. Petke, and M. Harman, “Improving
3D medical image registration CUDA software with genetic
programming,” in Genetic and Evolutionary Computation Conference,
GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014, 2014,
pp. 951–958. [Online]. Available: http://doi.acm.org/10.1145/
2576768.2598244

[82] W. B. Langdon and M. Harman, “Genetically improved CUDA
C++ software,” in 17th European Conference on Genetic Programming
(EuroGP). Springer, 2014, pp. 87–99.

[83] P. Sitthi-amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic
programming for shader simplification,” ACM Transactions on
Graphics, vol. 30, no. 6, pp. 152:1–152:11, 2011.

[84] W. B. Langdon, “Genetically improved software,” in Handbook
of Genetic Programming Applications, A. H. Gandomi, A. H.
Alavi, and C. Ryan, Eds. Springer, 2015, ch. 8, pp. 181–220.
[Online]. Available: http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/langdon 2015 hbgpa.pdf

[85] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-
compiler software optimization for reducing energy,” SIGARCH
Comput. Archit. News, vol. 42, no. 1, pp. 639–652, Feb. 2014.

[86] M. Harman, Y. Jia, and W. B. Langdon, “Babel pidgin: SBSE
can grow and graft entirely new functionality into a real world
system,” in 6th Symposium on Search Based Software Engineering
(SSBSE 2014). Springer, 2014, pp. 247–252.

[87] W. B. Langdon and M. Harman, “Grow and graft a
better CUDA pknotsrg for RNA pseudoknot free energy
calculation,” in Genetic and Evolutionary Computation Conference,
GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion
Material Proceedings, 2015, pp. 805–810. [Online]. Available:
http://doi.acm.org/10.1145/2739482.2768418

[88] Y. Jia, M. Harman, W. B. Langdon, and A. Marginean, “Grow
and serve: Growing Django citation services using SBSE,” in
Search-Based Software Engineering - 7th International Symposium,
SSBSE 2015, Bergamo, Italy, September 5-7, 2015, Proceedings,
2015, pp. 269–275. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-22183-0 22

[89] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Auto-
mated software transplantation,” in Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2015,
Baltimore, MD, USA, July 12-17, 2015, 2015, pp. 257–269.

[90] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Refactoring Java
programs for flexible locking,” in Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, 2011, pp. 71–80.

[91] K. Ishizaki, S. Daijavad, and T. Nakatani, “Refactoring Java
programs using concurrent libraries,” in Proceedings of the 9th
Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging, PADTAD 2011, Toronto, ON, Canada, July 17-21, 2011,
2011, pp. 35–44.

[92] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. Germán, and
K. Inoue, “Search-based software library recommendation using
multi-objective optimization,” Information & Software Technology,
vol. 83, pp. 55–75, 2017.

[93] F. Thung, D. Lo, and J. L. Lawall, “Automated library recommen-
dation,” in 20th Working Conference on Reverse Engineering, WCRE
2013, Koblenz, Germany, October 14-17, 2013, 2013, pp. 182–191.

[94] D. Li, A. H. Tran, and W. G. J. Halfond, “Making web applications
more energy efficient for OLED smartphones,” in 36th International
Conference on Software Engineering, ICSE ’14, 2014, pp. 527–538.

[95] I. L. Manotas-Gutiérrez, L. L. Pollock, and J. Clause, “SEEDS: a
software engineer’s energy-optimization decision support frame-
work,” in 36th International Conference on Software Engineering, ICSE
’14, Hyderabad, India - May 31 - June 07, 2014, 2014, pp. 503–514.

[96] J. Petke, W. B. Langdon, and M. Harman, “Applying genetic
improvement to MiniSAT,” in Proceedings of the 5th International
Symposium on Search Based Software Engineering (SSBSE ’13), vol.
8084. St. Petersburg, Russia: Springer, 24-26 August 2013, pp.
257–262.

[97] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Trans. Software
Eng., vol. 41, no. 5, pp. 507–525, 2015.

Justyna Petke is a Senior Research Associate
at the Centre for Research on Evolution, Search
and Testing (CREST) in University College Lon-
don. She has published articles on the applica-
tions of genetic improvement. Her paper work
on GI won multiple awards. She is supported by
the Dynamic Adaptive Automated Software En-
gineering grant from UK Engineering and Physi-
cal Sciences Research Council (EPSRC).

Mark Harman is professor of Software Engi-
neering at UCL and an engineering manager
at Facebook. He is widely known for work on
source code analysis and testing and was in-
strumental in the founding of the field of Search
Based Software Engineering (SBSE), an area of
research to which this paper seeks to make a
contribution. Since its inception in 2001, SBSE
has rapidly grown to include over 900 authors,
from nearly 300 institutions. GGGP and DAASE
projects partly support the presented work.
William B. Langdon is a professorial research
fellow in UCL. He worked on distributed real time
databases for control and monitoring of power
stations at the Central Electricity Research Lab-
oratories. He then joined Logica to work on dis-
tributed control of gas pipelines and later on
computer and telecommunications networks. Af-
ter returning to academia to gain a PhD in GP at
UCL, he worked at the University of Birmingham,
the CWI, UCL, Essex University, King’s College,
London and now for a third time at UCL.
Westley Weimer received a BA degree in com-
puter science and mathematics from Cornell
University and MS and PhD degrees from the
University of California, Berkeley. He is currently
an associate professor at the University of Vir-
ginia. His main research interests include static
and dynamic analyses to improve software qual-
ity and fix defects.

