
1

Automatically Exploring Tradeoffs Between
Software Output Fidelity and Energy Costs

Jonathan Dorn, Jeremy Lacomis, Westley Weimer, and Stephanie Forrest

Abstract—Data centers account for a significant fraction of global energy consumption and represent a growing business cost. Most
current approaches to reducing energy use in data centers treat it as a hardware, compiler, or scheduling problem. This article focuses
instead on the software level, showing how to reduce the energy used by programs when they execute. By combining insights from
search-based software engineering, mutational robustness, profile-guided optimization, and approximate computing, the Producing
Green Applications Using Genetic Exploration (POWERGAUGE) algorithm finds variants of individual programs that use less energy
than the original. We apply hardware, software, and statistical techniques to manage the complexity of accurately assigning physical
energy measurements to particular processes. In addition, our approach allows, but does not require, relaxing output quality
requirements to achieve greater non-functional improvements. POWERGAUGE optimizations are validated using physical performance
measurements. Experimental results on PARSEC benchmarks and two larger programs show average energy reductions of 14% when
requiring the preservation of original output quality and 41% when allowing for human-acceptable levels of error.

Index Terms—power optimization; search-based software engineering; genetic algorithms; profile-guided optimization; optimizing
noisy functions; accurate energy measurement.

F

1 INTRODUCTION

THE use of data centers has expanded in recent years
to support a growing spectrum of applications. At

these scales, non-functional [1] properties such as energy
consumption can have significant economic and environ-
mental impact. This article addresses the application side
of this problem, reducing the energy requirements of pro-
grams running on server-class hardware. We discuss the
problem of partitioning the energy usage of a server among
its hardware and software components, and present hard-
ware, system configuration, and algorithmic techniques for
managing it. We then combine insights from search-based
software engineering (SBSE), mutational robustness, profile-
guided optimization, and approximate computing to mod-
ify non-functional properties after compiler optimizations
have been applied.

Over the past few years, data center energy usage has
grown to over 1% of global energy consumption [2] and is
projected to cost American businesses $13 billion per year
by 2020 [3]. The mechanical and electrical systems (such as
lighting, cooling, air circulation, and uninterruptible power
supplies) required to support warehouse-scale computation
can quadruple the power required by the computation
itself [4]. Because the load on many of these support sys-
tems grows with the computational load, computational
efficiency is a significant determinant of the economic and
environmental costs of data centers. In this setting, even
modest reductions in energy consumption or heat genera-

• Dorn, Lacomis, and Weimer were with the Department of Computer
Science at the University of Virginia, Charlottesville, VA, 22904 when
this work was done.
Email: {dorn,lacomis,weimer}@virginia.edu

• Forrest is with Arizona State University, Tempe, AZ and the Santa Fe
Institute, Santa Fe, NM 87287.
Email: stephanie.forrest@asu.edu

Manuscript revised Nov 9, 2017

tion can, through the scale of deployment, produce signifi-
cant savings.

Researchers have approached energy reduction from
several perspectives, including hardware (e.g., providing
for voltage scaling and resource hibernation [5]), scheduling
(e.g., predicting the interaction between workloads running
on shared systems [6]), compilation (e.g., using instruction
scheduling [7] to lower the switching activity between con-
secutive instructions [8]), and the API (e.g., selecting low-
energy API implementations [9]). These perspectives are
largely complementary—reducing the scheduling interfer-
ence of applications running on low-power hardware may
reduce energy costs beyond what either approach could
achieve alone. In this article, we focus on the software
itself, separate from the additional costs of the hardware
or operating system.

One of the difficulties in managing energy usage at the
software level is lack of visibility into how implementation
decisions relate to energy use [9]. Indeed, the success of
approaches at so many different levels (hardware archi-
tecture, operating systems, compilers, and API selection)
is an artifact of the large number of variables that influ-
ence energy consumption. We address this difficulty using
stochastic search to modify compiled assembly programs
and measure the energy required to execute an indicative
workload, allowing us to identify beneficial modifications.
We observe that common hardware-based techniques for
measuring energy consumption have significant limitations;
we therefore propose and evaluate techniques to mitigate
this issue. Our method, called POWERGAUGE, provides
energy reductions that retain required functionality, and we
investigate more aggressive reductions for applications that
can tolerate slight reductions in output quality [10]. We
achieve this via a multi-dimensional search algorithm.

We evaluate POWERGAUGE on the PARSEC [11] bench-

2

mark programs to allow comparison to earlier work. These
benchmarks were designed to mimic the behavior of data
center applications. However, modern real-world data cen-
ter applications are much larger than these benchmark ap-
plications. For example, Kanev et al. report that binaries run-
ning in Google’s data centers frequently exceed 100 MB [12].
We therefore selected two larger (millions of assembly lines)
programs to include in our evaluation.

These larger applications are challenging for search-
based methods such as POWERGAUGE because the effec-
tive search space grows rapidly with the length of the pro-
gram (discussed in Section 5.4). We consider two approaches
to address search space size, using two insights about mu-
tated assembly programs. First, many such programs fail to
assemble (e.g., because of duplicate labels [13]), and second,
many mutated programs are functionally equivalent [14].
We remove both invalid and duplicate programs before they
are evaluated on test cases, allowing scalability to larger
problems in some instances.

Accurately measuring the energy use of a program poses
an additional challenge because the energy usage triggered
by a program is not restricted to the CPU. Although stochas-
tic search often performs well on noisy problems [15], [16],
[17], Haraldsson and Woodward highlight some difficul-
ties encountered with models that estimate energy in our
problem setting [18]. They observed that energy models
do not always accurately capture all components (e.g.,
memory, disk drives, network cards, fans, etc.) affected by
software. Model accuracy can also diminish on programs
containing unintuitive optimizations such as those found
by a stochastic search, leading to both false positives and
false negatives. We therefore address the issue of developing
accurate measurement tools and techniques for use in the
fitness function of the genetic algorithm (GA) search.

The main contributions of this article are as follows:

• POWERGAUGE, a post-compiler method for opti-
mizing non-functional properties of assembly pro-
grams via an explicit multi-objective search that con-
siders both functional fidelity and energy consump-
tion.

• An empirical evaluation of POWERGAUGE using
large- and small-scale applications representative of
data center applications. We find that our technique
reduces energy consumption by 14% over and be-
yond gcc -O3 for fixed output quality and 41%
when relaxing the output quality.

• An exploration of techniques for managing search
space explosion due to large program sizes.

• A comparison of POWERGAUGE to existing soft-
ware techniques for reducing energy consumption.

The work reported here builds on Schulte et al.’s earlier
work that used a GA to find post-compiler optimizations
for assembly programs [19]. Here we extend that work
to include explicit use of multi-objective search, additional
search-space reduction and noise mitigation techniques, and
improved energy measurements.

The rest of the article is organized as follows. Section 2
places POWERGAUGE in the context of related work. Sec-
tion 3 presents a motivating example that describes an ideal
solution for post-compiler energy reduction and illustrates

the difficulties associated with physically measuring whole-
system energy consumption. Next, Section 4 describes our
proposed power measurement system that addresses these
difficulties. In Section 5 we detail our multi-objective GA,
highlighting several algorithmic features that improve its
efficiency. Section 6 describes our research questions and ex-
perimental setup. This includes an explanation of our bench-
marks and our process for determining human acceptability.
Section 7 reports our results, including a quantitative explo-
ration of tradeoffs. We also present a qualitative analysis of
some of the successful optimizations that POWERGAUGE
found and discuss some opportunities for improving the
search based on the structure of certain benchmark pro-
grams. Section 8 discusses the remaining benchmarks, the
optimization of energy vs. runtime, and threats to validity.
Finally, Section 9 concludes the article.

2 BACKGROUND AND RELATED WORK

In this section we discuss three broad approaches to power
improvement: GA-based techniques, semantics-preserving
techniques, and approximate computing.

2.1 Genetic Algorithms for Power Improvement.
Researchers have recently begun investigating the potential
of GAs and related methods for reducing software energy
consumption [19], [20], [21]. In general, these approaches are
given a program to optimize. They then generate an initial
population of programs by mutating the original, that is, by
making small random modifications to it. The algorithm
evaluates the fitness of every individual in the population
using a fitness function, which assesses the individual ac-
cording to the optimization goals. For complex properties or
those that are time consuming to measure, such as program
energy use on all workloads, a model or approximation is
frequently used. The main loop of the GA selects individuals
with high fitness, applies additional mutations and recombi-
nations, and adds these new individuals to the population.
The algorithm may replace random individuals or those
with poor fitness immediately (steady-state GA), or wait to
replace the entire population at once (generational GA).

Schulte et al. introduced the use of GAs for post-
compiler optimizations of non-functional software prop-
erties [19]. This work was evaluated on relatively small
benchmarks, used an energy model to estimate fitness,
and followed up with a wall socket energy reading of the
best individual found. Our work extends this technique to
production-scale programs, such as libav1 and blender,2

by introducing search-space reductions and profiling. In
addition, we directly address the concerns raised by Har-
aldsson and Woodward [18] regarding accuracy of software
energy measurement in the context of stochastic search. By
using specialized hardware to measure whole-system power
we gain confidence that our results represent real-world
reductions in energy consumption.

Bruce et al. [20] also use genetic improvement in the
context of reducing energy consumption. Their technique,
however, relies on estimated energy consumption provided

1. https://www.libav.org/
2. https://www.blender.org/

https://www.libav.org/
https://www.blender.org/

3

by the Intel Power Gadget API. This estimate includes only
the CPU and does not model the energy consumed by other
components of a system, such as memory or I/O devices.
Our work uses whole-system power measurements and the
search is not restricted to CPU-specific energy optimiza-
tions. Additionally, while their technique modifies software
at the source code level, ours operates on assembly output
from the compiler. This more easily supports combining
energy optimizations with standard compiler optimizations.

Other work used GAs to reduce the energy consump-
tion of GUIs in Android applications [21] but is specific
to mobile devices that use Organic Light-Emitting Diode
(OLED) screens. This work modeled energy consumption
as a function of the color components of pixels on OLED
screens, which provides an accurate estimate of energy
consumption for some applications. However, it is domain-
specific and does not generalize to other use cases.

2.2 Semantics-Preserving Techniques

While GA-based approaches typically apply random trans-
formations to the program and assess their functional cor-
rectness via test cases, semantics-preserving approaches are
designed by construction to retain required functionality.

2.2.1 Superoptimization

Superoptimization techniques [22], [23] check large numbers
of sequences of assembly instructions to find an optimal
execution sequence. These techniques are similar to ours
in that both may change the implementation. However,
superoptimization techniques scale only to short sequences
of assembly instructions, while our approach operates on
entire programs. Superoptimization and our approach are
both assembly-to-assembly transformations, but they are
independent and could be composed together in any order.

2.2.2 Profiling and Profile Guided Optimization

Profiling has been used in the past to guide optimiza-
tions [24], [25], [26]. These techniques use profiles collected
from previous runs of a program when applying optimiza-
tion to create more efficient code in the context of a typical
program execution. These methods are typically semantics
preserving. By relaxing semantics, we can use profiling
similarly to guide the search to locations in the code most
likely to have a large impact on energy consumption (i.e.,
are executed most often) and create novel optimizations that
are not possible with strict semantics-preserving transfor-
mations.

2.2.3 Hardware Techniques

Hardware techniques for power reduction such as voltage
scaling and resource hibernation [5] or clock gating [27]
do not modify the subject program and are independent
of source optimization techniques. By combining hardware
optimization and POWERGAUGE or other optimization
techniques, it should be possible in practice to create an even
more efficient system.

2.3 Approximate Computing

Approximate computing has emerged as an alternative ap-
proach to decreasing runtime and energy consumption [28],
[29]. By trading off some computational accuracy, approx-
imate computing allows for reduced runtime or energy
consumption, similar to how lossy compression trades off
quality for space efficiency.

2.3.1 Task Skipping

Task skipping [30], [31] uses models that characterize the
tradeoff between accuracy and performance to skip or halt
the execution of some tasks. In task skipping, the developer
manually partitions the program into task blocks that the
execution environment can terminate to reduce accuracy
while increasing performance. Although task skipping can
be effective, decomposing a problem into tasks requires
manual intervention, domain-specific knowledge, and it
may not always be possible [32].

2.3.2 Loop Perforation

In loop perforation, individual loop iterations are skipped
to reduce computational load with the goal of reducing
computation time, energy consumption, or responding to
faults. Loop perforation is particularly effective in algo-
rithms that use looping to iteratively improve the accuracy
of a calculation [10], [33]. Truncating or skipping iterations
of these loops can allow a program to calculate an approx-
imate answer with reduced computation. Loop perforation
does not require the same domain-specific knowledge as
task skipping, but not all programs can be optimized with
loop perforation. In some cases, loop perforation leads to
decreased performance if, for example, a loop is used to
filter out data before an expensive evaluation step [33].
We compare our technique explicitly against state-of-the-art
loop perforation techniques in Section 7.3.1, but also note
that both techniques could be used together.

2.3.3 Precision Scaling

Precision scaling improves efficiency by altering arithmetic
precision [34], [35]. Adjusting variable precision can expose
optimizations or make more efficient use of hardware. For
example, rounding floating point values near one can com-
pletely optimize out an expensive floating point multiplica-
tion. Additionally, scaling the precision of data can change
memory layout and lead to better cache performance as
alignments change.

2.3.4 Approximate Hardware Techniques

Hardware-based approximate techniques, such as approxi-
mate adders [36], [37] or multipliers [38], also aim to trade
off accuracy for reduced power consumption or computa-
tion time. By allowing for error in computations, hardware
designers are able to reduce the number of transistors
in circuits, reducing power dissipation and gate delays.
Like semantics-preserving hardware optimizations, approx-
imate hardware optimization techniques are independent of
software-based techniques such as POWERGAUGE.

4

0% 50% 100%
Energy reduction

0%

1%

2%
%

er
ro

r

No error Human acceptable

Fig. 1: Pareto frontier for the blender (car) benchmark.
The X axis indicates percentage energy reduction and the Y
axis indicates percentage error. The point in the lower-left
has no error and corresponds to a 1% energy savings. The
point in the lower-right was judged to be human acceptable
and corresponds to a 10% energy savings.

3 MOTIVATION

Energy consumption is a significant cost for data center scale
computing. With power for American data centers projected
to reach an annual cost of tens of billions of dollars [3] in the
coming years, companies have already begun taking steps
to reduce energy expense. A recent example is Google’s $2.5
billion investment in wind and solar farms near their data
centers.3

In addition to hardware and compiler techniques for
reducing energy consumption, there is a need for software
modifications to further reduce these costs. In this article,
we present POWERGAUGE, a mostly-automated technique
and prototype implementation for exploiting opportunities
for relaxing output quality to reduce energy consumption.
POWERGAUGE takes as input compiled assembly code and
an existing test suite, and produces an optimized program
with the same behavior but reduced energy requirements. In
this scenario, POWERGAUGE imposes little additional bur-
den on developers, since they may reuse existing tests and
need only adapt their build process to produce assembly
files and provide a mechanism to measure energy consump-
tion. (We discuss one possible mechanism in Section 4.)

To achieve even greater energy reductions, the test suite
may be augmented with a metric that estimates the quality
of the output (instead of merely pass or fail), enabling
POWERGAUGE to search for programs that optimize for
energy consumption while allowing for small differences
in output. We give some examples of simple, yet effective
metrics in Section 6.1. With such an augmented test suite,
POWERGAUGE produces a list of Pareto-optimal programs
that trade off energy consumption and error. In this case, the
developer or end user may select the program that provides
the most desirable balance for their particular use case.

3. https://www.google.com/green/energy/, Dec. 2016

We present an example of the Pareto-optimal output
from POWERGAUGE in Figure 1. To create this figure, we
applied POWERGAUGE to blender, a 3D computer graph-
ics application, and plotted the error vs. energy reduction
of the Pareto-optimal programs. Each point in the figure
represents an optimized program. The programs associated
with the points in the lower left minimize differences from
the output of the original program and demonstrate cor-
respondingly conservative energy reductions. For example,
the image generated by the blender version associated
with the point labeled “No error” is identical to the image
produced by the original program, but this program version
has a 1% energy reduction over the original. The points in
the upper right of the figure represent programs with both
greater energy reductions and larger impact on the output
quality.

The primary manual involvement required from POW-
ERGAUGE users is to select the program that shows the
largest reduction in energy use while maintaining an accept-
able level of quality. In this example, the image generated
by the program at the point labeled “Human acceptable”
was subjectively judged to contain an allowable level of
error. This program incorporates optimizations that reduce
energy consumption by 10% over the original program.
Since POWERGAUGE creates a sequence of modified pro-
grams, software engineers or end users can choose their own
tolerance for error and deploy the corresponding binary.

POWERGAUGE operates on assembly programs and
representative test inputs, artifacts that are often already
available or are easily introduced to many development
processes. It also requires two mechanisms that may be
less commonly available: one for measuring energy and
another for estimating output quality. We discuss the latter
in Section 6.1. We present our approach to the former in the
following section.

4 POWER MEASUREMENT

To optimize the energy usage of a program, our search re-
quires a fitness function to estimate the energy consumption
of each individual. To achieve this, we require a mecha-
nism capable of measuring whole-system energy of indi-
vidual servers without requiring hardware modifications.
This apparatus must also have suitably fine-grained time
and energy resolution and a reporting rate that does not
greatly increase our search times. Additionally, to minimize
noise due to overhead on the system under test, we require
that the device be entirely self-contained without relying
on monitoring software running on the same system. As
a practical matter, we also require it to be sufficiently cost
effective to run several experiments in parallel, allowing
one to take full advantage of the independence of fitness
evaluations in a GA.

4.1 Existing Approaches

Previous work discussed in Section 2 relied on energy mod-
els to guide the search. For example, Schulte et al. [19] used
a linear combination of performance counters for the fitness
function, measuring power empirically only at the end of
the search. However, performance counters (e.g., instruction

https://www.google.com/green/energy/

5

counts) cannot account for energy differences that arise
from optimizations such as instruction reordering [39]. In a
preliminary investigation, we found that these potentials for
model inaccuracies can have a negative impact. Specifically,
using the model suggested by Schulte, we identified a vari-
ant of freqmine with over 70% predicted energy improve-
ment, but only 2% actual improvement. These discrepancies
between predicted and measured benefit motivated us to
find an improved power measurement system.

One common alternative to energy models is direct
measurement. For example, many commercial devices, such
as the Watts up? PRO meter, can inexpensively measure and
report energy consumption. These off-the-shelf meters are
simple to install and easy to use: the system under test is
plugged into the device and energy consumption is reported
over USB. However, these devices are typically designed
for long-term monitoring and are not for capturing rapid
changes such as those caused by relatively short program
executions. POWERGAUGE typically compiles and eval-
uates tens of thousands of candidate programs during a
search, and the limited (1 Hz) reporting rate of the Watts up?
PRO creates delays that greatly increase the time required
for a search (see Section 4.2).4 Note that sampling rate is
distinct from reporting rate; sampling rate refers to the rate
at which a signal is measured, while reporting rate refers
to the rate at which the samples are sent to the system
monitoring the measurement device.

Although some specialized solutions for measuring en-
ergy exist, we were unable to find one suitable for our
application. LEAP [40] and similar projects [41] use a spe-
cialized Android platform to measure energy consumed
by mobile devices, and could not be directly adapted to
monitor server systems. JetsonLeap [42] is designed to accu-
rately measure power consumption to enable power-based
compiler optimizations, however it requires that the system
under test have a general-purpose I/O (GPIO) port. GPIO
ports are common in System-on-a-Chip devices such as the
Arduino or BeagleBone, but are rare on server systems.
Similarly, the Monsoon Power Monitor5 is only designed to
measure power on mobile devices rated to 4.5 V and costs
$771 to measure a single device. Other approaches require
a separate measurement PC and either only monitor CPU
power [43], or measure whole-system energy but require
specialized boards to be installed on power lines inside the
device under test [44].

The search technique used by POWERGAUGE is inde-
pendent of the measurement device and could be adapted
for use on mobile applications using the devices described
above. However, for our domain, an ideal solution would be
simple to install and capable of measuring energy consump-
tion directly on an unmodified production server. To our
knowledge, in 2017, there is no cost-effective commercial
solution available that meets all of these needs.

4. Since we must wait for a report from the energy meter before we
start a program under test and also wait to collect the first report after
the program has terminated, the 1 Hz reporting rate of the Watts Up?
PRO corresponds to a 0.5 s× 2 = 1 s overhead per fitness evaluation. If
our GA conducts 65,536 fitness evaluations, this overhead amounts to
an additional 18 hours; a meter reporting at 0.1 Hz would produce just
under 2 hours of overhead instead.

5. https://www.msoon.com/LabEquipment/PowerMonitor/

Fig. 2: Energy meter setup. A: emonTx V3 energy monitor-
ing node. B: Raspberry Pi. The Raspberry Pi is connected to
the emonTx by UART (multicolored cable), and reports via
ethernet (bottom cable). C: Monitored receptacle. D: Accu-
CT ACT-0750 5A current transformer. Note that the current
transformer is around the hot (black) wire attached to the
receptacle. Up to four current transformers can be moni-
tored by the emonTx at once. E: AC-AC voltage adapter.
The emonTx uses this voltage adapter both for power and
for monitoring the voltage present at the receptacle.

4.2 Measurement Apparatus

We addressed this issue by designing a simple, inexpensive
monitoring system based on available components that
provides the resolution and the sampling rate required
for a scalable genetic search. This device only needs to
be constructed and calibrated once and can then be used
to monitor the whole-system energy of any machine by
simply plugging its power into the device and connecting
the device to the network. In the remainder of this section,
we describe our monitor along with the configuration and
framework with which we made it scalable.

We based our design on the emonTx V3 energy mon-
itoring node.6 This open source design consists of an AT-
mega328 microcontroller with sockets to connect an AC-AC
voltage adapter and up to four current transformers. The
microcontroller is programmable using the Arduino API.7

The current transformers read the varying amperage on up
to four separate lines while the voltage adapter reads the
varying voltage from the same power source (see Figure 2).
We evaluated several different current transformers and
chose Accu-CT ACT-0750 current transformers8 rated for
5 A with the 1 V output option because our testing showed
that these gave us the most precise measurements in the
range of powers used by our systems (i.e., between 40 and
100 W).

6. https://openenergymonitor.org/emon/modules/emonTxV3
7. https://www.arduino.cc/en/Main/Software
8. https://ctlsys.com/act-0750 series split-core current

transformers/

https://www.msoon.com/LabEquipment/PowerMonitor/
https://openenergymonitor.org/emon/modules/emonTxV3
https://www.arduino.cc/en/Main/Software
https://ctlsys.com/act-0750_series_split-core_current_transformers/
https://ctlsys.com/act-0750_series_split-core_current_transformers/

6

Although this baseline hardware provides a cost-
effective solution for high resolution time and energy mea-
surements, we found that the default firmware needed to
be completely rewritten to meet our requirements. Our soft-
ware running on the microcontroller combines the signals
from the current transformers with the voltage reading from
the AC-AC voltage adapter to compute the real power on
each line. This power is reported via the on board UART
serial device. Our present prototype implementation is ca-
pable of reading inputs from the four current transformers
and the voltage adapter at a sampling rate of about 1200 Hz,
which is significantly faster than can be transmitted via
the serial controller. We therefore aggregate a configurable
number of measurements together and report the average
power usage less frequently. For all experiments in this
article, the microcontroller sampled at 1200 Hz and reported
measurements on the serial bus at 10 Hz. This is ten times
faster than the reporting rate that was possible with the
Watts up? PRO energy meters, and supports measuring
energy consumption at a rate that makes large-scale searches
feasible.

The code to convert the integral sensor readings into
floating point current and voltage readings requires coef-
ficients to scale the values properly. We calibrated these
using a Watts up? PRO device as a baseline. Although the
Watts up? PRO is not suitable for fitness evaluations, as a
commercially calibrated meter, it is suitable for use as a
baseline for calibration, which can tolerate slower responses.
Note that properly calibrating real power measurements
requires a resistive load, such as a high-wattage light bulb
or small heating element, so that real power and apparent
power are equal [45, § 8.4]. We used a lamp with three 40-
watt incandescent light bulbs to produce a large enough
load for the limited power resolution of the Watts up?
PRO to provide four significant digits. After calibration we
collected 2500 readings of the resistive load to confirm that
the power readings from the microcontroller were reliable.
We confirmed that they were approximately normally dis-
tributed (Shapiro-Wilk normality test, p > 0.1: large p-
values fail to reject the null hypothesis that the distribution
is normal [46]) and showed a small standard deviation
relative to the average value (about 0.7%).

To support running experiments in parallel and mea-
suring the power usage of multiple machines, we designed
our solution to make the multiple separate energy measure-
ments from a single microcontroller available via ethernet.
This allows the energy measurements to be dynamically
distributed to different machines as necessary. We accom-
plished this by connecting the output of the microcontroller
to the GPIO pins of a Raspberry Pi 3.9 We wrote a simple
tool to read the power measurements from the GPIO pins,
multiply by the time since the last reported measurement
to obtain energy, and make the result available via TCP/IP.
Note that the Raspberry Pi is simply a convenient system
to distribute the energy readings. It is straightforward to
connect the microcontroller to any system with a USB port
using a UART to USB cable, allowing that system to dis-
tribute measurements or simply consume them directly.

This setup permits the following procedure to measure

9. https://www.raspberrypi.org/

the energy consumed by a process: On the machine that will
run the process, (1) establish a TCP/IP connection to the
Raspberry Pi to receive continuous energy measurements,
(2) launch the process and record the energy while waiting
for it to complete, and (3) close the TCP/IP connection.
Although it seems that the overhead from networking could
impact our measurements, Langdon et al. have shown that
this effect is negligible at the energy and time scales of our
benchmarks [47]. All the code for the microcontroller, the
server process on the Raspberry Pi, and a simple script to
measure the energy of a process are available from a GitHub
repository.10 The completed apparatus, with capacity to
measure the energy consumption of 10 machines, can be
seen in Figure 3.

As of 2017, the hardware required to monitor the power
consumption of a single machine costs $244. However, a
single emonTx v3 node can simultaneously measure four
different current transformers. Thus, the additional cost
of measuring up to three more machines is only $47 per
current transformer. The final hardware cost to monitor four
machines is $385, just under $100 per machine. The custom
firmware for this hardware outputs data that is directly
compatible with POWERGAUGE and no additional support
hardware or software is required.

This system provides fast, reliable measurement of a
constant load, showing less than 1% deviation in the mea-
surement of reference light bulbs. However, the energy
usage of a computer system is much more complicated. In
the next section, we discuss measures to stabilize the system
load.

4.3 Configuring the System to Minimize Noise
In addition to precise measurements of energy consump-
tion, we also required a low level of noise in the energy
consumed by the systems running the search. That is, the
system should add minimal variation to the measured en-
ergy; the less variation that must be ascribed to the system,
the more certain we can be that any variation in energy level
is due to the optimization.

All systems used for these experiments were purchased
at the same time, to the same specifications, from a sin-
gle distributor. We used the Ubuntu Server 16.04.1 im-
age, to which we added only the packages (mostly li-
braries) needed to compile our benchmarks. Using a rel-
atively small base distribution and adding only minimal
packages reduced the chance that an unexpected cron job
or daemon service would run in the middle of a fitness
evaluation, adding an unexpected additional energy cost
to the individual being evaluated. Next, we disabled dy-
namic frequency scaling governors by adding the argument
intel_pstate=disable to the kernel boot arguments.
Frequency scaling is used by the system to adjust power
consumption (see Section 2.2.3), which can cause POWER-
GAUGE to interpret scaling as an optimized individual.
After the search, frequency scaling can be reenabled to take
advantage of the additional power savings.

However, hardware variation can add significantly to the
variability of energy readings between repeated executions
of the same (deterministic) program. Over the course of

10. https://github.com/dornja/powergauge

https://www.raspberrypi.org/
https://github.com/dornja/powergauge

7

Fig. 3: Final assembly of 10 circuits to be read by three
emonTx V3 devices, connected to three Raspberry Pis. Each
wall socket housing contains a current transformer clipped
around the hot wire and connected via the black and white
twisted wires to an emonTx (center). Each emonTx measures
the power usage of up to four connected wall sockets and is
connected to a Raspberry Pi (center right). Each Raspberry
Pi computes the energy usage for each channel of the con-
nected emonTx and the readings are available via TCP/IP
over ethernet.

preliminary runs, we detected unexpected variance that we
were unable to attribute to our measurement equipment, the
operating system, or frequency scaling. We narrowed down
the problem to energy usage variations on different CPU
cores. In particular, the average energy consumed while
running the benchmark on one core could be significantly
higher than when running the same benchmark on another
core. For example, on one of our systems we found about
0.4 J difference between running the benchmark on cores 5
and 6 (we restricted the OS to schedule only normal tasks to
core 2 in both cases). Since the measurements on the same
cores showed a standard deviation around 0.2 J, allowing
programs to be scheduled to either core would represent a
100% increase in the measurement uncertainty.

To mitigate this source of uncertainty, we restricted the
scheduler to always assign the fitness evaluation to one
core on a given system and to assign all other processes
to a second core. To determine which cores to use for each
experimental system we measured the energy used while
running a particular benchmark under each possible allo-
cation of two cores. We then selected the combination with
the smallest variation and used it for all experiments on that
system. Although we carefully restrict the scheduler and
select cores during the search, the subsequent evaluation

Input: p : Program
Input: FITNESS : Program→ Rn

Input: MaxCount : N
Input: PopSize : N
Output: Front : Pareto frontier of Programs

1: function POWERGAUGE(p, FITNESS,MaxCount,PopSize)
2: P ← {}
3: ADDTOPOP(P, p, FITNESS)

. Adds p to P and evaluates its fitness
4: count← 1
5: while |P | < PopSize do
6: q ← MUTATE(p)
7: ADDTOPOP(P, q, FITNESS)
8: count← count + 1
9: Ranks← NONDOMINATEDSORT(P)

10: while count < MaxCount do
11: Q← {}
12: while count < MaxCount ∧ |Q| < PopSize do
13: p1, p2 ← TOURNAMENT(P,Ranks, 2)
14: q1, q2 ← CROSSOVER(p1, p2)
15: r1, r2 ← MUTATE(q1),MUTATE(q2)
16: ADDTOPOP(Q, r1, FITNESS)
17: ADDTOPOP(Q, r2, FITNESS)
18: count← count + 2
19: Ranks← NONDOMINATEDSORT(P ∪Q)
20: P ← Ranks[1 : PopSize]
21: Front← {}
22: for all q ∈ GETFRONTIER(P) do
23: Front← Front ∪MINIMIZE(q, FITNESS)

24: return Front

Fig. 4: POWERGAUGE Optimization algorithm.

demonstrated that the discovered optimizations generalize
to other cores and other machines with the same hardware.

4.4 Remaining Sources of Noise

The measures described above mitigate most of the noise we
observe. However, they do not eliminate noise completely.
Some remaining potential sources of noise include environ-
mental factors such as ambient temperature, the physical
limitations of the measuring device, periodic system main-
tenance tasks scheduled by the Linux kernel, scheduling
delays between opening the TCP/IP connection and starting
the subprocess, and communication delays on the TCP/IP
or serial communication channels. This remaining noise
level is low enough that the GA used by POWERGAUGE
is able to effectively search for energy reductions (several
works have shown that GAs can be effective even with
noisy fitness functions [15], [16], [17]), but we still would
like to gain confidence that the modified programs have
a statistically significant energy savings. We discuss the
sampling step used by POWERGAUGE in Section 5.3.

5 POWERGAUGE OPTIMIZATION ALGORITHM

POWERGAUGE extends the Genetic Optimization Algo-
rithm (GOA) presented by Schulte et al. [19]. Like GOA,

8

POWERGAUGE operates on the compiled assembly pro-
gram representation after compiler optimizations have been
applied. We use this program to seed an initial population
for the GA as described in Section 2.1. To evaluate the fitness
of each individual in the population, we assemble it into a
binary and execute the binary on a representative workload,
measuring energy using the meter described in Section 4.
Unlike GOA, which rejected any program that failed to
produce identical output to the original, our approach rec-
ognizes that in some situations, trading slight differences
in output for further decreases in energy usage may be
desirable. We incorporate a multi-objective GA to optimize
this tradeoff explicitly.

As discussed in the introduction, a significant motivation
for our work is the optimization of data center applica-
tions. Although GOA was successful on smaller (100 kLOC)
benchmarks, the algorithm as presented does not scale well
to larger (10 MLOC) programs. For example, GOA running
on the blender program described below was unable
to construct the initial population before running out of
memory on our 16 GB system. Therefore, we adopted a
more memory-efficient representation for the experiments
reported here.

The following subsections detail our program represen-
tation and mutation operators (Section 5.1) and the multi-
objective GA (Section 5.2). In Section 5.3, we describe our
algorithm for minimizing differences between the original
and optimized programs while retaining the optimizations.
Finally, we elaborate the techniques we developed to better
manage the search space induced by large programs in
Section 5.4 and Section 5.5.

5.1 Program Representation

We represent programs in POWERGAUGE as a list of edits
to apply to the original program, similar to the “patch
representation” used in population-based program repair
techniques [48], [49]. Unlike the GOA representation, which
maintains an in-memory copy of the complete source for
each individual in the population, our representation re-
quires only one shared copy of the original among the entire
population. Edits are applied to the shared representation as
each individual is serialized to disk for fitness evaluation.
Since the number of edits applied to any individual is small
relative to the size of the program, this results in significant
memory savings.

Our technique also relaxes the assumption in GOA that
programs consist of a single assembly file. Our implementa-
tion can handle multiple assembly files, greatly simplifying
the process of preparing a program for optimization. Com-
bining assembly files for a large project into a single file
is non-trivial, e.g., the gcc “–combine” flag suggested for
use with GOA is no longer available in recent versions of
gcc. This change enables POWERGAUGE to store only in-
memory copies of files for which an edit is present in the
population; unmodified files can be reused directly on the
disk, providing further memory savings.

Following Schulte et al., we consider three types of edits
(mutations) to the program:

• Delete deletes a line in the program.

• Swap exchanges the positions of two lines in the
program.

• Copy duplicates a line in the program and inserts it
at a random location.

Our implementation uses one-point crossover on the
genome (list of edits). A random point is selected in each
of two individual genomes, and a new genome (child) is
constructed by combining the edits from the first portion
of the first representation with the second portion of the
other. A second child is constructed similarly, using the first
portion of the second representation and the second portion
of the first.

5.2 Multi-Objective Search

Our GA is described in Lines 2 to 20 of Figure 4. We
require as input the program p to optimize as well as an
n-dimensional fitness function. In our experiments, n = 2
and the function computes the energy used by the program
and the error, if any, in its output. Our algorithm also has
two parameters to manage the size of the search: MaxCount
indicates the total number of fitness evaluations to conduct
and PopSize indicates the number of individuals to maintain
in the population. In Lines 2 to 8, we initialize the popula-
tion with the original and PopSize− 1 mutants and evaluate
their fitness.

The main body of the GA consists of Lines 9 to 20. We
optimize both energy and error simultaneously to identify
those modifications to the original program that provide the
best tradeoffs between them. That is, we compute a Pareto
frontier, the set of modified programs such that every other
program in the search has worse energy or error (or both).
To this end, our multi-objective algorithm uses the non-
dominated sort from NSGA-II [50]. This sorting defines a
pair of values for each member of the population based on
their fitness values. In the tournament selection on Line 13,
these pairs are compared lexicographically to identify the
tournament winner. At a high level, the first element of
the pair indicates how close the individual is to the Pareto
frontier while the second gives greater weight to individuals
in less well-represented parts of the frontier.

After selecting two individuals using the above tourna-
ment selection procedure (two tournament rounds produc-
ing two winners), the crossover operator is applied with
50% probability. Next, the mutation operator is applied to
each child, and finally the fitness of the mutated children is
evaluated. Once PopSize new individuals have been gener-
ated, we then select the elements of the population the next
generation. Our algorithm is elitist, considering individuals
from both the previous and current generation together. Out
of these PopSize individuals, the best PopSize new or old
individuals are selected, according to the NSGA-II ranking,
which forms the next generation.

5.3 Edit Minimization

As was the case with GOA, optimized individuals likely
include edits that do not impact the energy use or measured
error of the program on the workloads used by the fitness
function. We would also like to gain confidence that the
energy reductions measured during the POWERGAUGE

9

search are true energy optimizations and not artifacts of
noise sampled during the search. We therefore use the same
strategy as GOA by including a final minimization step
augmented with sampling for each individual on the Pareto
frontier (Lines 21 to 23) to eliminate spurious edits that do
not contribute to the fitness metrics.

Our minimization algorithm uses Delta Debugging [51],
which takes as input a set of edits and identifies a 1-
minimal subset of those edits that maintains the optimized
performance as measured by the fitness function. The Delta
Debugging algorithm is linear time in the original number
of edits and requires evaluating the fitness of a new collec-
tion of edits at each step.

Because our energy measurements are stochastic, we col-
lect several samples and apply a one-tailed Wilcoxon Rank-
Sum Test [52] to determine whether the distribution of fit-
ness values is worse than the distribution of values collected
for the optimized variant. If the test for either objective
indicates a significant difference between the distributions
(p < 0.05), we treat that variant as “unoptimized.” In all
experiments described in this article, we collected at least 25
fitness samples for each Delta Debugging query, increasing
this number as necessary to increase the power of the statis-
tical test, always maintaining relative standard error below
0.01. We found that starting with 25 energy measurements
and using the relative standard error threshold provided
a good tradeoff between runtime and smaller minimized
genomes. At the end of the Delta Debugging stage, we are
left with a 1-minimal set of edits to the original program
that results in a statistically significant reduction in energy
consumption.

5.4 Search Space Reductions

The search space for our algorithm consists of all programs
generated by a finite series of edits. Since Copy and Swap
each involve two independently selected instructions, the
search space for a program with n instructions using up to
k edits contains O(n2k) programs. For example, the libav
benchmark compiles into 23 M lines of assembly code. Since
Copy can copy any line to any location, this means that
there are 5.2 × 1014 possible copies to consider. Many of
these copies can result in programs that fail to build (e.g.,
duplicate labels in a single file) or almost certainly have no
or negative effect (e.g., copying an instruction into the data
segment). Writing, assembling, and running programs that
cannot have improved fitness is wasted effort for the search.
We investigate several ways to avoid this cost.

• We remove duplicate instructions from the set of in-
structions that Copy can insert. The magnitude of this
reduction can be seen in the “Unique Lines” and “%
Unique columns” of the Table 1. It is most dramatic
for the largest benchmarks, because redundancies
increase with program size.

• We disallow the insertion of code directly after as-
sembly directives or labels that are not used as jump
targets. For example, inserting an instruction after
line 1 in Figure 5 has the same effect as inserting it
after lines 2 or 3 (although this may be difficult to
determine manually given the alignment directives).

1 jle .L91
2 .p2align 4,,10
3 .p2align 3
4 movl %r13d, (%r14)

Fig. 5: Sample of assembly from blackscholes bench-
mark. Copying an instruction after line 1 has the same effect
as copying it after lines 2 or 3 instead.

This reduction considers only the insertions after
line 1.

• We disallow copying or deleting labels. Either copy-
ing a label into a file where it already exists or delet-
ing a label referenced by some instruction produces a
program that fails to build. Copying a label into a file
where it is never referenced produces no semantic
change.

• We allow Swap to operate on labels only if the ex-
change is limited to a single file. Swapping a label
into a different file would either have no effect (if it
is swapped with an identical label in another file) or
fail to build (because a needed label was removed
from a file).

5.5 Profiling

Our search space reductions remove from consideration
programs that our simple static analyses show cannot im-
prove fitness. However, they still allow edits to portions of
a program not visited by the target workload. For example,
inserting an instruction into a program region that is not
executed is unlikely to affect energy usage. We therefore
investigate the use of execution profiles to capture the run-
time behavior of the program and increase the probability
of making edits that impact fitness. The insight behind our
use of execution profiles is that beneficial edits in more
frequently-executed regions of the code are likely to have
a greater impact on the fitness than beneficial edits in less-
frequently executed regions.

There has been a significant amount of work using pro-
filing information to guide software optimizations (e.g., [25],
[26], [53]). GOA used sample-based profiling combined
with Gaussian smoothing to collect approximate execution
counts to guide the GA [54]. We observe, however, that a
profile can be collected once and reused throughout the
search, reducing the need for sampling. We used Pin [55]
to measure the exact execution count of each basic block
in the compiled binary and then extrapolated the execution
count of each instruction. Although profiling with Pin does
take time, we found this cost to be reasonable. Collecting
profiles for each benchmark takes less than 300× the run-
time of a normal execution. As can be seen in Table 1,
our longest-running benchmark is vips, which normally
executes in 18.1 seconds. We were able to collect its profile in
approximately 90 minutes. To map between the instruction
addresses from our Pin tool and the lines of assembly code,
we used the output of GNU objdump to align instruction
addresses with the contents of the assembly files first by
function name, then by instruction mnemonic.

10

Unique Executed

Benchmark Assembly Lines Lines % Lines % Tests (s) Error Metric

blackscholes 12,437 3,504 28 637 5 2.7 RMSE
blender (car) 17,559,869 1,574,349 9 256,687 1 17.6 Lab distance
blender (planet) - - - 221,397 1 10.6 Lab distance
bodytrack 198,462 62,544 32 23,746 12 3.3 RMSE
ferret 80,811 26,883 33 15,181 19 6.4 Kendall’s τ
fluidanimate 7,511 4,436 59 3,828 51 2.7 Hamming distance
freqmine 26,281 12,115 46 10,404 40 7.4 RMSE
libav (mpeg4) 22,831,124 698,445 3 42,747 0 1.3 Lab distance
libav (prores) - - - 34,634 0 2.7 Lab distance
swaptions 55,753 14,911 27 2,911 5 3.2 RMSE
vips 822,655 160,075 19 24,000 3 18.1 Lab distance
x264 205,801 58,754 29 41,063 20 5.7 Lab distance

Total lines 43,128,694 2,836,551 677,235

TABLE 1: . Benchmarks used for our experiments. The “Assembly Lines” column shows the number of lines of compiled
assembly for each benchmark. The “Unique” columns show the number and percentage of unique lines in these sources,
while the “Executed” columns show the number and percentage of lines executed in each of the test cases. The “Tests (s)”
column shows the runtime of a single test execution for each test input, while the “Error Metric” shows the error metric
used for each test.

For the experiments described in Section 7.2 the prob-
ability that an instruction would be the target of a Delete,
Swap, or Copy was simply the relative execution count of
that instruction divided by the total number of instruc-
tions executed. (In the case of Copy, this weighting is used
only to select the insertion location, not when selecting the
line to be inserted.) This excludes unexecuted lines from
the search space as well as directing the search towards
more frequently executed lines. We show the number of
instruction locations executed in each benchmark in Table 1.
Overall, our profiling eliminated almost 99% of lines from
consideration.

6 EXPERIMENTAL SETUP

We investigate the following research questions:

RQ1 Does POWERGAUGE discover energy reduc-
tions with human-acceptable levels of error?

RQ2 Do the search-space reduction techniques (Sec-
tion 5.4) and profiling (see Section 5.5) allow
the search to find useful optimizations more
effectively?

RQ3 How do the optimizations found by POWER-
GAUGE compare to less-general techniques
such as loop perforation?

As described in Section 5, POWERGAUGE contains sev-
eral features designed to scale to larger programs. Our
experiments investigate the optimizations it found and the
time it took. To provide a meaningful comparison to previ-
ous work, we evaluate our technique on the PARSEC bench-
mark suite [11] used by loop perforation and by Schulte et
al., and we evaluate on two larger applications.

6.1 Benchmarks

We chose blender and libav to investigate the scalability
of POWERGAUGE. blender is a large 3D computer graph-
ics application supporting a wide variety of tasks such as

scene and character design as well as physics simulation
and rendering and is used for visual effects in the movie in-
dustry.11 libav is a collection of audio and video processing
libraries for manipulating and encoding multimedia. It is a
fork of the FFmpeg encoder, which is used as a backend
for projects such as VLC and video streaming websites
like YouTube.12 Both rendering and encoding software is
often used in large scale server environments, and blender
and libav are mature, production-scale programs that we
believe represent realistic targets for optimization using our
tool.

Table 1 lists the benchmarks we used for evaluation. Be-
sides two workloads for blender and libav, we included
the PARSEC benchmarks [11] evaluated in earlier energy
optimization experiments [10], [19]. We note that libav
and blender together are 28× the size of the PARSEC
benchmarks combined, allowing a more indicative assess-
ment of POWERGAUGE’s scalability to larger datacenter-
scale applications [12].

POWERGAUGE considers both the energy used to run
each test input and the error in the output produced. For all
benchmark programs, we used the unmodified program to
generate reference outputs, which we used to measure the
output error of every individual during the search. Six of
our benchmarks (two workloads apiece for blender and
libav, plus vips and x264) produce image or movie files
as their primary output. We treated each movie as a se-
quence of one image per frame. For all of these benchmarks,
we convert the image from RGB to the Lab color space,
a perceptually uniform color space [56]. We then compute
the total Euclidean distance between all pairs of pixels in
the output and reference images. The primary outputs for
blackscholes, bodytrack, freqmine, and swaptions
benchmarks are vectors of floating point numbers (integer
in the case of freqmine). For these benchmarks, we simply
compute the root mean square (RMS) error between the

11. http://blender.org/news/hardcore-henry-using-blender-for-vfx/
12. http://multimedia.cx/eggs/googles-youtube-uses-ffmpeg/

http://blender.org/news/hardcore-henry-using-blender-for-vfx/
http://multimedia.cx/eggs/googles-youtube-uses-ffmpeg/

11

program output and the reference generated by the original
program. The ferret benchmark computes a number of
image similarity queries; the output consists of one list of
similar images, ranked by similarity, for each query. Our
error metric for ferret computes Kendall’s τ , which quan-
tifies the similarity of order between two sequences. Finally,
fluidanimate writes out a C struct; since this admits less
human intuition about the meaning of “acceptable” levels of
error, we simply compute the Hamming distance between
the two files.

Each benchmark has an associated indicative workload
used as a target for our optimizations. In the case of the
PARSEC benchmarks the indicative workload is induced
by the test suite. For the larger applications, the indicative
workload was adapted from provided tests to represent
datacenter-scale use. For example, the blender indicative
workload consists of rendering a single frame of a movie,
because rendering each frame is logically independent and
is typically carried out in parallel on separate machines [57].

Each benchmark is compiled to assembly using gcc;
POWERGAUGE operates on the resulting assembly. For
experiments that use profile information, the profile is gath-
ered from an execution of the indicative workload (see
Section 5.5).

6.2 Human Acceptability

In practice it is difficult to create an error metric that
captures all of the properties that a human considers when
making subjective judgments. For example, our simple error
metric for images sums the Euclidean distance of each pixel
in the Lab color space from its value in the original image.
This error metric would assign a large error to an image that
is slightly shifted from its original location, even though it
would likely be considered acceptable to a human making a
subjective judgment (see Section 7.1 for a concrete example
of this scenario).

While in the particular domain of computer graphics
there exist error metrics that can account for such mo-
tion (e.g., the Earth Mover’s Distance [58] or a Structural
Similarity Index Metric (SSIM) [59]), there are two main
problems with a general approach to more precise error met-
rics. First, many of our benchmarks require domain-specific
knowledge (e.g., domain-specific models of readability have
required hundreds of annotators [60]), to judge acceptability
and domain experts would be needed to train or create
models. Second, since every individual created during a
search must be measured with the error metric, we would
like to minimize the time cost of measuring error by using
efficient error models.

A strength of POWERGAUGE is that it can find op-
timized programs with human-acceptable levels of error
despite imperfect error metrics, because GAs can tolerate
a noisy fitness function [15], [16], [17]. A programmer can
create a simple error metric for use with POWERGAUGE,
then a domain expert can be consulted after the search to
subjectively judge the outputs of 10-20 optimized programs
created during the search, selecting the most efficient pro-
gram with acceptable output.

The outputs of the programs on the Pareto frontiers
discovered by the POWERGAUGE searches were manually

inspected to judge human-acceptable levels of error in our
benchmarks. Subjective judgment was relatively straightfor-
ward for blender, bodytrack, libav, vips, and x264,
since all of these benchmarks output an image or video
that can be directly inspected and compared to the original.
Examples of output from these types of benchmarks judged
to be human-acceptable can be seen in Figure 1 and Figure 6.

Other benchmarks required different strategies to judge
acceptability. The blackscholes and swaptions bench-
marks output a list of calculated prices and standard errors
for financial instruments in a simulated market. The authors
considered output to be acceptable if the calculated prices
were within 5% of the values computed by the unmodified
program. This 5% error bound is more strict than the 10%
used by a similar study [33]; the POWERGAUGE user may
choose any appropriate error level. The ferret benchmark
takes a list of images as input and uses content-based search
to find similar images in its database, outputting a ranked
list of the top ten matches. Output of a modified program
was considered human-acceptable if, for each of the 64 test
queries, there were at least five images that appeared in both
its output and the output of the original program. Finally,
freqmine takes as input a list of tokens and outputs their
frequency. We considered frequency counts within 5% of the
correct value to be human-acceptable. The last benchmark,
fluidanimate, did not allow for a subjective judgment of
human acceptability. fluidanimate outputs a serialized
data structure, and we were unable to manually inspect its
output in a meaningful way.

Although the authors are not experts in image pro-
cessing or finance, the output of POWERGAUGE allows
developers to select the program that has the optimal energy
consumption to error ratio for specific users or use cases. For
example, an image encoded for viewing on small mobile
screens and an image encoded for viewing on a large high-
resolution display can likely contain different levels of error,
and developers for each of these applications might use dif-
ferent optimized programs. Even if any error is completely
unacceptable, in many cases POWERGAUGE is still able to
find energy reductions.

6.3 Parameters and Hardware Specifications
We use a value of 512 for PopSize and apply exactly one
mutation operator to each child after the crossover stage.
The number of individuals created varied per benchmark
— we targeted a runtime of approximately two weeks for
each. With this target in mind, we chose 16,384 individuals
for libav (mpeg4), 32,768 individuals for all blender
benchmarks and libav (prores), and 65,536 individuals
for the remaining benchmarks. Note that the total runtime
of POWERGAUGE is not only a function of the runtime
values in Table 1, but also of factors including the time
to build and to estimate output error. It is also possible
that a generated program can enter an infinite loop upon
execution. Because of this, we set a maximum runtime of
60 seconds for each individual during fitness evaluation.
Including test case timeouts to guard against infinite loops
is a standard practice when using GAs to generate and
validate new programs [61].

Energy measurements were made using the prototype
apparatus described in Section 4.3 on a Dell PowerEdge

12

% Energy Red. % Energy Red.
Baseline Best

Program 0% Error Accept. 0% Error Accept.
blackscholes 91 91 92 92
blender (car) 0 0 1 10
blender (planet) 0 0 0 0
bodytrack 0 0 0 59
ferret 0 30 0 30
fluidanimate* 0 0 0 0
freqmine 0 0 8 8
libav (mpeg4) 0 0 0 36
libav (prores) 3 3 3 92
swaptions 39 68 39 68
vips 21 29 21 29
x264 0 65 0 65
average 13 24 14 41

TABLE 2: High-level summary of the energy reductions
found by our technique. The “Baseline” columns show
the results of the experiments when run without search
space reductions or profiling, while the “Best” columns
contain the best results of all experiments, including those
run with search space reductions, profiling, or both. The
results are subdivided into “0% Error”, where the output
of the optimized program is identical to the output of the
original program, and “Accept.”, where a human-acceptable
level of error is allowed in the output. The fluidanimate
benchmark has no acceptable error level because its output
is a serialized binary and this error metric is not suitable for
subjective assessment. We find optimizations in 10 out of
12 benchmarks and an average energy reduction of 41 when
allowing for human-acceptable error and using search-space
reductions and profiling.

R430 server with a 3 GHz Intel E5-2623 processor and 16 GB
of ram.

All of our modified benchmarks and the results of our
experimental runs are available online.13

7 RESULTS

In this section, we address each of the research questions
posed in Section 6.

7.1 Human Acceptability
To answer RQ1, we ran POWERGAUGE on each benchmark
and measured the energy reductions found at 0% error. We
then manually inspected the output of programs that had
larger energy reductions, but contained some error and used
the criteria described in Section 6.2 to determine if they
were human-acceptable. The results of these first searches
are shown in the “Baseline” columns of Table 2.

We first note that POWERGAUGE is able to find op-
timizations for the blackscholes, libav (prores),
swaptions, and vips benchmarks when the output is re-
quired to be identical to the original program. The “Baseline:
0% Error” column of Table 2 shows that POWERGAUGE
reduced the energy consumption of our benchmarks by an
average of 13% for this restrictive case. This result shows

13. http://dijkstra.eecs.umich.edu/projects/powergauge/results.
tar.bz2

that POWERGAUGE is effective even when no reduction in
output quality can be tolerated.

When allowing for an acceptable amount of error, POW-
ERGAUGE finds additional energy reductions. For the
swaptions and vips benchmarks, energy consumption
was reduced by an additional 29% and 8% respectively.
Energy reductions were also found for the ferret and
x264 benchmarks. For blackscholes, bodytrack, and
fluidanimate POWERGAUGE found energy reductions
when allowing for error, but we judged none of the outputs
to be human-acceptable. On the remaining benchmarks,
POWERGAUGE was unable to find any energy reduction
without incorporating the algorithmic improvements dis-
cussed in Section 5.4 and Section 5.5. We discuss the results
of augmenting POWERGAUGE with these features in Sec-
tion 7.2.

An example of how allowing for a small amount of
error can lead to additional energy reduction can be seen
in Figure 6. We observe that the images are subjectively
very similar, especially in a use case where the output is
consumed by human eyes. The vips image has a slight ver-
tical deformation or stretching. As a result, the pixels do not
line up exactly and there is slight error in each individual
pixel (as shown in the inset heat map). In this article we
intentionally consider simple, indicative error metrics that
represent a worst-case scenario for the search. Allowing
error in the vips benchmark allowed POWERGAUGE to
find an additional 5.3% energy reduction at the error rate
corresponding to the image in Figure 6 when compared to
the maximum energy reduction with no allowed error.

This case study provides a concrete example of POW-
ERGAUGE enabling additional energy reductions with
human-acceptable levels of error. This, combined with the
positive results for ferret, swaptions, and x264 leads
us to conclude that POWERGAUGE can discover energy
reductions with human-acceptable levels of error in many
cases.

7.2 Search Space Reductions and Profiling

To address RQ2, we ran POWERGAUGE on each bench-
mark in four different configurations: without search space
reductions or profiling, with search space reductions only,
with profiling only, and with both. The best results from
each of these four runs is shown under the “Best” columns
of Table 2.

Two of the larger benchmarks, blender and libav,
are representative of software that is normally deployed
in server farms. Since these benchmarks have much larger
codebases than the PARSEC suite, we were prompted to
modify the POWERGAUGE algorithm to target scalability.
The codebase for libav is particularly large, at 22.8 MLOC,
and thus POWERGAUGE has an extremely large search
space. We are able to greatly reduce the number of al-
lowed edit locations by applying search space reductions
and profiling as discussed in Section 5.4 and Section 5.5.
For example, without these reductions POWERGAUGE can
apply the Delete operator to any of the 22.8 MLOC in libav,
but after profiling this is reduced to only 34,634 lines in the
case of the prores input, a search space reduction of 99.8%.
The results of searches with profiling and reductions are

http://dijkstra.eecs.umich.edu/projects/powergauge/results.tar.bz2
http://dijkstra.eecs.umich.edu/projects/powergauge/results.tar.bz2

13

Fig. 6: vips comparison with allowed error. The image on the left is the reference and the image on the right is the output
of an individual with 3% allowed error. Inset on the right is a comparison with red pixels corresponding to differences
between the images (there is a slight difference in the vertical stretching between the two images). By allowing this level of
error, POWERGAUGE is able to find a program that reduces power consumption by an additional 5.3%.

0% 50% 100%

0%

20%

40%

60%
libav: baseline

0% 50% 100%

0%

20%

40%

60%
libav: reductions

0% 50% 100%

0%

20%

40%

60%
libav: profile

0% 50% 100%

0%

20%

40%

60%
libav: both

Fig. 7: Results of the multi-objective search on the libav (prores) benchmark when using POWERGAUGE with search
space reductions and profiling. As in all Pareto frontiers in this article, the X axes indicate the percent energy reduction
achieved and the Y axes indicate error. The leftmost figure is the Pareto frontier after running POWERGAUGE without
search space reductions or profiling. From left-to-right, the next three figures are with search space reductions, with
profiling, and with both.

shown under the “Best” columns of Table 2 and an example
of improved Pareto frontiers from these searches is shown
in Figure 7.

At 0% error, we observe that POWERGAUGE now dis-
covers optimizations for the blender (car), freqmine,
and libav (prores) benchmarks. While using the com-
bination of search space reductions and profiling and
allowing for human-acceptable levels of error, POWER-
GAUGE finds greater improvements for the blender
(car), bodytrack, freqmine, and both libav bench-
marks than without these algorithmic modifications. On
average POWERGAUGE discovers energy reductions of 41
as compared to the 24% found when these optimizations

were not used.

An example of the search improvements that result from
these algorithmic changes can be seen in Figure 7. This fig-
ure shows the Pareto frontier results of searches performed
on the libav (prores) benchmark. The leftmost image
is the Pareto frontier after running POWERGAUGE without
search space reductions or profiling, and from left-to-right
the next three figures are with search space reductions, with
profiling, and with both. Note that in these graphs, the X
axes indicate the percent energy reduction achieved and the
Y axes indicate percentage error using the per-benchmark
error metric. An ideal optimization would introduce no
error while using minimal energy and would therefore fall

14

Program POWERGAUGE (%) Loop Perforation (%)
blackscholes 96 92
bodytrack 82 62
ferret 86 70
swaptions 82 52
x264 85 50
average 86 65

TABLE 3: Percentage of the energy-error space dominated
by the Pareto frontier induced by each technique. Larger
values are better and indicate greater energy savings and/or
lower error.

in the lower-right corner of our Pareto frontiers. The left-
most image in the figure shows the results of a search that
discovered only one program containing an optimization.
The search corresponding to the second image from the left
provides a developer with more options and allows one
to choose a binary that outputs a lower-quality video but
saves larger amounts of energy. The results of this search
are not as desirable as the results of the two rightmost
searches, corresponding to running POWERGAUGE with
only profiling and with both profiling and search space
reductions respectively. These two searches also allow for
error vs. energy tradeoffs, but much less output quality
must be conceded to achieve energy reductions equal to
those provided by the previous search performed with
search-space reductions alone (i.e., the points on the Pareto
frontiers fall closer to the lower-right corner of the graph).

We note that combining both search space reductions
and profiling does not automatically lead to the best results.
For example, in our experiments with the freqmine bench-
mark, we observed an 8% improvement when using search
space reductions alone; no improvements were found when
profiling was used. We suspect that in this case profiling
may have led the search away from locations in the code
that lead to optimizations.

The improved search results shown in Table 2 and Fig-
ure 7 lead us to conclude that our search space reduction
techniques and profiling allow POWERGAUGE to find use-
ful optimizations more effectively.

7.3 Comparison to Other Approximate Techniques
In this section we address RQ3, and compare POWER-
GAUGE to other, more specialized approximate computing
techniques.

7.3.1 Loop Perforation
We directly compare our results to the loop perforation
techniques proposed by Sidiroglou et al. [10], which cites
energy savings as a potential use of the technique. Because
the paper only reports their results with respect to runtime,
we reimplemented their technique and reevaluated while
measuring energy consumption. For each benchmark for
which their paper describes particular loops to perforate
we replicated their technique as closely as possible. Loop
perforation is performed by skipping iterations of a loop at a
specified rate. For example, a perforation rate of 0.25 means
that one out of every four loop iterations is skipped. For this
comparison and following their paper, we enumerated all

possible combinations of perforations of the specified loops
at the previously published perforation rates (0.25, 0.50, 0.75,
and 1 iteration). Since our input to the x264 benchmark did
not cover some of the specified loops, perforation had zero
effect in several cases. To evaluate loop perforation’s effec-
tiveness on this benchmark more accurately, we compare
our results on the x264 benchmark to the results of applying
loop perforation as specified in an earlier paper [33], which
perforates functions that are covered by our input.

These results are shown via orange squares in Figure 8.
Recall that in these graphs we would like optimizations to
fall in the lower-right corner of the graph, simultaneously
minimizing both error and energy consumption. Consider
the x264 subgraph and note that programs generated by
POWERGAUGE are consistently closer to the lower-right
corner than the programs generated by loop perforation,
suggesting that we are able to find better optimizations.
However, we acknowledge that it may be difficult to com-
pare all of the graphs visually (e.g., the bodytrack and
ferret subgraphs). Thus, we adapted the hypervolume
indicator [62], a metric often used to evaluate the quality
of a set of non-dominated points, to our experiments. To
compare two Pareto frontiers, we calculate the fraction of
the space between 0 and 100% energy and error that is
dominated by the points in each Pareto frontier. A hypothet-
ical optimization that achieved 100% energy improvement
with no error would dominate all possible points and have a
score of 1 by this metric. The original program dominates no
points and has a score of 0. The values for loop perforation
and our technique are shown in Table 3. We find that
POWERGAUGE performs better than loop perforation on
all the benchmarks for which we have both.

POWERGAUGE often finds optimizations in the form
of loop perforations. In blackscholes, POWERGAUGE
finds exactly the same power savings at zero error as loop
perforation. This is because the blackscholes benchmark
deliberately performs redundant calculations in a loop. Both
techniques short-circuit this loop, but note that POWER-
GAUGE is able to find even more power savings than loop
perforation when some error is allowed. In bodytrack,
swaptions, and x264, POWERGAUGE finds more ef-
fective optimizations at low error rates. On the ferret
benchmark, loop perforation slightly outperforms POW-
ERGAUGE at low error rates, but POWERGAUGE finds
greater overall power savings.

In addition to more common loop perforation tech-
niques, such as skipping every nth iteration of a loop or ter-
minating a loop early, POWERGAUGE’s general mutations
can lead to other types of loop modifications. For example,
when a compiler performs loop unrolling, several copies
of the loop body are created to speed up execution time.
Each of these unrolled loop bodies can be independently
modified, allowing POWERGAUGE to insert code that only
executes in a specific loop iteration .

7.3.2 Precision Scaling
Precision scaling techniques trade off accuracy for better
performance [34], [35]. We compared to one particular form
of precision scaling by identifying benchmarks that perform
floating point calculation and changing the precision of the
floating point numbers. bodytrack, ferret, swaptions,

15

0% 50% 100%

0.0%

0.1%

0.2%

0.3%

0.4%
blackscholes

0% 50% 100%

0.00%

0.05%

0.10%

0.15%
bodytrack

0% 50% 100%

0%

5%

10%
ferret

0% 50% 100%

0%

10%

20%

30%

fluidanimate

0% 50% 100%

0%

50%

swaptions

0% 50% 100%

0.0%

0.1%

0.2%

0.3%

x264

Our Technique Loop Perforation Precision Scaling

Fig. 8: Comparison of our technique with with loop perforation and precision scaling. The X axes indicate the percent
energy reduction achieved; the Y axes indicate the per-benchmark error metric. The baseline original program has 0 error
and 0% energy savings (lower left corner). Points in the lower-right indicate optimizations and points in the upper-right
corner indicate tradeoffs between energy and output fidelity. Loop perforation and precision scaling results were evaluated
using our energy meter and error metrics.

vips, and x264 all use double-precision floating point by
default, while fluidanimate uses single-precision floating
point by default. For bodytrack, ferret, swaptions,
and x264, all double-precision floating point calculations
and variables were changed to single-precision, while for
fluidanimate all single-precision floating point calcula-
tions were changed to double-precision. This simple ap-
proach to precision scaling represents a common tech-
nique often considered by developers; for example, the
blackscholes, fluidanimate, and swaptions bench-
marks already use explicit compile-time typedefs to control
precision scaling in this manner.

The results are shown in Figure 8 and indicated by a
purple diamond. Uniformly changing the precision pro-
duced interesting tradeoffs for all benchmarks except vips,
for which it resulted in error far in excess of any other
discovered optimization. In the cases of swaptions and
x264, precision scaling had little noticeable effect, while for

bodytrack it yielded an energy savings of approximately
2%, but at an error greater than optimizations found by
POWERGAUGE that lead to an power savings of over
40%. In fluidanimate, increasing the precision lead to a
higher power usage. Precision scaling was most effective
with the ferret benchmark, where it lead to a 14% power
savings at zero error (suggesting that the original developers
should perhaps have used single-precision floating point).
We note, however, that POWERGAUGE was able to find
much greater power savings when some error is allowed.
For example, POWERGAUGE finds a 26% power savings at
3% error in ferret as compared to the 14% achieved by
precision scaling alone.

The results shown in Table 3 and Figure 8 lead us
to conclude that POWERGAUGE compares favorably with
loop perforation and precision scaling.

16

8 DISCUSSION

In this section we first discuss the benchmarks where we
were unable to report optimizations from POWERGAUGE,
even after allowing for error and applying search space
reductions and profiling. Next, we discuss the nature of the
optimizations found by POWERGAUGE. We then analyze
the similarities and differences between optimizing for en-
ergy consumption and optimizing for runtime. Finally, we
address threats to validity.

8.1 Applicability to Benchmarks
Although POWERGAUGE successfully discovers optimiza-
tions for 10 out of 12 of our benchmark programs, it did
not find optimizations for the “planet” input to blender
or fluidanimate. For many of the other benchmarks,
POWERGAUGE was unable to find optimizations without
allowing for any subjective change in the output quality,
but it was able to find energy reductions for most of our
benchmarks when some error is allowed. We look deeper
into the reasons for POWERGAUGE’s performance on the
two remaining benchmarks in this subsection.

fluidanimate: Even though POWERGAUGE did
not find any energy reductions at human-acceptable levels
of error for the fluidanimate benchmark, it was still
able to find Pareto-optimal tradeoffs between error and
energy reductions with respect to our error metric (see the
fluidanimate plot in Figure 8). Since we were unable to
judge the human-acceptability of error in fluidanimate
due to its output format, we considered any error at all to
be unacceptable. However, the existence of a Pareto frontier
suggests that with more domain knowledge we might be
able to make subjective judgments to find acceptable trade-
offs and save energy. Note that the user’s ability to make
judgments about the output quality of a program is an
assumption of the technique presented in this article, and
fluidanimate was included in our evaluation to allow
for comparison to GOA, which was also unable to find
optimizations for this benchmark [19].

blender: In contrast, the searches for blender
optimizations using the “planet” input did not expose any
Pareto-optimal tradeoffs at all. This is surprising: it is easy
to contrive Pareto-optimal but unacceptable programs (e.g.,
a program that outputs an empty file and immediately
terminates would use a very small amount of energy at a
very high error), but none were observed after the searches.
When examining the logs of the search, we discovered
that POWERGAUGE found a program modification that
produced the correct output and a large energy savings
(approximately 14%), however the behavior of this program
is non-deterministic (i.e., it occasionally crashes). Because of
the large fitness in both error and energy consumption, this
modification prevented the creation of other, less optimal
programs. During the minimization stage of the search, the
edits were rejected due to the nondeterministic behavior
that was discovered when the program was executed sev-
eral times. One possible solution for this problem would be
the reevaluation of programs generated during the search to
eliminate programs with nondeterministic behavior, how-
ever this would greatly increase the search time. Since we
only observe this behavior on one input for one of our

benchmark programs we leave the solution of this problem
for future work.

8.2 Nature of Optimizations

We have explored optimizations created by POWERGAUGE
for many of our benchmarks in an effort to identify impor-
tant properties of input programs or common modifications
that might be applied by compilers or programmers in lieu
of a stochastic search, but there was no single modification
that seemed to be most common. The observed optimiza-
tions ranged from modifying arguments in function calls
to changing elements of a convolution matrix to more tra-
ditional techniques such as loop perforation. We see this
wide variety of found optimizations as an advantage of the
technique presented in this article.

8.3 Energy vs. Runtime

A common observation of work in energy optimization is
that many reductions in energy consumption are the result
of reducing execution time rather than performing energy-
specific optimizations. We observe that this is the case: in
our experiments we found a 0.993 correlation between run-
time and energy reductions of our optimized programs. De-
spite this strong correlation, we still believe that optimizing
with respect to an energy meter is well motivated. Although
discovering novel energy-specific optimizations would be
interesting, we are primarily focused on minimizing overall
energy costs by reducing as much energy consumption as
possible.

The high correlation between energy reduction and
runtime reduction seems to indicate that we could have
optimized with respect to runtime alone and elided the
energy meters entirely, but this can introduce problems.
First, previous work has found program modifications that
increase runtime but reduce the overall energy consumption
(see the GOA results for the ferret benchmark [19]), and
it is also known that instruction reordering can have a
positive effect on energy consumption without changing
runtime [39]. Runtime cannot account for these optimiza-
tions and can even lead the search away from them, thus
we must use measured energy if we wish to allow their dis-
covery. Second, even when using runtime as a naı̈ve model
of energy consumption during the search, we must verify
the energy consumption of the final program. Although
it is difficult to imagine energy-specific optimizations of
programs written by humans and optimized by compilers,
it is much easier to conceive of ways that a stochastic
search can create two programs that have the same runtime
but consume different amounts of energy. For example, in
preliminary experiments, we observed POWERGAUGE pro-
gram modifications that enabled or disabled multithreading.
A further modification could create a program that runs a
computation on a single core while launching superfluous
threads on other cores, but terminate before the primary
computation completes.

These problems do not necessarily completely preclude
the use of runtime as a fast, inexpensive energy model. It
could be possible to use both an energy meter and runtime
in a hybrid approach, where the search is performed with

17

respect to runtime, but the population of programs is oc-
casionally sampled and verified against a physical meter.
This would allow for a search to be parallelized on many
unmonitored systems that submit sampled programs to a
test server connected to an energy meter for verification.

8.4 Threats to Validity

Although our experiments show that our technique is able
to find energy optimizations in indicative programs at vary-
ing levels of output fidelity, our results may not generalize.
We identify the following threats to validity:

8.4.1 Relaxed Semantics and Error
Since our technique often performs transformations that do
not preserve semantics, it is possible that an optimization
can change program behavior in an undesirable way. We
mitigate this problem by incorporating an error metric into
our search and direct POWERGAUGE to minimize the in-
duced error. If desired, a developer can specify particular
program properties to preserve by incorporating them into
the error metric (e.g., assigning an infinite error to any
violation of a key invariant or assertion).

8.4.2 Noise in Energy Measurement
Although we attempt to improve upon our previous tech-
nique by measuring instead of modeling energy, we find
that energy measurements tend to be noisy. Because of this,
it is possible that our algorithm interprets fluctuations in
energy readings as optimizations. We mitigate noise in en-
ergy measurement by reevaluating the energy consumption
of both the original and optimized programs and using
the Mann-Whitney U-test [52] to verify the power savings
reported by our tool. All of the final optimizations reported
in this article (e.g., points on Pareto frontiers, etc.) are the
average of at least 25 measurements at the wall socket.

8.4.3 Representative Benchmarks
The PARSEC suite [11] and the libav and blender bench-
marks were selected to be representative of types of applica-
tions typically deployed in data centers. However, success
on these benchmarks does not imply that POWERGAUGE
would be successful at finding energy optimizations on all
applications deployed in a data center. Note that POW-
ERGAUGE is input agnostic, and its only requirements
for an input program are compiled assembly and a test
suite. Unlike techniques such as loop perforation [10], [33]
or precision scaling [34], [35], POWERGAUGE does not
require specific code structure such as loops or floating point
numbers, nor does it require guidance from developers
to identify possible optimization locations. This, combined
with observations that the optimizations found by POW-
ERGAUGE do not follow an identifiable pattern, increases
our confidence that it can be applied to a wide variety of
software.

There are some applications where POWERGAUGE is
unlikely to be an appropriate technique. For example, we
make the assumption that the state of the system as a
whole is identical at the start of every test run, but this
is not always practical. In a database system where hard

disks consume a large amount of energy, the state of on-
disk cache is likely to change after an access during a test,
which could affect the energy consumption of a subsequent
access. Addressing this problem could require modifying
the testing framework or the POWERGAUGE algorithm.

8.4.4 Architecture
Another possible threat to validity is that our experimental
setup only includes Intel Xeon CPUs. It is possible that op-
timizations targeted for one architecture will not generalize.
We note, however, that this is a concern for optimizations in
general and is not specific to our technique. In addition,
Schulte et al. evaluated a similar technique to POWER-
GAUGE on both AMD and Intel CPUs, and were able to
find optimizations for benchmarks run on both [19]. We also
consider a data center-style use case in which the hardware
and an indicative workload are known in advance [12], [63].

9 CONCLUSION

Data center scale computation accounts for a significant
fraction of energy consumption and has a growing eco-
nomic impact on business. Although there are advances in
hardware and compilers that partially address this problem,
software perspectives on energy reduction are relatively
unexplored. Advances in search-based software engineering
have shown that automated program optimization tech-
niques can successfully be applied to the domain of energy
reduction, but current techniques do not scale and can only
improve modeled (as opposed to measured) energy.

By leveraging insights from search-based software engi-
neering and profile-guided optimization, we present POW-
ERGAUGE, a software-level energy-reduction that scales to
much larger applications than were previously possible. The
search is guided by a measurement device that combines of
off-the-shelf components and specialized firmware to create
an inexpensive device capable of monitoring the energy
consumption of server systems. We also present large search
space reductions and use precise instruction-level profiling
to direct the search in order to find optimizations in pro-
grams with over 20 million lines of assembly. Our technique
is able to find optimizations that reduce the energy con-
sumption in 10 of 12 benchmarks by 14% on average overall
while still passing a provided test suite, and by 41% with
human-acceptable error.

ACKNOWLEDGMENTS

We would like to thank Kevin Angstadt for his help set-
ting up the microcontrollers, debugging their software, and
for many fruitful discussions. We are also grateful to Eric
Schulte for his contributions to the early stages of this work
and Shane Clark at Raytheon BBN Technologies for his
helpful suggestions on measuring real-world energy.

REFERENCES

[1] M. Glinz, “On non-functional requirements,” in International Re-
quirements Engineering Conference, ser. RE ’07, 2007, pp. 21–26.

[2] J. Koomey, Growth in data center electricity use 2005 to 2010. Oak-
land, CA: Analytics Press, 2011.

[3] J. Whitney and P. Delforge, “Data center efficiency assessment,”
Issue Paper, Aug, 2014.

18

[4] U. Hoelzle and L. A. Barroso, The Datacenter As a Computer:
An Introduction to the Design of Warehouse-Scale Machines, 1st ed.
Morgan and Claypool Publishers, 2009.

[5] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C.
Brock, K. I. Ishii, T. Y. Nguyen, and J. L. Burns, “A 32-bit PowerPC
system-on-a-chip with support for dynamic voltage scaling and
dynamic frequency scaling,” IEEE Journal of Solid-State Circuits,
vol. 37, no. 11, pp. 1441–1447, 2002.

[6] J. Mars, L. Tang, K. Skadron, M. Soffa, and R. Hundt, “Increasing
utilization in modern warehouse-scale computers using bubble-
up,” IEEE Micro, vol. 32, no. 3, pp. 88–99, May 2012.

[7] M.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis
and minimization techniques for embedded DSP software,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 5, no. 1, pp.
123–135, 1997.

[8] S. Reda and A. N. Nowroz, “Power modeling and characteriza-
tion of computing devices: A survey,” Foundations and Trends in
Electronic Design Automation, vol. 6, no. 2, pp. 121–216, 2012.

[9] I. Manotas, L. Pollock, and J. Clause, “SEEDS: A software en-
gineer’s energy-optimization decision support framework,” in
International Conference on Software Engineering, ser. ICSE ’14, 2014,
pp. 503–514.

[10] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perfo-
ration,” in Joint Meeting of the European Software Engineering Confer-
ence and the Foundations of Software Engineering, ser. ESEC/FSE ’11,
2011, pp. 124–134.

[11] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-
tation, Princeton University, January 2011.

[12] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in International Symposium on Computer Architecture, ser. ISCA ’15,
2015, pp. 158–169.

[13] M. Orlov and M. Sipper, “Flight of the FINCH through the Java
wilderness,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 2, pp. 166–192, 2011.

[14] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiv-
alence for adaptive program repair: Models and first results,” in
International Conference on Automated Software Engineering, ser. ASE
’13, 2013, pp. 356–366.

[15] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[16] B. L. Miller, B. L. Miller, D. E. Goldberg, and D. E. Goldberg, “Ge-
netic algorithms, tournament selection, and the effects of noise,”
Complex Systems, vol. 9, pp. 193–212, 1995.

[17] T. Jones and S. Forrest, “Fitness distance correlation as a measure
of problem difficulty for genetic algorithms,” in International Con-
ference on Genetic Algorithms, ser. ICGA ’95, 1995, pp. 184–192.

[18] S. O. Haraldsson and J. R. Woodward, “Genetic improvement of
energy usage is only as reliable as the measurements are accurate,”
in Genetic and Evolutionary Computation Conference, ser. GECCO ’15,
2015, pp. 821–822.

[19] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-
compiler software optimization for reducing energy,” in Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’14, 2014, pp. 639–652.

[20] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy con-
sumption using genetic improvement,” in Genetic and Evolutionary
Computation Conference, ser. GECCO ’15, 2015, pp. 1327–1334.

[21] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consump-
tion of GUIs in Android apps: A multi-objective approach,” in
Joint Meeting of the European Software Engineering Conference and the
Foundations of Software Engineering, ser. ESEC/FSE ’15, 2015, pp.
143–154.

[22] H. Massalin, “Superoptimizer: A look at the smallest program,”
ACM SIGARCH Computer Architecture News, vol. 15, no. 5, pp. 122–
126, 1987.

[23] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superopti-
mization,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’13,
2013, pp. 305–316.

[24] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: A call
graph execution profiler,” in Symposium on Compiler Construction,
ser. SCC ’82, 1982, pp. 120–126.

[25] R. Gupta, E. Mehofer, and Y. Zhang, The Compiler Design Handbook:
Optimizations and Machine Code Generation. CRC Press, 2002, ch.
Profile Guided Compiler Optimizations, pp. 143–174.

[26] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in
ACM SIGPLAN Notices, vol. 25. ACM, 1990, pp. 16–27.

[27] H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu, V. Zyuban,
R. Eickemeyer, L. Eisen, J. Griswell, D. Logan, B. Sinharoy, and
J. Tendler, “Stretching the limits of clock-gating efficiency in
server-class processors,” in Symposium on High-Performance Com-
puter Architecture, ser. HPCA ’05, 2005, pp. 238–242.

[28] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symposium,
ser. ETS ’13, 2013, pp. 1–6.

[29] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,”
in Design Automation Conference, ser. DAC ’15, 2015, pp. 120:1–
120:6.

[30] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant com-
putations that discard tasks,” in International Conference on Super-
computing, ser. ICS ’06, 2006, pp. 324–334.

[31] ——, “Using early phase termination to eliminate load imbalances
at barrier synchronization points,” in International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’07, 2007, pp. 369–386.

[32] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Automatic Java
application partitioning,” in European Conference on Object-Oriented
Programming, ser. ECOOP ’02, 2002, pp. 178–204.

[33] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard, “Using code perforation to improve performance, reduce
energy consumption, and respond to failures,” MIT, Technical
Report, 2009.

[34] Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu, “ApproxMA:
Approximate memory access for dynamic precision scaling,” in
Great Lakes Symposium on VLSI, ser. GLSVLSI ’15, 2015, pp. 337–
342.

[35] O. Sarbishei and K. Radecka, “Analysis of precision for scaling
the intermediate variables in fixed-point arithmetic circuits,” in
International Conference on Computer-Aided Design, ser. ICCAD ’10,
2010, pp. 739–745.

[36] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-
power digital signal processing using approximate adders,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 1, pp. 124–137, Jan. 2013.

[37] Z. Yang, J. Han, and F. Lombardi, “Transmission gate-based ap-
proximate adders for inexact computing,” in International Sympo-
sium on Nanoscale Architectures, ser. NANOARCH ’15, 2015, pp.
145–150.

[38] S. Lu, “Speeding up processing with approximation circuits,” IEEE
Computer, vol. 37, no. 3, pp. 67–73, 2004.

[39] C. Lee, J. K. Lee, T. Hwang, and S. Tsai, “Compiler optimization on
instruction scheduling for low power,” in International Symposium
on System Synthesis, ser. ISSS ’00, 2000, pp. 55–60.

[40] D. McIntire, T. Stathopoulos, S. Reddy, T. Schmidt, and W. J. Kaiser,
“Energy-efficient sensing with the low power, energy aware pro-
cessing (LEAP) architecture,” ACM Transactions on Embedded Com-
puting Systems, vol. 11, no. 2, pp. 27:1–27:36, Jul. 2012.

[41] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating
source line level energy information for Android applications,” in
International Symposium on Software Testing and Analysis, ser. ISSTA
’13, 2013, pp. 78–89.

[42] T. Bessa, P. Quintão, M. Frank, and F. Magno Quintão Pereira,
“JetsonLeap: A framework to measure energy-aware code opti-
mizations in embedded and heterogeneous systems,” in Brazilian
Symposium on Programming Languages, ser. SBLP ’16, 2016, pp. 16–
30.

[43] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy behav-
iors of thread management constructs,” in International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, ser. OOPSLA ’14, 2014, pp. 345–360.

[44] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, and J. Visser,
“SEFLab: A lab for measuring software energy footprints,” in In-
ternational Workshop on Green and Sustainable Software, ser. GREENS
’13, 2013, pp. 30–37.

[45] F. Ulaby and M. Maharbiz, Circuits, 2nd ed. National Technology
& Science Press, 2013.

19

[46] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for
normality (complete samples),” Biometrika, vol. 52, no. 3/4, pp.
591–611, 1965.

[47] W. B. Langdon, J. Petke, and B. R. Bruce, “Optimising quantisation
noise in energy measurement,” in Parallel Problem Solving from
Nature, ser. PPSN XIV, 2016, pp. 249–259.

[48] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for
software repair,” in Genetic and Evolutionary Computation Confer-
ence, ser. GECCO ’11, 2011, pp. 1427–1434.

[49] C. Le Goues, S. Forrest, and W. Weimer, “Representations and
operators for improving evolutionary software repair,” in Genetic
and Evoluationary Computation Conference, ser. GECCO ’12, 2012,
pp. 959–966.

[50] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[51] A. Zeller, “Yesterday, my program worked. Today, it does not.
Why?” in Joint Meeting of the European Software Engineering Confer-
ence and the Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE ’99, 1999, pp. 253–267.

[52] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Software Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–
250, 2014.

[53] P. P. Chang, S. A. Mahlke, and W. W. Hwu, “Using profile infor-
mation to assist classic code optimizations,” Software: Practice and
Experience, vol. 21, no. 12, pp. 1301–1321, 1991.

[54] E. Schulte, J. DiLorenzo, S. Forrest, and W. Weimer, “Automated
repair of binary and assembly programs for cooperating embed-
ded devices,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’13,
2013, pp. 317–328.

[55] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building cus-
tomized program analysis tools with dynamic instrumentation,”
in Conference on Programming Language Design and Implementation,
ser. PLDI ’05, 2005, pp. 190–200.

[56] J. M. Kasson and W. Plouffe, “An analysis of selected computer
interchange color spaces,” ACM Transactions on Graphics, vol. 11,
no. 4, pp. 373–405, Oct. 1992.

[57] R. Villemin, C. Hery, S. Konishi, T. Tejima, R. Villemin, and D. G.
Yu, “Art and technology at Pixar, from Toy Story to today,” in
SIGGRAPH Asia 2015 Courses, ser. SA ’15, 2015, pp. 5:1–5:89.

[58] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance
as a metric for image retrieval,” International Journal of Computer
Vision, vol. 40, no. 2, pp. 99–121, 2000.

[59] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[60] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Joint Meeting of the European
Software Engineering Conference and the Symposium on the Founda-
tions of Software Engineering, ser. ESEC/FSE ’15, 2015, pp. 107–118.

[61] C. Le Goues, N. Holtschulte, E. Smith, Y. Brun, P. Devanbu, S. For-
rest, and W. Weimer, “The ManyBugs and IntroClass benchmarks
for automated repair of C programs,” ACM Transactions on Software
Engineering, vol. 41, no. 12, pp. 1236–1256, 2015.

[62] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.
Da Fonseca, “Performance assessment of multiobjective optimiz-
ers: An analysis and review,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 117–132, 2003.

[63] L. Tang, J. Mars, X. Zhang, R. Hagmann, R. Hundt, and E. Tune,
“Optimizing Google’s warehouse scale computers: The NUMA ex-
perience,” in International Symposium on High Performance Computer
Architecture, ser. HPCA ’13, 2013, pp. 188–197.

Jonathan Dorn received the BS degree in com-
puter science from the University of Texas at
Austin and the MS and PhD degrees from the
University of Virginia. He is currently a senior
scientist at GrammaTech, Inc. His research in-
terests include the optimization of non-functional
properties in programs, naturalness of software,
and human factors in software engineering.

Jeremy Lacomis received the BA degree in
computer science from the University of Virginia.
He is currently pursuing a PhD in computer sci-
ence at Carnegie Mellon University. His main
research interests include optimization of non-
functional program properties and automated
program repair.

Westley Weimer received the BA degree in
computer science and mathematics from Cornell
University and the MS and PhD degrees from the
University of California, Berkeley. He is currently
a professor at the University of Michigan. His
main research interests include static and dy-
namic analyses to improve software quality and
fix defects.

Stephanie Forrest received the BA degree from
St. Johns College and the MS and PhD de-
grees from the University of Michigan. She is
currently at Arizona State University, where she
directs the Center for Biocomputation, Security
and Society and is Professor of Computing, In-
formatics, and Decision Systems Engineering.
Her research interests include biological mod-
eling, evolutionary computation, software engi-
neering and computer security. She is a fellow of

the IEEE.

	Introduction
	Background and Related Work
	Genetic Algorithms for Power Improvement.
	Semantics-Preserving Techniques
	Superoptimization
	Profiling and Profile Guided Optimization
	Hardware Techniques

	Approximate Computing
	Task Skipping
	Loop Perforation
	Precision Scaling
	Approximate Hardware Techniques

	Motivation
	Power Measurement
	Existing Approaches
	Measurement Apparatus
	Configuring the System to Minimize Noise
	Remaining Sources of Noise

	PowerGAUGE Optimization Algorithm
	Program Representation
	Multi-Objective Search
	Edit Minimization
	Search Space Reductions
	Profiling

	Experimental Setup
	Benchmarks
	Human Acceptability
	Parameters and Hardware Specifications

	Results
	Human Acceptability
	Search Space Reductions and Profiling
	Comparison to Other Approximate Techniques
	Loop Perforation
	Precision Scaling

	Discussion
	Applicability to Benchmarks
	Nature of Optimizations
	Energy vs. Runtime
	Threats to Validity
	Relaxed Semantics and Error
	Noise in Energy Measurement
	Representative Benchmarks
	Architecture

	Conclusion
	References
	Biographies
	Jonathan Dorn
	Jeremy Lacomis
	Westley Weimer
	Stephanie Forrest

