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Learning a Metric for Code Readability
Raymond P.L. Buse, Westley Weimer

Abstract—In this paper, we explore the concept of code readability and investigate its relation to software quality. With data collected
from 120 human annotators, we derive associations between a simple set of local code features and human notions of readability.
Using those features, we construct an automated readability measure and show that it can be 80% effective, and better than a human
on average, at predicting readability judgments. Furthermore, we show that this metric correlates strongly with three measures of
software quality: code changes, automated defect reports, and defect log messages. We measure these correlations on over 2.2
million lines of code, as well as longitudinally, over many releases of selected projects. Finally, we discuss the implications of this study
on programming language design and engineering practice. For example, our data suggests that comments, in of themselves, are less
important than simple blank lines to local judgments of readability.

Index Terms—software readability, program understanding, machine learning, software maintenance, code metrics, FindBugs
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1 INTRODUCTION

W E define readability as a human judgment of how
easy a text is to understand. The readability of a

program is related to its maintainability, and is thus a key
factor in overall software quality. Typically, maintenance
will consume over 70% of the total lifecycle cost of
a software product [4]. Aggarwal claims that source
code readability and documentation readability are both
critical to the maintainability of a project [1]. Other
researchers have noted that the act of reading code is
the most time-consuming component of all maintenance
activities [8], [33], [35]. Readability is so significant, in
fact, that Elshoff and Marcotty, after recognizing that
many commercial programs were much more difficult
to read than necessary, proposed adding a development
phase in which the program is made more readable [10].
Knight and Myers suggested that one phase of soft-
ware inspection should be a check of the source code
for readability [22] to ensure maintainability, portability,
and reusability of the code. Haneef proposed adding a
dedicated readability and documentation group to the
development team, observing that, “without established
and consistent guidelines for readability, individual re-
viewers may not be able to help much” [16].
We hypothesize that programmers have some intu-

itive notion of this concept, and that program features
such as indentation (e.g., as in Python [40]), choice of
identifier names [34], and comments are likely to play a
part. Dijkstra, for example, claimed that the readability
of a program depends largely upon the simplicity of

• Buse and Weimer are with the Department of Computer Science at The
Universiy of Virginia, Charlottesville, VA 22904.
E-mail: {buse, weimer}@cs.virginia.edu
This research was supported in part by, but may not reflect the positions
of, National Science Foundation Grants CNS 0716478 and CNS 0905373,
Air Force Office of Scientific Research grant FA9550-07-1-0532, and
Microsoft Research gifts.

its sequencing control (e.g., he conjectured that goto
unnecessarily complicates program understanding), and
employed that notion to help motivate his top-down
approach to system design [9].
We present a descriptive model of software readability

based on simple features that can be extracted automati-
cally from programs. This model of software readability
correlates strongly with human annotators and also with
external (widely available) notions of software quality,
such as defect detectors and software changes.
To understand why an empirical and objective model

of software readability is useful, consider the use of read-
ability metrics in natural languages. The Flesch-Kincaid
Grade Level [11], the Gunning-Fog Index [15], the SMOG
Index [28], and the Automated Readability Index [21] are
just a few examples of readability metrics for ordinary
text. These metrics are all based on simple factors such as
average syllables per word and average sentence length.
Despite this simplicity, they have each been shown to be
quite useful in practice. Flesch-Kincaid, which has been
in use for over 50 years, has not only been integrated
into popular text editors including Microsoft Word, but
has also become a United States governmental standard.
Agencies, including the Department of Defense, require
many documents and forms, internal and external, to
meet have a Flesch readability grade of 10 or below
(DODMIL-M-38784B). Defense contractors also are often
required to use it when they write technical manuals.
These metrics can help organizations gain some con-

fidence that their documents meet goals for readability
very cheaply, and have become ubiquitous for that rea-
son. We believe that similar metrics, targeted specifically
at source code and backed with empirical evidence
for effectiveness, can serve an analogous purpose in
the software domain. Readability metrics for the niche
areas such as computer generated math [26], treemap
layout [3], and hypertext [17] have been found useful.
We describe the first general readability metric for source
code.
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It is important to note that readability is not the
same as complexity, for which some existing metrics
have been empirically shown useful [41]. Brooks claims
that complexity is an “essential” property of software;
it arises from system requirements, and cannot be ab-
stracted away [12]. In the Brooks model, readability is
“accidental” because it is not determined by the prob-
lem statement. In principle, software engineers can only
control accidental difficulties: implying that readability
can be addressed more easily than intrinsic complexity.

While software complexity metrics typically take into
account the size of classes and methods, and the extent of
their interactions, the readability of code is based primar-
ily on local, line-by-line factors. Our notion of readability
arises directly from the judgments of actual human
annotators who do not have context for the code they
are judging. Complexity factors, on the other hand, may
have little relation to what makes code understandable
to humans. Previous work [31] has shown that attempt-
ing to correlate artificial code complexity metrics directly
to defects is difficult, but not impossible. Although both
involve local factors such as indentation, readability is
also distinct from coding standards (e.g., [2], [6], [38]),
conventions primarily intended to facilitate collaboration
by maintaining uniformity between code written by
different developers.

In this study, we have chosen to target readability
directly both because it is a concept that is independently
valuable, and also because developers have great control
over it. We show in Section 5 that there is indeed a
significant correlation between readability and quality.
The main contributions of this paper are:

• A technique for the construction of an automatic
software readability metric based on local code fea-
tures.

• A survey of 120 human annotators on 100 code
snippets that forms the basis of the metric presented
and evaluated in this paper. We are unaware of any
published software readability study of comparable
size (12,000 human judgments). We directly evaluate
the performance of our model on this data set.

• A set of experiments which reveal significant cor-
relations between our metric for readability and
external notions of software quality including defect
density.

• A discussion of the features involved in our met-
ric and their relation to software engineering and
programming language design.

Some of these main points were previously presented [5].
This article also includes:

• A broader base of benchmark programs for em-
pirical experiments linking our readability metric
with notions of software quality. In particular, we
evaluate on over two million lines of code compared
to over one million in previous work.

• A reporting of the primary results of our analysis
in terms of five correlation statistics as compared to

one in the previous presentation.
• An additional experiment correlating our readabil-

ity metric with a more natural notion of software
quality and defect density: explicit human mentions
of bug repair. Using software version control reposi-
tory information we coarsely separate changes made
to address bugs from other changes. We find that
low readability correlates more strongly with this
direct notion of defect density than it does with the
previous approach of using potential bugs reported
by static analysis tools.

• An additional experiment which compares readabil-
ity to cyclomatic complexity. This experiment serves
to validate our claim that our notion of readability
is largely independent from traditional measures of
code complexity.

• An additional longitudinal experiment showing
how changes in readability can correlate with
changes in defect density as a program evolves. For
ten versions of each of five programs we find that
projects with unchanging readability have similarly
unchanging defect densities, while a project that
experienced a sharp drop in readability was subject
to a corresponding rise in defect density.

There are a number of possible uses for an automated
readability metric. It may help developers to write more
readable software by quickly identifying code that scores
poorly. It can assist project managers in monitoring and
maintaining readability. It can serve as a requirement
for acceptance. It can even assist inspections by helping
to target effort at parts of a program that may need
improvement. Finally, it can be used by other static
analyses to rank warnings or otherwise focus developer
attention on sections of the code that are less readable
and thus more likely to contain bugs. The readability
metric presented in this paper has already been used
successfully to aid a static specification mining tool [24]
— in that setting, knowing whether a code path was
readable or not had over twice the predictive power (as
measured by ANOVA F -score) as knowing whether a
code path was feasible or not.
The structure of this paper is as follows. In Section 2

we present a study of readability involving 120 hu-
man annotators. We present the results of that study
in Section 3, and in Section 4 we determine a small
set of features that is sufficient to capture the notion of
readability for a majority of annotators. In Section 5 we
discuss the correlation between our readability metric
and external notions of software quality. We discuss
some of the implications of this work on programming
language design in Section 6, discuss potential threats to
validity in Section 7, discuss possibilities for extension
in Section 8, and conclude in Section 9.

2 STUDY METHODOLOGY

A consensus exists that readability is an essential de-
termining characteristic of code quality [1], [4], [8], [9],



TSE SPECIAL ISSUE ON THE ISSTA 2008 BEST PAPERS 3

[10], [16], [31], [32], [33], [34], [35], [41], but not about
which factors contribute to human notions of software
readability the most. A previous study by Tenny looked
at readability by testing comprehension of several ver-
sions of a program [39]. However, such an experiment
is not sufficiently fine-grained to extract precise features.
In that study, the code samples were large, and thus the
perceived readability arose from a complex interaction
of many features, potentially including the purpose of
the code. In contrast, we choose to measure the software
readability of small (7.7 lines on average) selections of
code. Using many short code selections increases our
ability to tease apart which features are most predictive
of readability. We now describe an experiment designed
to extract a large number of readability judgments over
short code samples from a group of human annotators.
Formally, we can characterize software readability as a

mapping from a code sample to a finite score domain. In
this experiment, we presented human annotators with a
sequence of short code selections, called snippets, through
a web interface. The annotators were asked to individ-
ually score each snippet based on their personal esti-
mation of readability. We now discuss three important
parameters: snippet selection policy (Section 2.1), snippet
scoring (Section 2.2), and participation (Section 2.3).

2.1 Snippet Selection Policy

We claim that the readability of code is very different
from that of natural languages. Code is highly structured
and consists of elements serving different purposes,
including design, documentation, and logic. These issues
make the task of snippet selection an important concern.
We have designed an automated policy-based tool that
extracts snippets from Java programs.
First, snippets should be relatively short to aid feature

discrimination. However, if snippets are too short, then
they may obscure important readability considerations.
Second, snippets should be logically coherent to allow
annotators the context to appreciate their readability. We
claim that they should not span multiple method bodies
and that they should include adjacent comments that
document the code in the snippet. Finally, we want to
avoid generating snippets that are “trivial.” For example,
we are uninterested in evaluating the readability of a
snippet consisting entirely of boilerplate import state-
ments or entirely of comments.
Consequently, an important tradeoff exists such that

snippets must be as short as possible to adequately
support analysis by humans, yet must be long enough to
allow humans to make significant judgments on them.
Note that it is not our intention to “simulate” the reading
process, where context may be important to understand-
ing. Quite the contrary: we intend to eliminate context
and complexity to a large extent and instead focus on
the “low-level” details of readability. We do not imply
that context is unimportant; we mean only to show that
there exists a set of local features that, by themselves,

have a strong impact on readability and, by extension,
software quality.
With these considerations in mind, we restrict snippets

for Java programs as follows. A snippet consists of pre-
cisely three consecutive simple statements [14], the most
basic unit of a Java program. Simple statements include
field declarations, assignments, function calls, breaks,
continues, throws and returns. We find by experience
that snippets with fewer such instructions are sometimes
too short for a meaningful evaluation of readability, but
that three statements are generally both adequate to
cover a large set of local features and sufficient for a
fine-grained feature-based analysis.
A snippet does include preceding or in-between lines

that are not simple statements, such as comments, func-
tion headers, blank lines, or headers of compound state-
ments like if-else, try-catch, while, switch, and
for. Furthermore, we do not allow snippets to cross
scope boundaries. That is, a snippet neither spans mul-
tiple methods nor starts inside a compound statement
and then extends outside it (however, we do permit
snippets to start outside of a compound statement but
end before the statement is complete). We find that
with this set of policies, over 90% of statements in
all of the programs we considered (see Section 5) are
candidates for incorporation in some snippet. The few
non-candidate lines are usually found in functions that
have fewer than three statements. This snippet definition
is specific to Java but extends to similar languages like
C and C++. We find the size distribution (in number of
characters) for the 100 snippets generated for this study
to be approximately normal, but with a positive skew
(mean of 278.94, median of 260, minimum of 92 and
maximum of 577).
The snippets were generated from five open source

projects (see Figure 10). They were chosen to include
varying levels of maturity and multiple application do-
mains to keep the model generic and widely-applicable.
We discuss the possibility of domain-specific models in
Section 8.

2.2 Readability Scoring

Prior to their participation, our volunteer human an-
notators were told that they would be asked to rate
Java code on its readability, and that their participation
would assist in a study of that aspect of software quality.
Responses were collected using a web-based annotation
tool (shown in Figure 1) that users were permitted to
access at their leisure. Participants were presented with
a sequence of snippets and buttons labeled 1–5 [25].
Each participant was shown the same set of one hundred
snippets in the same order. Participants were graphically
reminded that they should select a number near five for
“more readable” snippets and a number near one for
“less readable” snippets, with a score of three indicating
neutrality. Additionally, there was an option to skip the
current snippet; however, it was used very infrequently
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Fig. 1. Web-based tool for annotating the readability of
code snippets used for this study.

(15 times in 12,000). Snippets were not modified from the
source, but they were syntax highlighted to better sim-
ulate the way code is typically viewed.1 Finally, clicking
on a “help” link reminded users that they should score
the snippets “based on [their] estimation of readability”
and that “readability is [their] judgment about how
easy a block of code is to understand.” Readability was
intentionally left formally undefined in order to capture
the unguided and intuitive notions of participants.

2.3 Study Participation

The study was advertised at several computer science
courses at The University of Virginia. As such, participants
had varying experience reading and writing code: 17
were taking first-year courses, 63 were taking second
year courses, 30 were taking third or fourth year courses,
and 10 were graduate students. In total, 120 students par-
ticipated. The study ran from Oct 23 to Nov 2, 2008. Par-
ticipants were told that all respondents would receive $5
USD, but that the fifty people who started (not finished)
the survey the earliest would receive $10 USD. The use of
start time instead of finish time encouraged participation

1. Both syntax highlighting and the automatic formatting of certain
IDEs (e.g., Eclipse) may change the perceived readability of code. In
our opinion, the vast majority of editors feature syntax highlighting,
but while automatic formatting is often available and is prevalent in
some editors, it is not as universally used. We thus present snippets
with syntax highlighting but without changing the formatting.

Fig. 2. The complete data set obtained for this study.
Each box corresponds to a judgment made by a human
annotator. Darker colors correspond to lower readability
scores (e.g., 1 and 2) the lighter ones correspond to
higher scores. The vertical bands, which occur much
more frequently here than in a figure with random col-
oration, indicate snippets that were judged similarly by
many annotators. Our metric for readability is derived
from these 12,000 judgments.

Fig. 3. Distribution of readability scores made by 120
human annotators on code snippets taken from several
open source projects (see Figure 10).

without placing any time pressure on the activity itself
(e.g., there was no incentive to make rushed readability
judgments); this setup was made clear to participants.
All collected data was kept carefully anonymous, and
participants were aware of this fact: completing the
survey yielded a randomly-generated code that could be
monetarily redeemed. In Section 4.2 we discuss the effect
of experience on readability judgments. In Section 7
we discuss the implications of our participant pool on
experiment validity.
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Statistic Avg—Humans Avg—Model

Cohen’s κ 0.18 (p=0.0531) 0.07 (p=0.0308)
Weighted κ 0.33 (p=0.0526) 0.27 (p=0.0526)
Kendall’s τ 0.44 (p=0.0090) 0.53 (p<0.0001)
Pearson’s r 0.56 (p=0.0075) 0.63 (p<0.0001)
Spearman’s ρ 0.55 (p=0.0089) 0.71 (p<0.0001)

Fig. 4. Five statistics for inter-annotator agreement. The
“Avg—Humans” Column gives the average value of the
statistic when applied between human annotator scores
and the average human annotator score (or mode in the
case of κ). The “Avg—Model” column show the value of
the statistic between our model’s output and the average
(or mode) human readability scores. In both cases we
give the corresponding p-values for the null-hypothesis
(the probability that the correlation is random).

3 STUDY RESULTS

Our 120 annotators each scored 100 snippets for a total
of 12,000 distinct judgments. Figure 2 provides a graph-
ical representation of this publicly-available data.2 The
distribution of scores can be seen in Figure 3.
First, we consider inter-annotator agreement, and eval-

uate whether we can extract a single coherent model
from this data set. For the purpose of measuring agree-
ment, we consider several correlation statistics. One
possibility is Cohen’s κ which is often used as a measure
of inter-rater agreement for categorical items. However,
the fact that our judgment data is ordinal (i.e., there
is a qualitative relationship and total order between
categories) is an important statistical consideration. Since
the annotators did not receive precise guidance on how
to score snippets, absolute score differences are not
as important as relative ones. If two annotators both
gave snippet X a higher score than snippet Y , then
we consider them to be in agreement with respect to
those two snippets, even if the actual numerical score
values differ. Thusly, in this study we tested a linear-
weighted version of κ (which conceptually gives some
credit for rankings that are “close”). In addition, we
considered Kendall’s τ (i.e., the number of bubble-sort
operations to order one list in the same way as a second),
Pearson’s r (measures the degree of linear dependence)
and Spearman’s ρ (the degree of dependence with any
arbitrary monotonic function, closely related to Pearson’s
r) [37]. For these statistics, a correlation of 1 indicates
perfect correlation, and 0 indicates no correlation (i.e.,
uniformly random scoring with only random instances
of agreement). In the case of Pearson a correlation of 0.5
would arise, for example, if two annotators scored half
of the snippets exactly the same way, and then scored
the other half randomly.
We can combine our large set of judgments into a

single model simply by averaging them. Because each
of the correlation statistics compares the judgments of

2. The dataset and our tool are available at http://www.cs.virginia.
edu/∼weimer/readability

Fig. 5. Distribution of the average readability scores
across all the snippets. The bimodal distribution presents
us with a natural cutoff point from which we can train a
binary classifier. The curve is a probability-density repre-
sentation of the distribution with a window size of 0.8.

two annotators at a time. We extend it by finding the
average correlation between our unified model and each
annotator, the results are tabulated in Figure 4. In the
case of κ and Weighted κ we use the mode of the
scores because discrete values are expected. Translating
this sort of statistic into qualitative terms is difficult,
but correlation greater than 0.5 (Pearson/Spearman) is
typically considered to be moderate to strong for a
human-related study[13]. We use this unified model in
our subsequent experiments and analyses. We employ
Spearman’s ρ throughout this study as our principle
measure of agreement because it is the most general, and
it appears to model the greatest degree of agreement.
Figure 5 shows the range of agreements.
This analysis seems to confirm the widely-held belief

that humans agree significantly on what readable code
looks like, but not to an overwhelming extent. One im-
plication is that there are, indeed, underlying factors that
influence readability of code. By modeling the average
score, we can capture most of these common factors,
while simultaneously omitting those that arise largely
from personal preference.

4 READABILITY MODEL

We have shown that there is significant agreement be-
tween our group of annotators on the relative readability
of snippets. However, the processes that underlie this
correlation are unclear. In this section, we explore the
extent to which we can mechanically predict human
readability judgments. We endeavor to determine which
code features are predictive of readability, and construct
a model (i.e., an automated software readability metric)
to analyze other code.
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Avg. Max. Feature Name

X X line length (# characters)
X X # identifiers
X X identifier length
X X indentation (preceding whitespace)
X X # keywords
X X # numbers
X # comments
X # periods
X # commas
X # spaces
X # parenthesis
X # arithmetic operators
X # comparison operators
X # assignments (=)
X # branches (if)
X # loops (for, while)
X # blank lines

X # occurrences of any single character
X # occurrences of any single identifier

Fig. 6. The set of features considered by our metric. Read
“#” as “number of . . . ”

4.1 Model Generation

First, we form a set of features that can be detected
statically from a snippet or other block of code. We
have chosen features that are relatively simple, and that
intuitively seem likely to have some effect on readability.
They are factors related to structure, density, logical
complexity, documentation, and so on. Importantly, to
be consistent with our notion of readability as discussed
in Section 2.1, each feature is independent of the size of a
code block. Figure 6 enumerates the set of code features
that our metric considers when judging code readability.
Each feature can be applied to an arbitrary sized block of
Java source code, and each represents either an average
value per line, or a maximum value for all lines. For
example, we have a feature that represents the average
number of identifiers in each line, and another that
represents the maximum number in any one line. The
last two features listed in Figure 6 detect the character
and identifier that occur most frequently in a snippet,
and return the number of occurrences found. Together,
these features create a mapping from snippets to vectors
of real numbers suitable for analysis by a machine-
learning algorithm.
Earlier, we suggested that human readability judg-

ments may often arise from a complex interaction of
features, and furthermore that the important features
and values may be hard to locate. As a result, simple
methods for establishing correlation may not be suffi-
cient. Fortunately, there are a number of machine learn-
ing algorithms designed precisely for this situation. Such
algorithms typically take the form of a classifier which
operates on instances [30]. For our purposes, an instance
is a feature vector extracted from a single snippet. In

the training phase, we give a classifier a set of instances
along with a labeled “correct answer” based on the
readability data from our annotators. The labeled correct
answer is a binary judgment partitioning the snippets
into “more readable” and “less readable” based on the
human annotator data. We designate snippets that re-
ceived an average score below 3.14 to be “less readable”
based on the natural cutoff from the bimodal distribution
in Figure 5. We group the remaining snippets and con-
sider them to be “more readable.” Furthermore, the use
of binary classifications also allows us to take advantage
of a wider variety of learning algorithms.
When the training is complete, we apply the classifier

to an instance it has not seen before, obtaining an
estimate of the probability that it belongs in the “more
readable” or “less readable” class. This allows us to use
the probability that the snippet is “more readable” as
a score for readability. We used the Weka [18] machine
learning toolbox.
We build a classifier based on a set of features that

have predictive power with respect to readability. To
help mitigate the danger of over-fitting (i.e., of construct-
ing a model that fits only because it is very complex in
comparison the amount of data), we use 10-fold cross
validation [23] (in Section 4.2 we discuss the results
of a principle component analysis designed to help us
understand the true complexity of the model relative to
the data). 10-fold cross validation consists of randomly
partitioning the data set into 10 subsets, training on 9 of
them and testing on the last one. This process is repeated
10 times, so that each of the 10 subsets is used as the test
data exactly once. Finally, to mitigate any bias arising
from the random partitioning, we repeat the entire 10-
fold validation 10 times and average the results across
all of the runs.

4.2 Model Performance

We now test the hypothesis that local textual surface
features of code are sufficient to capture human no-
tions of readability. Two relevant success metrics in an
experiment of this type are recall and precision. Here,
recall is the percentage of those snippets judged as
“more readable” by the annotators that are classified as
“more readable” by the model. Precision is the fraction
of the snippets classified as “more readable” by the
model that were also judged as “more readable” by
the annotators. When considered independently, each
of these metrics can be made perfect trivially (e.g., a
degenerate model that always returns “more readable”
has perfect recall). We thus weight them together using
the f-measure statistic, the harmonic mean of precision
and recall [7]. This, in a sense, reflects the accuracy of the
classifier with respect to the “more readable” snippets.
We also consider the overall accuracy of the classifier by
finding the percentage of correctly classified snippets.
We performed this experiment on ten different classi-

fiers. To establish a baseline, we trained each classifier
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Fig. 7. Inter-annotator agreement. For each annotator
(in sorted order), the value of Spearman’s ρ between the
annotator’s judgments and the average judgments of all
the annotators (the model that we attempt to predict). Also
plotted is Spearman’s ρ for our metric as compared to the
average of the annotators.

on the set of snippets with randomly generated score
labels. Guessing randomly yields an f-measure of 0.5 and
serves as a baseline, while 1.0 represents a perfect upper
bound. None of the classifiers were able to achieve an
f-measure of more than 0.61 (note, however, that by al-
ways guessing ‘more readable’ it would actually be triv-
ial to achieve an f-measure of 0.67). When trained on the
average human data (i.e., when not trained randomly),
several classifiers improved to over 0.8. Those models
included the multilayer perceptron (a neural network),
the Bayesian classifier (based on conditional probabilities
of the features), a Logistic Regression, and the Voting
Feature Interval approach (based on weighted “voting”
among classifications made by each feature separately).
On average, these three best classifiers each correctly
classified between 75% and 80% of the snippets. We
view a model that is well-captured by multiple learning
techniques as an advantage: if only one classifier could
agree with our training data, it would have suggested a
lack of generality in our notion of readability.
While an 80% correct classification rate seems rea-

sonable in absolute terms, it is perhaps simpler to ap-
preciate in relative ones. When we compare continuous
the output of the Bayesian classifier (i.e., we use a
probability estimate of “more readable” rather a binary
classification) to the average human score model it was
trained against, we obtain a Spearman correlation of 0.71.
As shown in Figure 7, that level of agreement is 16% than
what the average human in our study produced. Column
3 of Figure 4 presents the results in terms of four other
statistics. While we could attempt to employ more exotic
classifiers or investigate more features to improve this
result, it is not clear that the resulting model would be
any “better” since the model is already well within the
margin of error established by our human annotators. In
other words, in a very real sense, this metric is “just as
good” as a human. For performance we can thus select
any classifier in that equivalence class, and we choose to

Fig. 8. Annotator agreement by experience group. “Ran-
dom” represents a baseline of uniformly distributed ran-
dom annotations.

adopt the Bayesian classifier for the experiments in this
paper because of its run-time efficiency.
We also repeated the experiment separately with each

annotator experience group (e.g., first year CS students,
second year CS students). Figure 8 shows the mean
Spearman correlations. The dark bars on the left show
the average agreement between humans and the average
score vector for their group (i.e., inter-group agreement).
For example, third and fourth year CS students agree
with each other more often (Spearman correlation of
approximately 0.6) than do first year CS students (cor-
relation under 0.5). The light bar on the right indicates
the correlation between our metric (trained on the anno-
tator judgments for that group) and the average of all
annotators in the group. Three interesting observations
arise. First, for all groups, our automatic metric agrees
with the human average more closely than the humans
agree. Second, we see a gradual trend toward increased
agreement with experience, except for graduate students.
We suspect that the difference with respect to graduates
may a reflection of the more diverse background of the
graduate student population, their more sophisticated
opinions, or some other external factor. And third, the
performance of our model is very consistent across all
four groups, implying that to some degree it is robust to
the source of training data.
We investigated which features have the most pre-

dictive power by re-running our all-annotators analysis
using only one feature at a time. The relative magnitude
of the performance of the classifier is indicative of the
comparative importance of each feature. Figure 9 shows
the result of that analysis with the magnitudes normal-
ized between zero and one.
We find, for example, that factors like ‘average line

length’ and ‘average number of identifiers per line’
are very important to readability. Conversely, ‘average
identifier length’ is not, in itself, a very predictive factor;
neither are if constructs, loops, or comparison oper-
ators. Section 6 includes a discussion of some of the
possible implications of this result. A few of these fig-
ures are similar to those used by automated complexity
metrics [27]: in Section 5.2 we investigate the overlap
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Fig. 9. Relative power of features as determined by a
singleton (one-feature-at-a-time) analysis. The direction
of correlation for each is also indicated.

between readability and complexity.
We prefer this singleton feature analysis to a leave-

one-out analysis (which judges feature power based on
decreases in classifier performance) that may be mis-
leading due to significant feature overlap. This occurs
when two or more features, though different, capture the
same underlying phenomena. As a simple example, if
there is exactly one space between every two words then
a feature that counts words and a feature that counts
spaces will capture essentially the same information and
leaving one of them out is unlikely to decrease accuracy.
A principal component analysis (PCA) indicates that
95% of the total variability can be explained by 8 prin-
cipal components, thus implying that feature overlap is
significant. The total cumulative variance explained by
the first 8 principal components is as follows {41%, 60%,
74%, 81%, 87%, 91%, 93%, 95%}.

5 CORRELATING READABILITY WITH
SOFTWARE QUALITY

In the previous section we constructed an automated
model of readability that mimics human judgments.
We implemented our model in a tool that assesses the
readability of programs. In this section we use that tool

to test the hypothesis that readability (as captured by our
model) correlates with external conventional metrics of
software quality. Specifically, we first test for a correla-
tion between readability and FindBugs, a popular static
bug-finding tool [19]. Second, we test for a similar corre-
lation with changes to code between versions of several
large open source projects. Third, we do the same for
version control log messages indicating that a bug has
been discovered and fixed. Then, we examine whether
readability correlates with Cyclomatic complexity [27]
to test our earlier claim that our notion of readability
is largely independent of inherent complexity. Finally,
we look for trends in code readability across software
projects.
The set of open source Java programs we have em-

ployed as benchmarks can be found in Figure 10. They
were selected because of their relative popularity, di-
versity in terms of development maturity and appli-
cation domain, and availability in multiple versions
from SourceForge, an open source software repository.
Maturity is self reported, and categorized by Source-
Forge into 1-planning, 2-pre-alpha, 3-alpha, 4-beta, 5-
production/stable, 6-mature, 7-inactive. Note that some
projects present multiple releases at different maturity
levels; in such cases we selected the release for the
maturity level indicated.
Running our readability tool (including feature de-

tection and the readability judgment) was quite rapid.
For example, the 98K lines of code in SoapUI took less
than 16 seconds to process (about 6K LOC per second)
on a machine with a 2GHz processor and disk with a
maximum 150 MBytes/sec transfer rate.

5.1 Readability Correlations

Our first experiment tests for a correlation between
defects detected by FindBugs with our readability metric
at the function level. We first ran FindBugs on the
benchmark, noting defect reports. Second, we extracted
all of the functions and partitioned them into two sets:
those containing at least one reported defect, and those
containing none. To avoid bias between programs with
varying numbers of reported defects, we normalized the
function set sizes. We then ran the already-trained clas-
sifier on the set of functions, recording an f-measure for
“contains a bug” with respect to the classifier judgment
of “less readable.” The purpose of this experiment is
to investigate the extend to which our model correlates
with an external notion of code quality in aggregate.
Our second experiment tests for a similar correla-

tion between “code churn” and readability. Version-to-
version changes capture another important aspect of
code quality. This experiment used the same setup as
the first, but used readability to predict which functions
will be modified between two successive releases of
a program. For this experiment, “successive release”
means the two most recent stable versions. In other
words, instead of “contains a bug” we attempt to predict
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Project Name KLOC Maturity Description

Azureus: Vuze 4.0.0.4 651 5 Internet File Sharing
JasperReports 2.04 269 6 Dynamic Content
Hibernate* 2.1.8 189 6 Database
jFreeChart* 1.0.9 181 5 Data representation
FreeCol* 0.7.3 167 3 Game
TV Browser 2.7.2 162 5 TV Guide
jEdit* 4.2 140 5 Text editor
Gantt Project 3.0 130 5 Scheduling
SoapUI 2.0.1 98 6 Web services
Data Crow 3.4.5 81 5 Data Management
Xholon 0.7 61 4 Simulation
Risk 1.0.9.2 34 4 Game
JSch 0.1.37 18 3 Security
jUnit* 4.4 7 5 Software development
jMencode 0.64 7 3 Video encoding

Fig. 10. Benchmark programs used in our experiments. The “Maturity” column indicates a self-reported SourceForge
project status. *Used as a snippet source.

Fig. 11. f-measure for using readability to predict functions that: show a FindBugs defect, have change between
releases, and have a defect referenced in a version control log message. For log messages, “Data Unavailable”
indicates that not enough version control information was available to conduct the experiment on that benchmark.

“is going to change soon.” We consider a function to
have changed in any case where the text is not exactly
the same, including changes to whitespace. Whitespace
is normally ignored in program studies, but since we are
specifically focusing on readability we deem it relevant.

While our first experiment looks at output from a bug
finder, such output may not constitute true defects in
code. Our third experiment investigates the relationship
between readability and defects that have actually been
noted by developers. It has become standard software
engineering practice to use version control repositories
to manage modifications to a code base. In such a
system, when a change is made, the developer typically
includes a log message describing the change. Such log
messages may describe a software feature addition, an
optimization, or any number of other potential changes.
In some cases log messages even include a reference to
a “bug” — often, but not always, using the associated
bug tracking number from the project’s bug database. In

this third experiment we use our metric for readability
to predict whether a function has been modified with a
log message that mentions a bug.

Twelve of our fifteen benchmarks feature publicly
accessible version control systems with at least 500 revi-
sions (most have thousands). For the most recent version
of each program, for each line of code, we determine
the last revision to have changed that line (e.g., this
is similar to the common cvs blame tool). We restrict
our evaluation to the most recent 1000 revisions of each
benchmark and find 5087 functions with reported bugs
out of 111,670 total. We then inspect the log messages
for the word “bug” to determine whether a change
was made to address a defect or not. We partition all
functions into two sets: those where at least one line was
last changed to deal with a bug, and those where no lines
were last changed to deal with a bug.

Figure 11 summarizes the results of these three ex-
periments. The average f-measure over our benchmarks
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Fig. 12. Mean ratio of the classifier probabilities (predicting ‘less readable) assigned to functions that contained a
FindBugs defect, that will change in the next version, or that had a defect reported in a version control log. For
example, FreeCol functions with FindBug errors were assigned a probability of ‘less readable’ that was nearly 150%
greater on average than the probabilities assigned to functions without such defects.

for the FindBugs correlation is 0.62 (precision=0.90, re-
call=0.48), for version changes it is 0.63 (precision=0.89,
recall=0.49), and for log messages indicating a bug fix
in the twelve applicable benchmarks, the average f-
measure is 0.65 (precision=0.92, recall=0.51). It is im-
portant to note that our goal is not perfect correlation
with FindBugs or any other source of defect reports:
projects can run FindBugs directly rather than using our
metric to predict its output. Instead, we argue that our
readability metric has general utility and is correlated
with multiple notions of software quality. This is best
shown by our strong performance when correlating with
bug-mentioning log messages: code with low readability
is significantly more likely to be changed by developers
later for the purposes of fixing bugs.

A second important consideration is the magnitude
of the difference. We claim that classifier probabilities
(i.e., continuous output versus discrete classifications)
are useful in evaluating readability. Figure 12 presents
this data in the form of a ratio, the mean probability as-
signed by the classifier to functions positive for FindBugs
defects or version changes to functions without these
features. A ratio over 1 (i.e., > 100%) for many of the
projects indicates that the functions with these features
tend to have lower readability scores than functions
without them. For example, in the jMencode and SoapUI
projects, functions judged less readable by our metric
were dramatically more likely to contain FindBugs defect
reports, and in the JasperReports project less-readable
methods were very likely to change in the next version.

As a brief note: we intentionally do not report stan-
dard deviations for readability distributions. Both the
underlying score distribution that our metric is based
on (see Figure 5) and the output of our tool itself are
bimodal. In fact, the tool output on our benchmarks
more closely approximates a bathtub or uniform random
distribution than a normal one. As a result, standard in-

ferences about the implications of the standard deviation
do not apply. However, the mean of such a distribution
does well-characterize the ratio of methods from the
lower half of the distribution to the upper half (i.e., it
characterizes the population of ’less-readable’ methods
compared to ’more-readable’ ones).
For each of these three external quality indicators

we found that our tool exhibits a substantial degree of
correlation. Predicting based on our readability metric
yields an f-measure over 0.8 in some case. Again, our
goal is not a perfect correlation with version changes
and code churn. These moderate correlations do, how-
ever, add support to the hypothesis that a substantial
connection exists between code readability, as described
by our model, and defects and upcoming code changes

5.2 Readability and Complexity

In this paper, we defined readability as the “accidental”
component of code understandability, referring to the
idea that it is an artifact of writing code and not closely
related to the complexity of the problem that the code is
meant to solve. Our short snippet selection policy masks
complexity, helping to tease it apart from readability. We
also selected a set of surface features designed to be ag-
nostic to the length of any selection of code. Nonetheless,
some of the features still may capture some amount of
complexity. We now test the hypothesis that readability
and complexity are not closely related.
We use McCabe’s Cyclomatic measure [27] as an in-

dicative example of an automated model of code com-
plexity. We measured the Cyclomatic complexity and
readability of each method in each benchmark. Since
both quantities are ordinal (as opposed to binary as in
our three previous experiments), we computed Pearson’s
r between them. We also computed, for use as a base-
line, the correlation between Cyclomatic complexity and
method length. Figure 13 shows that readability is not
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Fig. 13. Pearson Product moment correlation between Cyclomatic complexity and readability as well as between
Cyclomatic complexity and method length (number of statements in the method). Readability is at most weakly
correlated with complexity in an absolute sense. In a relative sense, compared to method length, readability is
effectively uncorrelated with complexity. These results imply that readability captures an aspect of code that is not
well modeled by a traditional complexity measure.

Fig. 14. The left graph shows the average readability metric of all functions in a project as a function of project
lifetime. The right graph shows the FindBugs defect density in a project as a function of project lifetime for the same
projects and releases. Note that the projects with flat readabilities have corresponding flat defect densities, while jUnit
(described in text) becomes significantly less readable and significantly more buggy starting at release 5.

closely related to this traditional notion of complexity.
Method length, on the other hand, is much more strongly
related to complexity. We thus conclude that while our
notion of readability is not orthogonal to complexity, it
is in large part modeling a distinct phenomena.

5.3 Software Lifecycle

To further explore the relation of our readability metric
to external factors, we investigate changes over long
periods of time. We hypothesize that an observed trend
in the readability of a project will manifest as a similar
trend in project defects. Figure 14 shows a longitudinal
study of how readability and defect rates tends to change
over the lifetime of a project. To construct this figure we
selected several projects with rich version histories and
calculated the average readability level over all of the
functions in each. Each of the projects shows a linear

relationship at a statistical significance level (p-value) of
better than 0.05 except for defect density with jFreeChart.

Note that newly-released versions for open source
projects are not always more stable than their predeces-
sors. Projects often undergo major overhauls or add ad-
ditional cross cutting features. Consider jUnit, which has
recently adopted a “completely different API . . . [that]
depends on new features of Java 5.0 (annotations, static
import. . . )” [20].

The rightmost graph in Figure 14 plots FindBugs-
reported defect density over multiple project releases.
Most projects, such as Hibernate and SoapUI, show a rel-
atively flat readability profile. These projects experience
a similarly flat defect density. The jUnit project, however,
shows a sharp decline in readability from releases 5 to
0 (as the new API is introduced) and a corresponding
increase in defect density from releases 5 to 0. For JUnit,
we observe that 58.9% of functions have readability
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Fig. 15. Average readability metric of all functions in
a project as a function of self-reported project maturity
with best fit linear trend line. Note that projects of greater
maturity tend to exhibit greater readability.

below 0.5 in the earliest version we tested, and 71.4% in
the most recent (an increase of 12.5%). Of the remaining
four systems, SoapUI had the greatest change: 44.3%
below 0.5 to 48.1% (an increase of 3.8%). In this case
study, our readability metric correlates strongly with
software quality metrics both between different projects
and also between different releases of the same project.
We conducted one additional study to measure read-

ability against maturity and stability. Figure 15 plots
project readability against project maturity, as self-
reported by developers. The data shows a noisy, but sta-
tistically significant (Pearson’s r = 0.80 with p= 0.00031),
upward trend implying that projects that reach matu-
rity tend to be more readable. For example, every “6–
mature” project is more readable than every “3–alpha”
project.

6 DISCUSSION

This study includes a significant amount of empirical
data about the relation between local code features and
readability. We believe that this information may have
implications for the way code should be written and
evaluated, and for the design of programming lan-
guages. However, we caution that this data may only
be truly relevant to our annotators; it should not be
interpreted to represent a comprehensive or universal
model for readability. Furthermore, by the nature of a
descriptive model, it may not be suitable for directly
prescribing coding practices. However, we believe it can
be useful to identify aspects of code readability which
should be more carefully considered.
To start, we found that the length of identifier names

constitutes almost no influence on readability (0% rel-
ative predictive power). This observation fails to sup-
port the common belief that “single-character identifiers
. . . [make the] . . .maintenance task much harder” [22].
An observation which perhaps contributed to a signifi-
cant movement toward “self documenting code” which

is often characterized by long and descriptive identifier
names and few abbreviations. The movement has had
particular influence on the Java community. Further-
more, naming conventions, like the “Hungarian” nota-
tion which seeks to encode typing information into iden-
tifier names, should be considered carefully [36]. In our
study, the average identifier length had near zero predic-
tive power, while maximum identifier length was much
more useful as a negative predictor. While we did not
include any features to detect encoded type information
or other variable naming conventions, paradigms that
result in longer identifiers without conveying additional
information may negatively impact readability.
Unlike identifiers, comments are a very direct way of

communicating intent. One might expect their presence
to increase readability dramatically. However, we found
that comments were are only moderately well-correlated
with our annotators’ notion of readability (33% relative
power). One conclusion may be that while comments
can enhance readability, they are typically used in code
segments that started out less readable: the comment
and the unreadable code effectively balance out. The
net effect would appear to be that comments are not
always, in and of themselves, indicative of high or low
readability.
The number of identifiers and characters per line has a

strong influence on our readability metric (100% and 96%
relative power respectively). It would appear that just as
long sentences are more difficult to understand, so are
long lines of code. Our findings support the conventional
wisdom that programmers should keep their lines short,
even if it means breaking up a statement across multiple
lines.
When designing programming languages, readability

is an important concern. Languages might be designed to
force or encourage improved readability by considering
the implications of various design and language features
on this metric. For example, Python enforces a specific
indentation scheme in order to aid comprehension [29],
[40]. In our experiments, the importance of character
count per line suggests that languages should favor the
use of constructs, such as switch statements and pre-
and post-increment, that encourage short lines. Our data
suggests that languages should add additional keywords
if it means that programs can be written with fewer new
identifiers.
It is worth noting that our model of readability is

descriptive rather than normative or prescriptive. That is,
while it can be used to predict human readability judg-
ments for existing software, it cannot be directly inter-
preted to prescribe changes that will improve readability.
For example, while “average number of blank lines” is
a powerful feature in our metric that is positively corre-
lated with high readability, merely inserting five blank
lines after every existing line of code need not improve
human judgments of that code’s readability. Similarly,
long identifiers contribute to lower readability scores
in our model, but replacing all identifiers with random
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two-letter sequences is unlikely to help. We might tease
apart such relationships and refine our model by apply-
ing model-prescribed changes to pieces of code and then
evaluating their actual change in readability via a second
human study: differences between predicted changes
and observed changes will help illuminate confounding
variables and imprecise features in our current model.
Learning such a normative model of software readability
remains as future work.

Finally, as language designers consider new language
features, it might be useful to conduct studies of the
impact of such features on readability. The techniques
presented in this paper offer a framework for conducting
such experiments.

7 THREATS TO VALIDITY

One potential threat to validity concerns the pool of
participants for our study. In particular, our participants
were taken largely from introductory and intermediate
computer science courses, implying that they have had
little previous experience reading or writing code as
compared to industrial practitioners. Furthermore, they
may possess some amount of bias to certain coding
practices or idioms resulting from a uniform instruction
at the same institution.

Because our model is built only upon the opinions of
computer science students at The University of Virginia,
it is only a model of readability according to them.
Nonetheless, the metric we present shows significant
correlation with three separate external notions of soft-
ware quality. Furthermore, our study shows that even
graduate students, who have widely varying educational
and professional backgrounds, show a strong level of
agreement with each other and with our metric. This
indicates that annotator bias of this type may be small;
however, we did not study it directly in this paper.
Finally, rather than presenting a final or otherwise defini-
tive metric for readability, we present an initial metric
coupled with a methodology for constructing further
metrics from an arbitrary population.

We also consider our methodology for scoring snip-
pets as a potential threat to validity. To capture an intu-
itive notion of readability, rather than a constrained one,
we did not provide specific guidance to our participants
on how to judge readability. It is possible that inter-
annotator agreement would be much greater in a similar
study that included a precise definition of readability
(e.g., a list of factors to consider). In is unclear how
our modeling technique would perform under those cir-
cumstances. Similarly, both practice and fatigue factors
may affect the level of agreement or bias the model.
However, we do not observe a significant trend in the
variance of the score data across the snippet set (a linear
regression on score variance has a slope of 0.000 and R-
squared value of 0.001, suggesting that practice effects
were minimal).

8 FUTURE WORK

The techniques presented in this paper should provide
an excellent platform for conducting future readability
experiments, especially with respect to unifying even a
very large number of judgments into an accurate model
of readability.
While we have shown that there is significant agree-

ment between our annotators on the factors that con-
tribute to code readability, we would expect each annota-
tor to have personal preferences that lead to a somewhat
different weighting of the relevant factors. It would
be interesting to investigate whether a personalized or
organization-level model, adapted over time, would be
effective in characterizing code readability. Furthermore,
readability factors may also vary significantly based on
application domain. Additional research is needed to
determine the extent of this variability, and whether
specialized models would be useful.
Another possibility for improvement would be an ex-

tension of our notion of local code readability to include
broader features. While most of our features are calcu-
lated as average or maximum value per line, it may be
useful to consider the size of compound statements, such
as the number of simple statements within an if block.
For this study, we intentionally avoided such features to
help ensure that we were capturing readability rather
than complexity. However, in practice, achieving this
separation of concerns is likely to be less compelling.
Readability measurement tools present their own chal-

lenges in terms of programmer access. We suggest that
such tools could be integrated into an IDE, such as
Eclipse, in the same way that natural language read-
ability metrics are incorporated into word processors.
Software that seems readable to the author may be quite
difficult for others to understand [16]. Such a system
could alert programmers as such instances arise, in a
way similar to the identification of syntax errors.
Finally, in line with conventional readability metrics,

it would be worthwhile to express our metric using a
simple formula over a small number of features (the
PCA from Section 4.2 suggests this may be possible).
Using only the truly essential and predictive features
would allow the metric to be adapted easily into many
development processes. Furthermore, with a smaller
number of coefficients the readability metric could be
parameterized or modified in order to better describe
readability in certain environments, or to meet more
specific concerns.

9 CONCLUSION

In this paper we have presented a technique for model-
ing code readability based on the judgments of human
annotators. In a study involving 120 computer science
students, we have shown that it is possible to create a
metric that agrees with these annotators as much as they
agree with each other by only considering a relatively
simple set of low-level code features. In addition, we
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have seen that readability, as described by this metric, ex-
hibits a significant level of correlation with more conven-
tional metrics of software quality, such as defects, code
churn, and self-reported stability. Furthermore, we have
discussed how considering the factors that influence
readability has potential for improving the programming
language design and engineering practice with respect
to this important dimension of software quality. Finally,
it is important to note that the metric described in this
paper is not intended as the final or universal model of
readability.
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