
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

1

Portable Programming with RAPID
Kevin Angstadt, Jack Wadden, Westley Weimer, and Kevin Skadron, Fellow, IEEE

Abstract—As the hardware found within data centers becomes more heterogeneous, it is important to allow for efficient execution of
algorithms across architectures. We present RAPID, a high-level programming language and combined imperative and declarative
model for functionally- and performance-portable execution of sequential pattern-matching applications across CPUs, GPUs,
Field-Programmable Gate Arrays (FPGAs), and Micron’s D480 AP. RAPID is clear, maintainable, concise, and efficient both at compile
and run time. Language features, such as code abstraction and parallel control structures, map well to pattern-matching problems,
providing clarity and maintainability. For generation of efficient runtime code, we present algorithms to convert RAPID programs into
finite automata. Our empirical evaluation of applications in the ANMLZoo benchmark suite demonstrates that the automata processing
paradigm provides an abstraction that is portable across architectures. We evaluate RAPID programs against custom, baseline
implementations previously demonstrated to be significantly accelerated. We also find that RAPID programs are much shorter in
length, are expressible at a higher level of abstraction than their handcrafted counterparts, and yield generated code that is often more
compact.

Index Terms—automata processing; sequential pattern matching; heterogeneous (hybrid) systems; concurrent, distributed, and
parallel languages; concurrent programming structures, patterns

F

1 INTRODUCTION

DATA is being collected by companies and researchers
alike at increasing rates. The Computer Sciences Cor-

poration projects that data production worldwide will grow
to 35 zettabytes by 2020, an amount 44 times greater than the
amount produced in 2009 [1]. While processing the growing
quantity of data is a technical challenge in and of itself,
there is also a demand by business leaders to have real-time
analyses [2]. New techniques and algorithms are needed
to support these high-speed analyses of growing data sets.
New approaches should be able to support high through-
puts while processing large data sets, be easy to program
and maintain, and be portable across hardware architectures
found in data centers (e.g., CPUs, GPUs, FPGAs, etc.).

One technique is to quickly scan the data for “interest-
ing” regions (the definition of interesting varies between
applications), and return to these regions to perform a
more thorough analysis later, reducing the amount of data
being processed by a complex algorithm. The initial scan
can often be re-phrased as a pattern-searching problem,
in which many searches are conducted against a single
stream of data. A pattern defines a sequence of data that
should be identified within another collection of data. Non-
deterministic finite automata (NFAs) are a common compu-
tational paradigm for recognizing patterns in a data stream.
As a theoretical framework, NFAs are capable of the highly
parallel searches needed for performing several important
types of analysis. Additionally, years of research and tool

• K. Angstadt, J. Wadden, and W. Weimer are with the Computer Science
and Engineering Division, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109. E-
mail: {angstadt, wadden, weimerw}@umich.edu.

• K. Skadron is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22904. E-mail: {skadron}@virginia.edu.

Manuscript received August 24, 2017. Manuscript revised May 3, 2018 and
August 7, 2018.

development have resulted in high-throughput automata
processing architectures and software engines [3]–[9].

While these hardware solutions provide high through-
puts for pattern searches, programming them can be
challenging. Current programming models are akin to
assembly-level development on traditional CPU architec-
tures. Consequently, programs written for these accelerators
are tedious to develop and challenging to write correctly.
Additionally, these low-level representations do not lend
themselves well to debugging and maintenance tasks.

We observe that automata processing provides a suitable
abstraction to support portability across hardware back-ends for
pattern-searching problems, but a higher level of abstraction is
needed to improve the ease of programming.

In this article, we first evaluate the extent to which
automata processing enables the portability of applications
across CPUs, GPUs, and FPGAs. Then we extend our pre-
vious work to develop a high-level programming language,
RAPID [10], for representing pattern search problems with
respect to NFAs, targeting Micron’s Automata Processor
(AP), CPUs, GPUs, and FPGAs. Together, these two con-
tributions provide a programming model that is portable,
reduces code size, and improves maintainability.

1.1 Automata Processing Portability

To evaluate the portability of the automata processing
paradigm, we consider two questions: 1) do design and
optimization choices for finite automata port across archi-
tectures? and 2) to what extent does automata processing
support high performance across architectures?

We observe that there exist automata processing engines
for all mainstream architectures (CPUs, GPUs, FPGAs) as
well as specialized architectures such as the UAP [11] and
Micron’s D480 AP [5]. Further, previous results demonstrate
that the D480 AP, UAP, and FPGAs achieve high through-
puts for automata applications [11]–[19]. In this article,

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

2

we evaluate the stability of finite automata designs across
hardware platforms. We evaluate six implementation and
optimization techniques and demonstrate that performance
gains achieved by these design choices are consistent across
architectures. We contrast this result with the OpenCL
programming model, which frequently demonstrates per-
formance inversions across platforms. Further, we present
a comparison of the performance of automata processing
(demonstrated to be performant on hardware accelerators)
with highly optimized, application-specific algorithms on
CPUs. In total, our results indicate that the performance
of automata algorithms shows great promise on the CPU
platform. We argue that these stability and performance
results demonstrate the viability of automata processing as
a portable computation paradigm.

1.2 RAPID Programming
While automata processing provides a suitable abstraction
for performance portability, finite automata programming
is tedious and error-prone. Therefore, we extend our previ-
ous work on the development of the RAPID programming
language to support CPU, GPU, and FPGA back-ends [10].
RAPID is a high-level language that maintains the perfor-
mance and portability benefits of automata processing while
also providing concise, clear, maintainable, and efficient
representations of pattern-matching algorithms.

In this article, we present algorithms for converting
RAPID programs into NFAs for execution via automata
processing. We describe code generation and tool pipelines
that are efficient across all target architectures.

We evaluate the efficiency of compiled RAPID programs
against handcrafted equivalents, measuring program size,
resource utilization, and runtime performance. These pro-
grams are based on real-world applications that have signif-
icant speedups when executed using specialized hardware
accelerators. Our evaluation demonstrates that RAPID pro-
grams introduce little overhead compared with applications
written at a lower level of abstraction and maintain the
performance and functional portability provided by the
automata paradigm.

1.3 Contributions
In this article, we make the following contributions:

• An empirical evaluation of the stability and per-
formance of automata processing optimizations and
design choices across CPUs, GPUs, and FPGAs.

• RAPID, a high-level language for programming au-
tomata processing applications.

• A set of algorithms for converting RAPID programs
into non-deterministic finite automata for execution
with multiple automata processing engines.

• An experimental evaluation of the RAPID language
against hand-crafted applications demonstrating im-
proved density of generated NFAs as compared with
hand-optimized NFAs.

The remainder of this article is organized as follows.
Section 2 introduces background information and discusses
related work. In Section 3, we present our empirical evalua-
tion of automata processing stability with respect to state of

q0start

q1

q2 q3

q4

a

a

a

a

c b

(a)

c

astart

astart a

a

b

(b)

Fig. 1. A behaviorally equivalent NFA and homogeneous NFA (both
accept exactly aa, aab, and aaca). Note that there is a singleton start
state in (a) (i.e., Qstart = {q0}), but there are two start states in (b).

the art algorithms. Section 4 describes the RAPID program-
ming language. Next, Section 5 describes the algorithms for
generating Finite Automata from a RAPID program. Section
6 discusses the tool pipelines for compiling and executing
Finite Automata applications on CPUs, GPUs, FPGAs, and
the D480 AP. In Section 7, we evaluate the performance of
the RAPID programming language. Finally, we discuss our
conclusions in Section 8.

2 BACKGROUND AND RELATED WORK

In this section, we describe background material related to
automata processing, spatial architectures discussed in this
article, and programming models for pattern searches and
portability across architectures. We also discuss similarities
and differences between RAPID and this related work.

2.1 Finite Automata

Deterministic and non-deterministic finite automata (DFAs
and NFAs) provide useful models of computation for iden-
tifying patterns in a string of symbols. A DFA, formally, is
defined as a five-tuple, (Q,Σ, q0, δ, F), where Q is a finite
set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state,
δ : Q × Σ → Q is a transition function, and F ⊆ Q is
the set of accepting states. The finite alphabet defines the
allowable symbols within the input string. The transition
function takes, as input, the currently active state and a
symbol, and the function returns a new active state.

An NFA modifies this five-tuple to be
(Q,Σ, Qstart, δ, F), where Qstart ⊆ Q is a set of initial
states and δ : 2Q × Σ → 2Q is the transition function.1

Note that non-determinism in terms of finite state machines
does not refer to stochastic non-determinism, but rather
refers to the transition function, which given a set of active
states and symbol, returns a new set of active states. This
allows for multiple transitions to occur for every symbol
processed, effectively forming a tree of computation. NFAs
have the same representative power as DFAs, but have the
advantage of being more spatially compact [20].

In this article, we use an alternate form of NFAs known
as homogeneous NFAs. These automata restrict the possible
transition rules such that all incoming transitions to a state
must occur on the same symbol. Because all transitions to a
state occur on the same symbol, we can label states with

1. NFAs traditionally support ε-transitions between a source and
target state without consuming a symbol. These are not present in our
definition of an NFA. An ε-transition may be removed by duplicating
all incident transitions to the source state on the target state.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

3

symbols rather than labeling the transitions. We refer to
these combined states and labels as state transition elements
(STEs), following the nomenclature adopted by Dlugosch et
al. [5]. An STE accepts the symbols in its label, which we
we refer to as the character class of the STE. Figure 1 depicts
an NFA and a behaviorally equivalent homogeneous NFA.
Additionally, we relax the definition of machine acceptance.
Instead of accepting if an accepting state is active at the end
of input, whenever an accepting state is active we report the
relative offset in the input stream. This allows for pattern-
recognition in streams of data symbols.

2.2 Architectural Support for Automata Processing
There are several custom and customizable platforms that
support automata processing. In this section, we provide
additional background for two: field-programmable gate
arrays, and Micron’s D480 AP.

2.2.1 Field-Programmable Gate Arrays
FPGAs are reconfigurable fabrics of look-up tables (LUTs).
Individual LUTs can be configured to perform the computa-
tion of arbitrary logic gates. LUTs can be connected together
via the reconfigurable fabric to form arbitrary circuits.

Traditionally, FPGAs have been used for prototyping
logic circuits. However, FPGAs are increasingly used as
co-processors to accelerate computation that does not map
well to von Neumann execution. Usually, computations that
can be represented as streaming systolic arrays perform
extremely well when mapped to FPGA fabrics in contrast
to von Neumann architectures like CPUs and GPUs.

Prior work has investigated implementing finite au-
tomata processing on FPGAs [8], [9], [21]–[24]. Because
automata can be thought of as circuits—where each state
transition element is a specialized logic gate—they can be
naturally implemented in an FPGA fabric. Although FPGAs
are a natural and successful fit for acceleration of automata
processing and have been the subject of significant study,
the ability to port software to FPGAs while maintaining
performance remains an open research problem.

2.2.2 Micron’s D480 Automata Processor
The AP, as described by Dlugosch et al. [5], is a hierarchical,
memory-derived architecture for direct execution of homo-
geneous non-deterministic finite automata. State Transition
Elements (STEs) are stored in a memory array, and transi-
tions between STEs are encoded in a reconfigurable routing
matrix. The memory array and routing matrix form the basis
of the AP architecture.

An SDRAM memory array serves as a computational
medium in the AP, a stark contrast from its traditional role
as main memory in a von Neumann computer system. Ar-
ranged as a two dimensional grid, SDRAM data is accessed
via row and column addresses. STEs consist of a single
column of memory and a detection cell used for storing
whether the given STE is active. The design in Figure 1b
would require seven columns of SDRAM, one for each of the
STEs. The symbol or symbols accepted by an STE are stored
in the column of memory, each row representing a symbol
in the alphabet. At runtime, a symbol from the input stream
is decoded and drives one of the rows in the memory array.

Half-Core

Block 0,0

Row 1

GoT . . .SE GoT GoT GoT

Row 2

GoT . . .SE GoT GoT GoT

Row 3

GoT . . .SE GoT GoT GoT

.

.

.

Block 1,0

Row 1

GoT . . .SE GoT GoT GoT

Row 2

GoT . . .SE GoT GoT GoT

Row 3

GoT . . .SE GoT GoT GoT

.

.

.

. . .

.

.

.

.

.

.
. . .

Fig. 2. Hierarchical relationships between AP components: groups of
two (GoT) and a special purpose element (SE) form a row, rows form
blocks, and blocks form a half-core

TABLE 1
Resources on the first-generation AP board, containing 32 chips

Total
STEs

Total
Coun-

ters

Total Boolean
Logic Elements

Total
Blocks

Half-
Cores /
Chip

1,572,864 24,576 73,728 6,144 2
STEs /
Row

Rows /
Block

Counters / Block Boolean
/ Block

Blocks /
Half-Core

16 16 4 12 96

Simultaneously, all STEs (columns of memory) determine
whether they accept that symbol. Accepting STEs (i.e., those
currently active as determined via their detection cells) then
generate an output signal that is passed through the routing
matrix to activate the connected STEs.

In addition to STEs, there may be additional special-
purpose elements. For example, the current-generation AP
contains saturating counters and combinatorial logic. These
elements connect to the STEs via transition edges and allow
for aggregation and thresholding of transitions between
STEs. While these elements do not necessarily add any
expressive power over traditional NFAs, the use of counters
and logic often reduces the overall size of the automata. This
allows the AP architecture to be flexible. Future implemen-
tations might contain additional special purpose elements.

A hierarchical, reconfigurable routing matrix is used to
route activation signals between STEs and special elements.
Groupings of two STEs form a GoT. Several GoTs and a
special purpose element (SE) are then connected to form a
row in the routing matrix. Groupings of rows form blocks,
and groupings of blocks form a half-core. There is no routing
between the two half-cores that make up an AP chip. An
AP board consists of several AP chips, and this allows for
many pattern-recognition searches to occur in parallel. Fig-
ure 2 depicts this hierarchy for a half-core. Table 1 provides
resource information for the first-generation AP board. We
can take advantage of this hierarchical routing to produce
efficient automata from RAPID programs.

2.3 Programming Models for Pattern Searches
Next, we consider current programming models for identi-
fying patterns within a stream of data.

2.3.1 Graph-Based Representations
Traditionally, NFAs are often represented as a directed
graph with states as vertices and the transition function en-

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

4

coded as edges. While capable of specifying search patterns,
NFAs are difficult to write and maintain. NFA formats, such
as the XML-based Automata Network Markup Language
(ANML) and Becchi’s transition table representation [25],
are extremely verbose. For example, measuring the pair-
wise difference of characters between an input string and
a fixed five-character string requires 62 lines of ANML to
represent [26]. Maintenance tasks on this code are also cum-
bersome: changing such an automaton to compare against a
string of length 12 requires modification of 65% of the code.
NFAs can be challenging and tedious to write correctly,
especially for developers lacking familiarity with automata
theory. In research areas such as program verification, the
task of specifying automata is automated [27].

2.3.2 Regular Expressions

Regular expressions are another common option for repre-
senting a search pattern; however, these also suffer from
similar maintainability challenges. For many of our target
applications, such as motif searches, particle tracking, and
rule mining, the regular expression representing the search
is non-intuitive and may simply be an exhaustive enumera-
tion of all possible strings that should be matched (much in
the same way an overfit machine learning classifier might
directly encode a lookup table of the training data). Ad-
ditionally, programming of regular expressions can be ex-
tremely error-prone due to variations in regular expression
syntax, which leads to high rates of runtime exceptions [28].

2.3.3 Languages for Streaming Applications.

Streaming applications process a sequence of data received
in real time. Common examples include radio receivers and
software routers. Automata processing can be viewed as a
streaming application because input symbols are processed
in real time to update the automaton’s active states.

Languages for streaming applications, such as
StreamIt [29], have been studied in great detail. StreamIt
provides structures for stream pipelining, splitting and
joining, and feedback loops. StreamIt objects may
peek and pop from the input stream, store input,
and perform computations before outputting a result.
Automata processing, however, does not readily admit this
computational model. Finite automata have no inherent
memory, and cannot generally peek at the input stream.
Many of the operations allowed by StreamIt are thus not
applicable in this domain, and it is not evident how to
extend the StreamIt model to describe complex automata
nor non-deterministic execution. Additionally, data and
control are treated differently in StreamIt and automata
processing-based languages such as RAPID (see [10] and
Section 4). A StreamIt program specifies a stream graph:
data always enters the program and is transformed and
passed downstream until reaching an output. In RAPID,
instructions describe the next step to be taken to identify a
pattern: stream data enters the program in the location(s)
where the program is currently active, causing control
to shift to another statement in the program. Ultimately,
StreamIt and RAPID target different computational
abstractions, and are not directly comparable (e.g., it is not
clear how to compile StreamIt programs to finite automata).

2.3.4 Non-Deterministic Languages.
Non-determinism is a useful formalism for identifying pat-
terns in parallel within a data stream. In a state machine,
non-determinism arises when multiple states are active
simultaneously, allowing for parallel exploration of input
data. Several existing languages contain non-deterministic
control structures to facilitate these types of operations.

Dijkstra’s Guarded Command Language [30] intro-
duces non-deterministic alternative and repetitive con-
structs. These constructs are predicated with a Boolean
“guard” that must be true for the encapsulated statements
to execute. The alternative construct chooses one command
with a satisfied guard and executes it. In the repetitive
construct, the program loops, choosing one command with
a satisfied guard to execute, until no guards are satisfied.
Rather than proposing a concrete language, the Guarded
Command Language presents guiding formalisms for sup-
porting non-determinism. We provide similar constructs in
RAPID, but a notion of parallel exploration is incorporated
directly into the semantics, allowing RAPID to be more
concise than the Guarded Command Language when pro-
cessing stream or pattern data.

An additional non-deterministic programming language
is Alma-0 [31], a declarative extension of Modula-2. Alma-
0 supports the use of Boolean expressions as statements,
an ORELSE statement allowing for execution of multiple
paths through the program, and a SOME statement that
is the non-deterministic dual of the FOR statement. While
RAPID also treats Boolean expressions as statements (see
Section 4.1), it differs from Alma-0 in the computational
model supported by the language’s semantics. In Alma-0,
ORELSE and SOME are defined via backtracking. Execution
is single threaded: when an ORELSE statement or a SOME
statement is encountered, the program will choose a sin-
gle option to execute. If an exploration fails, the program
backtracks to the last choice point, restoring all program
state, and attempts a different option. Rather than choosing
a single option to explore and backtracking if computation
fails, RAPID programs explore all paths in parallel.

2.4 Programming Models for Portability

The holy grail of programming for heterogeneous envi-
ronments is to “write once and run anywhere.” Research
into portability dates back decades and has its origins in
attempts to support multiple mainframe computer archi-
tectures. For example, the Parallel Programming Language
(PPL) was a strongly typed language that abstracted away
from machine-dependent types to support multiple archi-
tectural targets [32]. More recently, the focus has been on
supporting portability across different coprocessors.

The OpenCL language boasts support for CPUs, GPUs,
FPGAs, and other microprocessors [33]. The language pro-
vides an abstract notion of computational devices and pro-
cessing elements, which allow for task- and data-parallel
applications to be executed in heterogeneous environments.
While the same code can be run on multiple types of
hardware, code written for one architecture rarely performs
well on another architecture. To execute efficiently on both
GPUs and FPGAs, for example, a developer must often
write two copies of the application, crafting the code to

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

5

TABLE 2
Performance stability of OpenCL programs

Benchmark CPU GPU FPGA Stable

CFD ↓ ↓ ↑ 7

Hotspot ↓ ↓ ↑ 7

LUD ↑ ↑ ↓ 7

NW ↓ ↓ ↑ 7

Pathfinder ↓ ↓ ↑ 7

SRAD ↓ ↓ ↑ 7

↑ – Loop-based performs best ↓ – Thread-based performs best

TABLE 3
Performance stability of Automata Processing optimizations

Optimization CPU GPU FPGA AP Stable

Automata Folding ↑ ↑ ↑ ↑ 3

Counters ↓ n/a ↓ ↑ 7

DRM — — — ↑ 3

Prefix Collapsing ↑ ↑ ↑ ↑ 3

Race Logic ↓ ↓ ↓ ↓ 3

Striding ↑ ↑ ↑ ↑ 3

↑ – improved performance ↓ – reduced performance
— – no change

make use of the particular strengths of each platform. Our
goal with RAPID is to avoid this rewriting step, allowing
the developer to write an application using a computational
abstraction that performs well across architectures.

High-level constructs, such as Map-Reduce, have
been demonstrated to provide portability across architec-
tures [34], [35]. RAPID also makes use of high-level con-
structs, but constructs in our language are more specific to
sequential pattern identification tasks.

3 AUTOMATA PROCESSING STABILITY

In this section, we evaluate the suitability of the automata
processing paradigm as a performant, portable program-
ming abstraction across disparate computer architectures.
We consider both the stability of implementations across
architectures (whether design choices impact performance
on platforms differently) as well as average throughput of
applications, as compared with state-of-the-art algorithms.
While a thorough evaluation of performance portability is
out of scope, our initial results demonstrate the potential of
automata processing as a suitable abstraction.

3.1 Performance Stability

We first compare the stability of design choices in au-
tomata processing applications with the stability of those
in OpenCL. OpenCL supports execution across a variety
of architectures [33]. However, code written for one pro-
cessor may not compile for another target or may require
significant re-writing to be performant on the new architec-
ture [36]. Given two implementations of the same applica-
tion and two hardware architectures, if one implementation
outperforms the other on the first architecture and the

opposite is true for the second architecture, we say that there
is a performance inversion. Performance stability is the lack of
observable performance inversions.

The OpenCL language has many observable perfor-
mance inversions and is therefore not stable across architec-
tures. We demonstrate such inversions using applications
in the Rodinia HPC benchmark suite, which were opti-
mized for multi-threaded execution [37]. Zohouri et al. have
developed a second implementation based on an iterative
approach [36]. For each benchmark, we time both imple-
mentations on the CPU, GPU, and FPGA. Table 2 presents
high-level relative performance results for loop- and thread-
based OpenCL Rodinia benchmarks; performance is stable
if arrows within a row do not reverse direction. We find that
all six benchmarks demonstrate performance inversions.
That is, for all benchmarks we consider, the design decisions
needed for performant code vary with each architecture.

We next examine performance stability in automata pro-
cessing applications, focusing on six implementation and
optimization techniques from recent literature:

• Automata folding [16]: reducing automata states by
combining non-overlapping input comparisons.

• Counters [5]: reducing states by rewriting automata
to use saturating counters.

• Disjoint Report Merging (DRM) [38]: reducing data
transfer overheads on spatial automata processors.

• Prefix collapsing [21]: combining common automata
states to form a trie-like structure.

• Race Logic [39]: providing general support for dy-
namic programming at the cost of performance.

• Striding [21]: transforming automata to support
compressed input streams.

For each, we select an arbitrary application that supports
the optimization2 from the ANMLZoo automata processing
benchmark suite [40]. Using one implementation with the
optimization and one without, we measure relative perfor-
mance (i.e., relative time-to-solution) across CPUs, GPUs,
FPGAs, and the AP. These results are presented in Table 3.
We observe only a single performance inversion (counters)
in our experiments and believe this inversion is an artifact
of current implementation support.3 These results provide
initial evidence that the automata processing abstraction
provides stable performance across architectures for many
implementations and optimizations. Design decisions for
performant code in automata processing do not appear to
vary as much across architectures as they do with OpenCL.

3.2 Automata Processing Performance
In addition to stability, performant code across architectures
is a desirable quality of a portable programming model. Re-
cent studies by Wadden et al. and Nourian et al. investigate
(and demonstrate) the performance of automata processing
on several hardware accelerators, including GPUs, FPGAs,
and the AP [40], [41]. Therefore, we restrict our attention in

2. No support results in the optimization being a no-op and thus has
no impact on stability.

3. Nourian et al. support counters on GPUs [41], but their software
artifacts have not been made public. Performance on the CPU and
FPGA is degraded due to the complexity of circuit simulation (CPU)
and routing constraints (FPGA). AP counters are discussed in Section 7.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

6

Bril
l

ER
Fer

m
i

Pro
to

m
ata RF

SP
M

10−2

10−1

100

101

102
R

el
at

iv
e

Sp
ee

du
p

Fig. 3. Relative performance of automata processing vs. application-
specific algorithms on the CPU. Higher bars indicate better performance
of the automata-based algorithm. Note that the y-axis is log-scale.

this article to CPU-based automata processing. We compare
the performance of applications mapped to the automata
processing paradigm with state-of-the-art CPU algorithms.

We evaluate all applications from the ANMLZoo bench-
mark suite [40] that were adapted from state-of-the-art, non
automata-based algorithms. These applications are:

• Brill [12], a rule-writing processor for part of speech
tagging in natural language processing.

• Entity Resolution (ER) [42], an algorithm for detect-
ing duplicated (or similar) names from a list.

• Fermi [13], a path recognition algorithm for particle
physics experiments.

• Protomata [43], a protein motif signature classifica-
tion application.

• Random Forest (RF) [16], a random forest ensemble
classifier for handwriting recognition.

• SPM [15], a sequential pattern mining application.

Each of these applications has been demonstrated to
outperform a state-of-the-art CPU implementation when
executed on the AP. Here, we study whether the algorithms
designed for the AP outperform the state-of-the-art when
executed on CPUs using an automata processing engine.

For each experiment, we executed the state-of-the-art im-
plementation ten times and measured the average through-
put of the core algorithm. Then, we averaged ten runs of an
automata engine running the same application. We executed
the benchmark automata using the Intel Hyperscan frame-
work supplied as part of MNCaRT [44]. Experiments were
performed on an Intel Core i7-5820K (3.30 GHz) processor
with six physical cores and 32GB of RAM.

Figure 3 shows the relative speedup of automata engines
over application-specific algorithms on the CPU. For three
applications (Brill, Protomata, and SPM), the automata-
based algorithm outperforms the state-of-the-art in terms of
average throughput. By representing Brill and Protomata as
automata, new opportunities for optimization are exposed,
allowing for orders of magnitude increased performance.
For Fermi, the automata algorithm is within 3× of the
application-specific algorithm. Entity Resolution and Ran-
dom Forest are an order of magnitude slower primarily due
to the increased accuracy and/or work [45] of the automata
implementations. When adapting a new application to the

automata paradigm, researchers should consider carefully
how this might impact the work—the time or steps needed
for a serial processor to complete the task—performed by
the algorithm. Large increases in work may not be suitable
for performant automata processing algorithms across ar-
chitectures.

3.3 Discussion
We observe that automata processing is more stable across
disparate architectures relative to design choices and opti-
mizations than the OpenCL programming model. We also
observe that four of our six automata benchmarks perform
within 3× application-specific algorithms on the CPU, and
two of these state machine-based implementation are at
least an order of magnitude faster than the state-of-the-art.
Additionally, automata processing is already a widely used
computational model in areas such as network security [46],
computational finance [47], and software engineering [27],
[48]. There has been significant development of new opti-
mizations for state machine performance on CPUs [25], and
we anticipate continued improvement of automata process-
ing performance on von Neumann architectures.

We conclude that automata processing provides stability
(Section 3.1) and performance (Section 3.2) across architec-
tures and implementations, including CPUs, GPUs, FPGAs,
and the AP. That is, the performance of an automata-based
algorithm is stable across architectures and often similar
to the performance of an application-specific algorithm on
the same hardware platform. Note that this performance
portability includes applications that go beyond traditional
regular expression-based algorithms, even on the CPU. We
believe that portability across these architectures is bene-
ficial to both the research and end-user communities. In
particular, there is a lower overhead and risk incurred by
developers who learn a programming model that is usable
on multiple architectures. We believe that automata pro-
cessing provides a suitable abstraction for representing and
porting computation across multiple, dissimilar computer
architectures.

4 THE RAPID LANGUAGE

While automata processing provides a suitable abstraction
for performance portable execution of algorithms, current
programming models for pattern searches have significant
drawbacks (see Section 2.3). In this section, we discuss a new
programming language, RAPID, which allows developers
to write concise, clear, and maintainable algorithms for
use with automata engines. In particular, RAPID supports
searching a stream of data for many patterns in parallel.
Programs are written in a combined imperative and declar-
ative style using a C-like syntax. In this section, we present
a high-level overview of the control structures and data
representations in the RAPID programming language.

4.1 Program Structure

Macros and Networks. RAPID programs consist of one or
more macros and a network. The basic unit of computation
in a RAPID program is a macro, which defines a reusable

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

7

1 macro hamming_distance (String s, int d) {
2 Counter cnt;
3 foreach (char c : s)
4 if(c != input()) cnt.count();
5 cnt <= d;
6 report;
7 }
8 network (String[] comparisons) {
9 some(String s : comparisons)

10 hamming_distance(s,5);
11 }

Fig. 4. A RAPID program for computing Hamming distances

pattern-matching algorithm. Macros in RAPID share sim-
ilarities with both C-style macros and ANML macros, al-
lowing code to be written once and then used as a “rubber
stamp.” RAPID macros admit more customized usage than
their namesakes in C and ANML; the same macro can
generate all designs for a particular problem.

Statements within a macro are executed sequentially and
define actions that should be taken to identify a pattern.
RAPID provides several control structures, including if
statements, while loops, and foreach loops. Unlike some
languages, we guarantee in-order traversal when iterating
with a foreach loop. The language also provides parallel
control structures useful for pattern-matching, which we
describe later in this section.

Additionally, macros can instantiate other macros. When
a macro is called, control shifts to the called macro; all of
its statements are executed, and then control returns to the
calling macro. While the macro code defines how to identify
a pattern in the input stream, the macro parameters can
specify the particular characters to match, allowing for com-
parisons of varying lengths. Consider the macro in Figure 4,
which performs a Hamming distance computation between
a string parameter, s, and the input stream. Changing from
comparison against a string of length five to a string of
length twelve only requires passing a different string argu-
ment to the macro. As noted in Section 2, more than half of
the code in the corresponding ANML implementation must
be modified to make an identical change.

The network represents the highest level of pattern-
matching within a RAPID program, and statements within
a network definition are executed in parallel. The most
common use of the network is to define a collection of
macros for instantiation, which are executed in parallel
at runtime to identify patterns in the input data stream.
The network may also have parameters to specify certain
values at runtime. Figure 4 contains a RAPID program that
computes the Hamming distance for a number of given
strings and reports on input within a distance of five. The
network is parameterized on an array of strings, which is
used at runtime to specify the comparisons being made.

Reporting. RAPID programs passively observe the input
data stream; they cannot modify the stream. Programs can
indicate interesting regions within the stream by using the
report statement, which generates a report event. These
events provide the offset in the input data stream where the
report occurred and additional identifying meta data, such
as the reporting macro. For the program in Figure 4, reports
indicate offsets where the input stream is within a Hamming
distance of five from the strings in comparisons.

1 Counter cnt;
2 foreach(char c : "rapid") {
3 if(c == input()) cnt.count();
4 }
5 if(cnt >= 3) report;

Fig. 5. The above code counts the number of characters matched in
“rapid” and reports if the count is at least three

Boolean Expressions as Statements. Inspection of the input
data stream is central to the RAPID programming model.
Often, pattern identification algorithms only continue if a
certain sequence of characters is detected. RAPID provides
concise support for this common domain idiom by allowing
Boolean expressions whenever full statements are allowed.4

These declarative assertions terminate the thread of compu-
tation if the expression returns false. Line 5 in Figure 4
illustrates this usage.

4.2 Types and Data in RAPID
There are five primary data types in RAPID: char, int,
bool, String, and Counter. Both String and Counter
are lightweight objects, while the remaining three are prim-
itive types. Additionally, there is support for nested arrays
of these types.

In RAPID, pattern-matching occurs in a stream of a
characters. Therefore, the language provides the char prim-
itive type for interacting with input data. The input data
stream, however, is a stream of bits and does not need to
be interpreted as characters. To support this, a char may
also store escaped hexadecimal values. RAPID also defines
two character constants, which represent special symbols in
the input stream: ALL_INPUT and START_OF_INPUT. The
former represents any symbol within the input and the latter
is a reserved symbol (character 0xFF) for indicating the start
of data. For example, if the input data stream consists of the
flattening of an array, the entries would be concatenated into
a stream, separated by the START_OF_INPUT symbol.

A Counter represents of a saturating up-counter. Upon
instantiation, a counter is initialized to zero. Counters pro-
vide two functions: reset() and count(), which set the
value to zero and increment by one, respectively. Although
programs cannot access the internal value of the counter, it
is possible to check against a threshold.

Figure 5 demonstrates the usage of counters and interact-
ing with the input stream. The foreach loop iterates over
each character in the string “rapid” sequentially. If that
character matches the next character from the input stream,
the counter is incremented. After iterating over the entire
string, the program checks if the counter is at least three and
reports if so. For example, if the stream contained “tepid,”
the count would be three, and there would be a report, but
“party” results in a count of one and no report.

The input data stream in RAPID is privileged and is
accessed via the input() function. A call to this function
returns a single character from the head of the data stream.
Access to the input data is destructive—no peeking or
insertion is allowed during program execution. Calls to
input() act as synchronization points across active threads

4. This is merely syntactic sugar; the same behavior may be imple-
mented using a less compact if statement.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

8

in a RAPID program. Similar to how active states in an NFA
process the same input symbol, all active threads execute
up to an input() statement and then receive the same
character from the input stream. For example, if the stream
contains “abcd...,” input() would return ‘a’ to all active
threads of computation, and the stream would now contain
“bcd....” There is no required number of calls to input()
across threads and also no communication between threads.
Threads with fewer calls to input() than another thread
will simply terminate earlier. This data model supports the
heterogeneity of MISD computations.

RAPID’s design represents the input stream as a FIFO
only accessible through a special function, input(), rather
than as a special indexed array. This is for conceptual clarity:
arrays afford a notion of random access into the stored data,
while pattern-recognition processors support sequential ac-
cess to an ordered sequential data stream. Global input
access is intentionally similar to C’s “fgetc” rather than
“fread/fseek” or “mmap.”

4.3 Parallel Control Structures

In pattern-matching problems, it is often useful to explore
multiple possibilities in parallel. For example, a spam fil-
ter may wish to check for many black-listed subject lines
simultaneously, or a gene aligner may begin matching a
sequence at any point in the input stream. To facilitate such
operations, RAPID provides both the network environment
and also parallel control structures. Networks, as described
previously, allow for parallelism at the macro level, which is
useful for checking several patterns in tandem. The parallel
control structures (either/orelse, some, and whenever)
provide finer-grain control over parallel operations.

Either/Orelse Statements. This structure provides ba-
sic support for parallel exploration. An either/orelse
statement consists of two or more blocks, which allows
for an arbitrary, static number of parallel computations.
Computation splits when an either/orelse statement is
encountered during execution, and each of the blocks is
executed in parallel. When the end of a block is reached,
computation continues with the next statement in the pro-
gram. No blocking or joining occurs, meaning that different
paths in the either/orelse statement may begin execut-
ing the following statement at different times. This behavior
is desirable because it allows for the matching of different
length patterns containing the same suffix.

As an example usage of the either/orelse statement,
consider the code fragment in Figure 6, adapted from the
MOTOMATA benchmark [17] evaluated in Section 7. Can-
didates in the input stream are separated by the control
character ’y’. The computation should report the candidates
within a Hamming distance of d from the string stored in
variable s. We use an either/orelse statement to ensure
that computation continues to the next candidate when the
current candidate does not fall within the threshold. The
first block of the either/orelse statement performs the
Hamming distance comparison, while the second block con-
sumes input until the control character is reached, always
preparing the program to check the next candidate.

1 either {
2 hamming_distance(s,d); //hamming distance
3 ’y’ == input(); //next input is ’y’
4 report; //report candidate
5 } orelse {
6 while(’y’ != input()); //consume until ’y’
7 }

Fig. 6. An example usage of an either/orelse statement

Some Statements. In certain cases, for example instantiating
macros based on the content of an array, the ability to
generate a dynamic number of parallel paths is desirable.
The some statement provides this functionality.

This statement is the parallel dual of a foreach loop.
During execution, the program iterates over a provided
array or string and instantiates a parallel thread of execution
for each item. Similar to an either/orelse statement,
the execution of each parallel thread continues with the
subsequent statement in the program; different threads in
the some statement may reach this next statement at disjoint
times. The some statement in Figure 4 instantiates a Ham-
ming distance macro for each string in the comparisons
array. The number of parallel threads executed depends on
the number of entries in comparisons.

Whenever Statements. A common operation in pattern-
matching algorithms is a sliding window search, in which
a pattern could begin on any character within the input
stream. The whenever statement consists of a Boolean
guard and an internal statement. The guard specifies a
condition on the input stream that must be true or a counter
threshold that must be met before the internal statement
is executed. At any point in the data stream (potentially
multiple times) where this guard is satisfied, the internal
statement will be executed in parallel with the rest of the
program. A whenever statement is the parallel dual of
a while statement. Whereas a while statement checks the
guard condition before each iteration of the internal state-
ment, a whenever statement checks the guard in parallel
with all other computations, if any.

The code fragment in Figure 7 will perform a sliding
window search for the string “rapid.” The predicate within
the guard will return true on any input, and therefore the
block of code will begin execution at every character in the
input stream. The whenever statement can also perform
restricted sliding window searches depending on the pred-
icate in the guard. For example, an application searching
through HTTP transactions might use the predicate match-
ing “GET” before matching specific URLs.

Sliding window searches are fundamental to stream
pattern recognition. All RAPID programs perform a sliding
window search on the START_OF_INPUT symbol. In the
common case, this sliding window search occurs at the
topmost level of a RAPID program, i.e. right within the
network. To reduce verbosity, RAPID infers this whenever
statement, only requiring developers to specify a whenever
statement with non-default sliding window searches.

5 CODE GENERATION

In this section, we present techniques for converting RAPID
programs into automata for execution with automata pro-

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

9

1 whenever(ALL_INPUT == input()) {
2 foreach(char c : "rapid")
3 c == input();
4 report;
5 }

Fig. 7. Execution of a sliding window search over the entire input stream
for the string “rapid”

cessing. Our technique takes two files as input: the RAPID
program and a file annotating properties of the the network
parameters (e.g., lengths of arrays and strings). Our tool
converts the RAPID program into two files: an ANML
specification and host driver code. The ANML file specifies
the configuration of automata processing engine needed to
perform the given pattern-matching algorithm given by the
RAPID program. The driver code is executed on the CPU at
runtime and handles execution of the automata processing
core, and collecting report events. This section focuses on
the transformation of RAPID into the ANML specification.

We employ a staged computation model to convert
RAPID programs: comparisons with the input stream and
counters occur at runtime, while all other values are re-
solved at compile time. To aid in partitioning, we annotate
expressions with their return type during type checking. Al-
lowable annotations include the five types listed in Section
4.2 as well as an internal Automata type, which denote
expressions interacting with the input stream. Expressions
annotated with Automata or Counter are converted into
ANML (allowing for runtime execution), while the remain-
ing expressions are evaluated during compilation.

Our conversion algorithm recursively transforms RAPID
programs into finite automata in much the same way that
regular expressions can be transformed into NFAs. Com-
parisons with the input stream are transformed into STEs.
The statement in which the comparison occurs determines
how the STEs attach to the rest of the automaton. Rules for
transforming automata expressions determine the structure
of the STEs within a given statement. We describe the
conversion of expressions, statements and counters in turn.

5.1 Converting Expressions

Expression transformation results in the formation of a
chain of STEs. No cycles are generated by expressions, but
chains may include bifurcations. Figure 8 provides examples
of transformations from RAPID expressions to automata
structures. The most basic transformation is a comparison
between a character and the input stream, generating a sin-
gle STE. AND expressions behave as concatenation because
reading from the input stream is destructive. The conversion
of an OR expression generates a bifurcation in the generated
automaton. A special case occurs when both sides of the
OR expression contain input comparisons of length one. In
these instances, we take advantage of STE character classes
to specify multiple accepting symbols for a single STE.

Negations of expressions generate the most complex
structures of all the expression types. Traditionally, an
automaton is negated by swapping accepting and non-
accepting states. This construction, however, does not work
for our use case because RAPID programs consume the
same number of symbols for an expression and its negation.

’a’ == input() ’a’ != input()

[a] [̂ a]

’a’ == input() && ’b’ == input()

[a] [b]

’a’ == input() || ’b’ == input()

[ab]

!(’a’ == input() && ’b’ == input() &&
’c’ == input())

[̂ a] ∗ ∗

[a] [b] [̂ c]

[a] [̂ b]

Fig. 8. Example transformations of RAPID expressions into automata

The traditional transformation does not maintain this prop-
erty. Instead, we transform the expression via De Morgan’s
laws and generate STEs for the resulting statement. After
any mismatch in this negation, the remaining symbols do
not matter, but still must be consumed. We therefore use
star states, which match on any character.

5.2 Converting Statements

Statements in RAPID are transformed into the high-level
automaton structures, allowing for additional pipelining,
feedback loops, and parallel exploration of patterns. We
present the overall structures in Figure 9.

A foreach loop is unrolled into straight-line pattern-
matching. Parallel either/orelse and some statements
are transformed by generating the code for each state-
ment and connecting these structures in parallel into the
overall design. This mirrors the language semantics that
the some statement is the parallel dual of foreach. Note
that some statements typically depend on compile-time
parameters (via input annotations on the network) while
either/orelse statements do not (see Section 4.3).

There is also a similarity between while loops and
whenever statements. While loops alternately perform
predicate checks and execute the body code. This generates
a feedback loop structure in the automaton. In a whenever
statement, predicate checking begins on every character
consumed. To support this, we generate a self-activating
STE that accepts all symbols (see ∗ node in Figure 9d). This
added STE maintains an active transition into the predicate,
allowing matching to begin on every symbol consumed.
Once the predicate accepts, the body of the whenever state-
ment will begin to execute (although the predicate is still
checked again in parallel on subsequent input characters).

5.3 Converting Counters

Counters in RAPID are challenging to implement because
the state of a hardware counter on the AP cannot be directly
accessed. Therefore, counter comparisons in RAPID pro-
grams are transformed into a pattern-matching operation

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

10

Statement 1

Statement 2

...

Statement n

•

•

(a) Foreach Loops

Statement 1

Statement 2
. . .

Statement n

• •

(b) Either/Orelse and Some statements

predicate

!predicate

While Body

•
•

(c) While Loops

*

predicate

Whenever
Body

••

(d) Whenever statement

Fig. 9. Automaton designs for RAPID statements

using a combination of one or more saturating counters and
Boolean gates. The basic structure consists of a saturating
counter set to latch (once the threshold is reached, the
output signal remains active) and an inverter, which allows
for detection of the counter target not being reached.

Physical counters on the AP have three connection ports:
count enable, reset, and output. Counter object function
calls to count() and reset() in RAPID are connected to
their respective ports on the counter. Output signals then
connect to the next statement in the program.

We follow the set of rules for determining the threshold
and outputs of a Counter shown in Table 4. Equality
checking with a Counter requires the use of two physical
counter elements. While traversing the program, we note
which Counter objects are used for equality checking and
during code generation emit two counter elements for each.

This technique only allows for one threshold to be
checked per counter in the RAPID program. An alternate
solution would be to use positional encodings, which dupli-
cate an automaton for each value of a counter, encoding the
count in the position of states within an automaton. While
this design allows for easy checking of multiple thresholds,
it also significantly increases the number of states in the
final automaton and does not support counter resetting. We
chose not to implement this technique in our initial compiler
because it does not support full, generic functionality.

We must also support the use of Counter variables
as predicates in a whenever statement. For the body of a
whenever statement to execute, the Counter must have
reached its threshold, and the statement itself must have
been reached within the control flow of the RAPID program.
We use a self-activating STE matching all symbols to track
when the statement is reached. An AND gate checks both of

TABLE 4
Rules for thresholds and outputs on counters

Comparison Threshold True Output

< x x inverted
<= x x+1 inverted
> x x+1 non-inverted
>= x x non-inverted

== x convert to <= x && >= x
!= x convert to < x || > x

*

Counter

Whenever
Body

••

true

Fig. 10. Structure of whenever statement with counters

these conditions before executing the body of the whenever
statement. This design is demonstrated in Figure 10.

Counter threshold checks are also used as assertions or
as predicates in if statements and while loops. Because
NFAs do not have dynamic memory (beyond the states
themselves), we handle this case by both generating au-
tomata and also pre-transforming the input stream. For each
such Counter, we create a unique reserved input symbol.
This new symbol indicates that the threshold for that partic-
ular Counter has been met. We add an STE matching the
symbol to the subsequent statement; whenever the symbol
is encountered in the input data stream, the appropriate
subsequent statement begins execution. This symbol must
be injected into the input data stream before the RAPID
program begins execution. Actual injection is handled by the
runtime code and can occur while data is being streamed to
the AP (but before execution of the RAPID program begins).

We attempt to automatically determine the pattern for
inserting the count threshold symbol into the input stream.
An example pattern is “insert the symbol after every 25
characters in the input stream.” Often, the compiler can infer
the pattern by counting the number of symbols consumed
before the counter check occurs. When certain while loops
are included in the program, however, it may not be possible
to determine where in the input stream to inject the symbols.
In these cases, we currently output a warning at compile
time and rely on the developer to provide the pattern for
inserting the control character into the data stream.

6 EXECUTING RAPID PROGRAMS

A primary goal of the RAPID programming language is to
support cross-platform portability of pattern searching ap-
plications. This allows an application to be tested on a devel-
oper’s machine, which might not contain high-performance
hardware, and be easily deployed into a heterogeneous
hardware environment. Finite automata provide a portable,
intermediate computation form that can be ported to many
hardware back-ends, including CPUs, GPUs, FPGAs, and
Micron’s D480 AP. We achieve this by developing and
adapting automata engines for each platform.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

11

RAPID
Program

RAPID
Compiler ANML

Micron AP
Compiler

VASim NFA Flat File iNFAnt2 GPU Output

AP Binary

MNRL
Hyperscan
Compiler CPU Engine

Verilog Xilinx PAR FPGA Engine

Fig. 11. Supported pipelines for executing RAPID programs. RAPID programs can be executed on CPUs (using VASim or Hyperscan), GPUs (using
iNFAnt2), FPGAs, and Micron’s D480 AP. Rounded green boxes indicate the input and output of the pipeline. Orange rectangles are software tools
used to generate intermediate and output files. Blue parallelograms are intermediate files generated by our pipeline.

As discussed in Section 3, automata processing provides
a suitable abstraction for efficient execution of applica-
tions across architectures. Such an approach effectively de-
couples high-level application development from low-level
optimizations. Any advances in automata processing per-
formance (e.g. new optimizations and new computational
approaches) can be beneficial for all high-level applications.

In the previous section, we described the process for
compiling a high-level RAPID program to finite automata.
Now, we discuss workflows for executing automata across
common computer architectures. Figure 11 outlines our
workflow for targeting CPUs, GPUs, FPGAs, and the AP.

6.1 Targeting the Automata Processor

Micron provides a proprietary tool chain for converting
ANML specifications into a loadable binary image for the
AP. This tool places and routes the NFAs onto the hardware
states and reconfigurable routing mesh of the processor. We
use this tool directly to synthesize ANML for the AP.

6.2 Targeting CPUs

We have developed and collected a set of algorithms for
optimizing and transforming finite automata. These algo-
rithms are implemented in VASim, a tool we created to
facilitate automata research and experimentation [7]. This
framework supports easy prototyping, debugging, simula-
tion, and analysis of automata-based applications and ar-
chitectures. We use VASim to optimize the automaton from
the RAPID compiler using common prefix collapsing [21]. This
process merges states that match the same input symbols,
beginning with the starting states, producing a functionally-
equivalent NFA with fewer states. In our Brill tagging
benchmark, for example, prefix collapsing results in a 57%
reduction in the number of states. Additionally, VASim
contains a multi-threaded simulation core, which is capable
of executing automata on an input stream. The simulator
was designed specifically to execute ANML files, making
VASim an excellent candidate for a RAPID CPU back-end.

While VASim is currently 4×–694× faster than exist-
ing simulation tools for Micron’s AP, regular expression
processors, such as Hyperscan [6] outperform VASim for
pure NFA applications. When a compiled RAPID program
contain no counters, we choose to execute with Hyperscan,
using the compilation and runtime tools supplied as part
of the MNCaRT ecosystem [44]. The compiler takes MNRL,
an open-source state machine representation, as input. We

use VASim to convert the ANML emitted by the proto-
type RAPID compiler, and then use the Hyperscan com-
piler to generate a serialized pattern dictionary and perform
Hyperscan-specific optimizations to the automata. We then
execute the pattern dictionary against a supplied input
stream using the hsrun tool provided with MNCaRT.

6.3 Targeting GPUs

We support the execution of pure NFAs with a GPU back-
end. RAPID programs that do not use counters can therefore
be executed on GPUs. We use iNFAnt2, the optimized
GPU-based NFA engine used by Wadden et al. with the
ANMLZoo benchmark suite [40]. The iNFAnt2 engine reads
in a transition table and uses individual SIMD threads to
compute possible transitions on a given input symbol.

We use VASim to convert the ANML produced by the
RAPID compiler to the transition tables needed by iNFAnt2.
Similar to the CPU target, we optimize the ANML using
VASim’s optimization framework. Next, we output the NFA
transition table using the Becchi-style format [25]. To execute
on the GPU, we provide both this transition table and an
input stream to iNFAnt2, which produces reporting output.

6.4 Targeting FPGAs

When targeting an FPGA, we first optimize the compiled
automata and then convert to a hardware description using
VASim. VASim transforms the optimized NFA into a Verilog
hardware description. Our tool generates a module with in-
puts for clock, reset, and an 8-bit input symbol and outputs
for report events. Within the module, activations of states in
the automaton are stored in registers, which are updated on
every clock cycle. A state becomes active if it is enabled (a
state with an incident edge to the current state is active) and
the current input symbol matches. Using this update rule,
it is possible to execute the NFA directly in hardware. Fi-
nally, we target Xilinx FPGAs by synthesizing the hardware
description produced by VASim. Additional optimization
of automata kernel generation for FPGAs using this same
technique has been explored by Xie et al. [19].

7 EVALUATION

We evaluate RAPID against hand-crafted designs for five
real-world benchmark applications, which were selected
based upon previous research demonstrating significant
acceleration using Micron’s AP [12], [14], [17], [18].

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

12

TABLE 5
Description of benchmarks

Benchmark Description Generation Method Sample Instance Size

ARM/FIS [14] Association rule mining / Frequent itemset Python + ANML 24 Item-Set
Brill [12] Rule re-writing for Brill part of speech tagging Java 219 Rules
Exact [18] Exact match DNA sequence search Workbench 25 Base Pairs
Gappy [18] DNA string search with gaps between characters Workbench 25-bp, Gaps 6 3
MOTOMATA [17] Fuzzy matching for bioinformatics planted motif search Workbench (17,6) Motifs

Table 5 provides descriptions of the benchmarks used.
For each benchmark, we chose an instance size represen-
tative of a real-world problem. These sizes come either
directly from previous work or from conversations with
the authors of the previous work. The generation method
column indicates the technique used to create the hand-
crafted code, which ranged from custom Java or Python
programs for generating an ANML design to the use of a
GUI design tool (Workbench) for crafting automata by hand.
The authors of the ARM [14] and Brill [12] benchmarks
provided us with their original code, including a collection
of regular expressions for performing the Brill benchmark.
We recreated the remaining designs, using algorithms and
specifications published in previous work.

Table 6 lists design statistics for the benchmarks. We
compare the lines of code needed to generate ANML For
ARM, the RAPID code requires six times fewer lines to rep-
resent, and Brill requires about half of the lines of the hand-
crafted solution. The regular expression representation for
Brill is more compact than RAPID.

We created the Gappy, Exact, and MOTOMATA bench-
marks using a GUI design tool. For these, we present the
lines of code in ANML, which is roughly equivalent to the
number of actions taken within the design tool. ANML file
sizes are dependent on the specific instance of a problem,
and the numbers we present are for a single instance of the
problem listed in Table 5. In all cases, the RAPID program
is significantly more compact than the ANML it generates.

As an approximation for the size of the resulting au-
tomaton, we measure the number of STEs generated and the
number of STEs loaded to the AP after placement and rout-
ing. The placement and routing tools modify the original
automaton to better match the architectural design of the AP.
These optimizations are similar to those applied by VASim
for our CPU, GPU, and FPGA targets. For most benchmarks,
RAPID-generated automata contain fewer device STEs, tak-
ing up less space on the device. Only the Gappy benchmark
requires more device STEs. Although we could optimize
the RAPID code to reduce the size of the generated au-
tomaton, we found that this more natural design, although
larger, has comparable placement and routing efficiency. For
MOTOMATA, the RAPID version requires approximately
half the STEs of the hand-crafted version. The compiled
RAPID version makes use of a saturating counter, while the
handcrafted version uses positional encoding.

Due to the lock-step execution of automata on the AP,
runtime performance of loaded designs is linear in the
length of a given input stream. Therefore, we focus on
evaluating the space efficiency of RAPID programs. In
Table 7, we present the performance of RAPID programs

TABLE 6
Comparison between RAPID and hand-crafted code with respect to

lines of code (LOC) and STE usage

ANML Device
Benchmark LOC LOC STEs STEs

ARM H 118 301 79 58
R 18 214 58 56

Brill H 1,292 9,698 3,073 1,514
R 688 10,594 3,322 1,429
Re 218 –‡ 4,075 1,501

Exact H –† 193 28 27
R 14 85 29 27

Gappy H –† 2,155 675 123
R 30 2,337 748 399

MOTOMATA H –† 587 150 149
R 34 207 53 72

R – RAPID H – Hand-coded Re – Regular Expression
† The GUI tool does not have a LOC equivalent metric.

‡ No ANML statistics are provided by the regular expression compiler.

compared to hand-crafted ANML based on placement and
routing statistics for the AP, using version 1.4-11 of the AP
SDK to generate the placement and routing information.
The total blocks column measures the number of routing
matrix blocks (see Section 2.2.2) needed to accommodate the
design; lower numbers represent a more compact design.
STE utilization indicates the percent of used STEs within the
routed blocks; high numbers indicate a design with fewer
unused STEs. Mean BR allocation (AP MBRA) is a metric
provided by the AP SDK that approximates the routing
complexity of the design. Here, a lower number is better,
signifying lower congestion within the routing matrix. The
AP Clk column indicates whether the clock cycle of the AP
must be reduced to accommodate a design. In one instance
(the RAPID MOTOMATA program), the clock cycle must be
halved due to a limitation in signal propagation between
counters and combinatorial elements in the current gener-
ation AP. However, the RAPID version is four times more
compact. Although this is a performance loss for a single
instance, it is a net performance gain for a full problem,
which will fill the AP board: four times as many instances
execute in parallel at half the speed, for a net improvement
factor of two. Although RAPID provides a higher level of
abstraction than ANML, the final device binaries are more
compact, using fewer resources on the AP.

We also evaluate the space efficiency of the FPGA en-
gines our tools produce. We synthesize our designs for a
Xilinx Kintex UltraScale XCKU060. Table 7 also lists the

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

13

TABLE 7
Space utilization on AP and FPGA targets. Lower values for AP States,

FPGA LUTs and FPGA Registers indicate a smaller footprint; lower
values for AP MBRA indicate less stress on the routing network.

AP AP AP FPGA FPGA
Benchmark STEs MBRA Clk LUTs Reg

ARM H 58 20.8% 1 73 76
R 56 20.8% 1 83 65

Brill H 1,514 65.4% 1 201 1483
R 1,429 60.6% 1 358 1360

Exact H 27 4.2% 1 6 25
R 27 4.2% 1 28 27

Gappy H 123 77.1% 1 73 123
R 399 70.8% 1 52 399

MOTOMATA H 149 75.0% 0.5 114 148
R 72 75.0% 1 85 60

H – Handcrafted R – RAPID

number of LUTs and registers needed to implement the
hardware description of the benchmark. Lower numbers
indicate smaller footprints for the circuits, which allows for
more widgets to be run in parallel on the FPGA. As with
the AP results, RAPID programs do not incur significant
space overheads on the FPGA. A complete timing analysis
and comparison with other FPGA engines falls outside the
scope of this article, but is examined by Xie et al. [19].

8 CONCLUSIONS

As data sets continue to grow in size, new hardware and
software approaches are needed to quickly process and
analyze available data. This article explores the viability of
automata processing as an intermediate computational rep-
resentation to support high-throughput processing across
computer architectures. Additionally, we present extended
results for RAPID, a language that provides a high-level
representation of pattern-matching (automata) algorithms.

Automata processing allows for a developer to write a
single application and execute on all common architectures.
Further, our empirical evaluation demonstrates that au-
tomata optimizations maintain performance stability across
CPUs, GPUs, FPGAs, and the AP.

RAPID raises the level of abstraction for programming
pattern-recognition applications, resulting in clear, concise,
maintainable, and efficient programs. We develop a notion
of macros and networks, which we argue improve pro-
gram maintainability. Additionally, RAPID provides parallel
control structures to support common tasks in pattern-
matching algorithms, such as sliding window searches. We
present techniques for converting RAPID programs to finite
automata that can be executed on CPUs, GPUs, FPGAs, and
Micron’s D480 AP. Although RAPID programs are written
at a higher level of abstraction than current hand-crafted
code, our evaluation indicates that RAPID programs have
similar, if not better, device utilization.

ACKNOWLEDGMENTS
We acknowledge the partial support of the NSF (CCF-0954024, CCF-
1629450, CCF-1116289, CCF-1116673, CCF-1619123, CDI-1124931, CNS-

1619098); Air Force (FA8750-15-2-0075); Virginia Commonwealth Fel-
lowship; Jefferson Scholars Foundation; Achievement Rewards for
College Scientists (ARCS) Foundation; Xilinx; and C-FAR, one of six
centers of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA. We would like to thank Micron
Technology and Xilinx for their support and expertise.

REFERENCES
[1] Computer Sciences Corporation, “Big data universe beginning to

explode,” http://www.csc.com/insights/flxwd/78931-big data
universe beginning to explode, 2012.

[2] Capgemini, “Big & fast data : The rise of insight-driven business,”
http://www.capgemini.com/resource-file-access/resource/pdf/
big fast data the rise of insight-driven business-report.pdf,
2015.

[3] Titan IC Systems, “RXP regular eXpression pro-
cessor soft IP,” http://titanicsystems.com/Products/
Regular-eXpression-Processor-(RXP).

[4] A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. VanderWiel,
“Hardware acceleration in the IBM PowerEN processor: Archi-
tecture and performance,” in International Conference on Parallel
Architectures and Compilation Techniques, 2012, pp. 389–400.

[5] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and
H. Noyes, “An efficient and scalable semiconductor architecture
for parallel automata processing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 12, pp. 3088–3098, 2014.

[6] Intel, “Hyperscan,” https://01.org/hyperscan, 2017, accessed
2017-04-07.

[7] J. Wadden and K. Skadron, “VASim: An open virtual automata
simulator for automata processing application and architecture
research,” University of Virginia, Tech. Rep. CS2016-03, 2016.

[8] I. Sourdis, J. Bispo, J. M. P. Cardoso, and S. Vassiliadis, “Regular
expression matching in reconfigurable hardware,” Journal of Signal
Processing Systems, vol. 51, no. 1, pp. 99–121, 2008.

[9] X. Wang, “Techniques for efficient regular expression matching
across hardware architectures,” Master’s thesis, University of
Missouri-Columbia, 2014.

[10] K. Angstadt, W. Weimer, and K. Skadron, “Rapid programming
of pattern-recognition processors,” in Architectural Support for Pro-
gramming Languages and Operating Systems, 2016, pp. 593–605.

[11] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast support for
unstructured data processing: the unified automata processor,” in
International Symposium on Microarchitecture, 2015, pp. 533–545.

[12] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron,
“Brill tagging on the Micron Automata Processor,” in International
Conference on Semantic Computing, 2015, pp. 236–239.

[13] M. H. Wang, G. Cancelo, C. Green, D. Guo, K. Wang, and
T. Zmuda, “Using the Automata Processor for fast pattern recog-
nition in high energy physics experiments - a proof of concept,”
Nuclear Instruments and Methods in Physics Research, vol. 832, pp.
219–230, 2016.

[14] K. Wang, M. Stan, and K. Skadron, “Association rule mining
with the Micron Automata Processor,” in International Parallel &
Distributed Processing Symposium, 2015.

[15] K. Wang, E. Sadredini, and K. Skadron, “Sequential pattern mining
with the Micron Automata Processor,” in International Conference
on Computing Frontiers, 2016, pp. 135–144.

[16] T. Tracy, Y. Fu, I. Roy, E. Jonas, and P. Glendenning, “Towards
machine learning on the Automata Processor,” in Proceedings of
ISC High Performance Computing, 2016, pp. 200–218.

[17] I. Roy and S. Aluru, “Finding motifs in biological sequences
using the Micron Automata Processor,” in International Parallel and
Distributed Processing Symposium, 2014, pp. 415–424.

[18] C. Bo, K. Wang, Y. Qi, and K. Skadron, “String kernel testing
acceleration using the Micron Automata Processor,” in Workshop
on Computer Architecture for Machine Learning, 2015.

[19] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. R. Stan, “REAPR:
Reconfigurable engine for automata processing,” in the Interna-
tional Conference on Field-Programmable Logic and Applications, 2017.

[20] M. Sipser, Introduction to the Theory of Computation. Thomson
Course Technology, 2006, vol. 2.

[21] M. Becchi and P. Crowley, “Efficient regular expression evaluation:
Theory to practice,” in Proceedings of Architectures for Networking
and Communications Systems, 2008, pp. 50–59.

[22] Y. Kaneta, S. Yoshizawa, S. Minato, and H. Arimura, “High-Speed
String and Regular Expression Matching on FPGA,” in Proceedings
of the Asia-Pacific Signal and Information Processing Association, 2011.

http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.capgemini.com/resource-file-access/resource/pdf/big_fast_data_the_rise_of_insight-driven_business-report.pdf
http://www.capgemini.com/resource-file-access/resource/pdf/big_fast_data_the_rise_of_insight-driven_business-report.pdf
http://titanicsystems.com/Products/Regular-eXpression-Processor-(RXP)
http://titanicsystems.com/Products/Regular-eXpression-Processor-(RXP)
https://01.org/hyperscan

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2869736, IEEE
Transactions on Parallel and Distributed Systems

14

[23] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching
Using FPGAs,” in Symposium on Field-Programmable Custom Com-
puting Machines. Washington, DC, USA: IEEE Computer Society,
2001, pp. 227–238.

[24] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact Architecture
for High-throughput Regular Expression Matching on FPGA,”
in Symposium on Architectures for Networking and Communications
Systems, 2008, pp. 30–39.

[25] M. Becchi, “Regular expression processor,” http://regex.wustl.
edu, 2011, accessed 2017-04-06.

[26] Micron Technoloy, “Calculating Hamming distance,”
http://www.micronautomata.com/documentation/cookbook/c
hamming distance.html.

[27] R. Alur, P. Černý, P. Madhusudan, and W. Nam, “Synthesis of in-
terface specifications for Java classes,” in Principles of Programming
Languages, 2005, pp. 98–109.

[28] E. Spishak, W. Dietl, and M. D. Ernst, “A type system for reg-
ular expressions,” in Workshop on Formal Techniques for Java-like
Programs, 2012, pp. 20–26.

[29] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A
language for streaming applications,” in International Conference
on Compiler Construction, 2002, pp. 179–196.

[30] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Communications of the ACM, vol. 18, no. 8,
pp. 453–457, 1975.

[31] K. R. Apt, J. Brunekreef, V. Partington, and A. Schaerf, “Alma-0:
An imperative language that supports declarative programming,”
Tech. Rep., 1997.

[32] P. J. L. Wallis, “The design of a portable programming language,”
Acta Informatica, vol. 10, no. 2, pp. 157–167, Jun 1978.

[33] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel program-
ming standard for heterogeneous computing systems,” Computing
in Science Engineering, vol. 12, no. 3, pp. 66–73, May 2010.

[34] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C. C. C.
Cheung, A. P. C. Chan, and P. H. W. Leong, “Map-reduce as a
programming model for custom computing machines,” in Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines, April 2008, pp. 149–159.

[35] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin, “Mapcg:
Writing parallel program portable between cpu and gpu,” in
Parallel Architectures and Compilation Techniques, 2010, pp. 217–226.

[36] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Mat-
suoka, “Evaluating and optimizing opencl kernels for high per-
formance computing with fpgas,” in High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 35:1–35:12.

[37] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous com-
puting,” in International Symposium on Workload Characterization,
Oct 2009, pp. 44–54.

[38] J. Wadden, K. Angstadt, and K. Skadron, “Characterizing and miti-
gating output reporting bottlenecks in spatial automata processing
architectures,” in High Performance Computer Architecture, Feb 2018,
pp. 749–761.

[39] A. Madhavan, T. Sherwood, and D. Strukov, “Race logic: A
hardware acceleration for dynamic programming algorithms,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press,
2014, pp. 517–528.

[40] J. Wadden, V. Dang, N. Brunelle, T. T. II, D. Guo, E. Sadredini,
K. Wang, C. Bo, G. Robins, M. Stan, and K. Skadron, “ANMLzoo: a
benchmark suite for exploring bottlenecks in automata processing
engines and architectures,” in International Symposium on Workload
Characterization, Sept 2016, pp. 1–12.

[41] M. Nourian, X. Wang, X. Yu, W.-c. Feng, and M. Becchi, “De-
mystifying automata processing: Gpus, fpgas or micron’s ap?” in
Proceedings of the International Conference on Supercomputing, 2017,
pp. 1:1–1:11.

[42] C. Bo, K. Wang, J. J. Fox, and K. Skadron, “Entity resolution accel-
eration using the automata processor,” in International Conference
on Big Data, Dec 2016, pp. 311–318.

[43] I. Roy, “Algorithmic techniques for the micron automata proces-
sor,” Ph.D. dissertation, Georgia Institute of Technology, 2015.

[44] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer,
M. Stan, and K. Skadron, “MNCaRT: An open-source, multi-
architecture automata-processing research and execution ecosys-
tem,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 84–87,
Jan 2018.

[45] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP ’95. New
York, NY, USA: ACM, 1995, pp. 207–216.

[46] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru, “High
performance pattern matching using the automata processor,” in
International Parallel and Distributed Processing Symposium, 2016, pp.
1123–1132.

[47] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340,
Jun. 1975.

[48] T. Ball and S. K. Rajamani, “Automatically validating temporal
safety properties of interfaces,” in SPIN Workshop on Model Check-
ing of Software, 2001, pp. 103–122.

Kevin Angstadt received a BS in computer sci-
ence, mathematics, and German studies from
St. Lawrence University in 2014 and a Masters
degree in computer science from the University
of Virginia in 2016. He is now a PhD student at
the University of Michigan. His research focuses
on improving programming support for emerging
hardware technologies, including both the de-
velopment of new programming models as well
as automated techniques for adapting existing
software.

Jack Wadden is a post-doctoral fellow at the
University of Michigan. Jack received his BA
from Williams College in 2011 and a PhD from
the University of Virginia in 2018. He studies
application specific accelerators, with a focus
on spatial-reconfigurable computing, automata
processing, and genomics, and is also interested
in software/hardware co-design for architectural
reliability.

Westley Weimer received a BA degree in com-
puter science and mathematics from Cornell
University and MS and PhD degrees from the
University of California, Berkeley. He is currently
a full professor at the University of Michigan.
His main research interests include static and
dynamic analyses to improve software quality
and fix defects, as well as medical imaging and
human studies of programming.

Kevin Skadron is the Harry Douglas Forsyth
professor and chair of the Department of Com-
puter Science at the University of Virginia, where
he has been on the faculty since 1999. His re-
search focuses on heterogeneous architecture,
design and applications of novel hardware accel-
erators, and design for physical constraints such
as power, temperature, and reliability. Skadron
and his colleagues have developed a number
of open-source tools to support this research,
including the HotSpot thermal model, the Ro-

dinia GPU benchmark suite, the ANMLZoo automata benchmark suite,
the MNCaRT automata processing design framework, and the RAPID
programming language. Skadron is a Fellow of the IEEE and the ACM,
and recipient of the 2011 ACM SIGARCH Maurice Wilkes Award.

http://regex.wustl.edu
http://regex.wustl.edu
http://www.micronautomata.com/documentation/cookbook/c_hamming_distance.html
http://www.micronautomata.com/documentation/cookbook/c_hamming_distance.html

