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Abstract The abundance of defects in existing software systems is unsustainable.

Addressing them is a dominant cost of software maintenance, which in turn dominates the

life cycle cost of a system. Recent research has made significant progress on the problem of

automatic program repair, using techniques such as evolutionary computation, instru-

mentation and run-time monitoring, and sound synthesis with respect to a specification.

This article serves three purposes. First, we review current work on evolutionary com-

putation approaches, focusing on GenProg, which uses genetic programming to evolve a

patch to a particular bug. We summarize algorithmic improvements and recent experi-

mental results. Second, we review related work in the rapidly growing subfield of auto-

matic program repair. Finally, we outline important open research challenges that we

believe should guide future research in the area.

Keywords Automatic program repair � Software engineering � Evolutionary computation

1 Introduction

Program evolution and repair are major components of software maintenance, which consumes

a daunting fraction of the total cost of software production (Seacord et al. 2003). Although there

are many tools available to help with bug triage (e.g., Anvik et al. 2006), localization (e.g.,

Jones and Harrold 2005; Saha et al. 2011), validation (e.g., Yin et al. 2011), and even
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confirmation (e.g., Liblit et al. 2005), generating repairs remains a predominantly manual, and

thus expensive, process. The trend is clear: There is a pressing need for automatic techniques to

supplement manual software development with inexpensive tools.

Research in automated program repair has focused on reducing repair costs by enabling

continued program execution in the face of run-time errors [e.g., Juzi (Elkarablieh and

Khurshid 2008), ClearView (Perkins et al. 2009), ARMOR (Carzaniga et al. 2013), or

Demsky et al. (2006)], using code contracts or formal specifications to synthesize repairs

[e.g., AutoFix-E (Wei et al. 2010), Axis (Liu and Zhang 2012), AFix (Jin et al. 2011),

SemFix (Nguyen et al. 2013), or Gopinath et al. (2011)], or using evolutionary compu-

tation (EC) (e.g., by coevolving test cases and repairs (Arcuri 2011; Wilkerson et al. 2012),

or via language-specific operators and representations (Orlov and Sipper 2011; Schulte

et al. 2010). In this latter category, we introduced GenProg (Le Goues et al. 2012a, b, c),

which uses genetic programming (GP) to repair a wide range of defect types in legacy

software (e.g., infinite loops, buffer overruns, segfaults, integer overflows, format string

vulnerabilities, and general incorrect output) without requiring a priori knowledge or

formal specifications.

The breadth and depth of recent activity in this area is exciting. Automatic repair work

has been evaluated by DARPA red teams (Perkins et al. 2009) and won awards for human-

competitive results produced by genetic and evolutionary computation (Koza 2009).

Harman (2010) sums up the challenge succinctly: ‘‘If finding bugs is technically

demanding and yet economically vital, how much more difficult yet valuable would it be to

automatically fix bugs?’’

This article provides a high-level overview of the state of current research and existing

challenges in automatic program repair, making several contributions. We begin with an

update on the GenProg tool (in Sect. 2) and provide an overview and summary of recent

experimental results (in Sect. 3) In conjunction with an overview of related work (Sect. 4),

we use our experience to motivate a discussion of open research problems (Sect. 5), which

we outline as challenges to the field. We conclude in Sect. 6.

2 GenProg

Over the past several years, we have described and evaluated several versions of GenProg

(Le Goues et al. 2012a, b, c) an automated method that uses genetic programming (GP)

(Koza 1922; Forrest 1993) to search for a source-level patch1 that causes an off-the-shelf

program to avoid a known defect while retaining key functionality. GP is a search tech-

nique based on the principles of biological evolution. As applied to program repair, GP

maintains and evolves populations of program patches, seeking a patch that repairs the

buggy behavior. In this section, we describe the current state of the algorithm, summarizing

previously published work, and highlighting recent improvements that enable GenProg to

efficiently repair real bugs in large real-world programs.

2.1 Illustrative example

For the purposes of clarifying insights underlying our approach, we begin by presenting a

running example adapted from a publicly available vulnerability report. Consider the

1 GenProg can also effect repairs in assembly code, binary files, and (recently) the LLVM intermediate
representation.
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pseudocode shown in Fig. 1a, adapted from a remote-exploitable heap buffer overflow

vulnerability in the nullhttpd v0.5.0 webserver. Function ProcessRequest
processes an incoming request based on data copied from the request header. Note that on

line 13, the call to calloc trusts the content-length provided by a POST request, copied

from the header on line 7. A malicious attacker can provide a negative value for Con-
tent-Length and a malicious payload in the request body to overflow the heap and kill

or remotely gain control of the running server (Nullhttpd 2002).

This buffer overflow vulnerability can be repaired fairly simply by adding a check on

the content-length before using it in the call to calloc. This candidate patch to the

original program is shown in Fig. 1b.

At a high level, the goal of GenProg is to get from Figs. 1a to 2b automatically. In

subsequent sections, we periodically refer back to this example to illustrate the algorithmic

presentation and its underlying design insights. GenProg can also successfully repair the

defect on which this example is based (Le Goues et al. 2012a).

2.2 Overview

High-level pseudocode for GenProg’s main GP loop is shown in Fig. 2. GenProg takes as

input a program and a set of test cases that encode the bug (referred to as negative test

cases) as well as required behavior that cannot be changed (the positive test cases).

GenProg uses the test cases to localize the fault and compute context-sensitive information

to guide the repair search (Sect. 2.6). Each individual, or variant, is represented as a patch,

or a sequence of edit operations to the original program (Sect. 2.3). The goal is to produce a

patch that causes the original program to pass all test cases.

Line 1 of Fig. 2 initializes the population by creating a number of random initial

patches. Lines 2–6 correspond to one iteration, or generation, of the algorithm. On line 3,

tournament selection (Miller and Goldberg 1996) selects high-fitness (Sect. 2.4)

(a) (b)

Fig. 1 Pseudocode of a webserver that contains a bug (a) and a repaired version of the same program (b)
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individuals to be parents in the next generation. In general, fitness evaluation dominates

GenProg run-time. The ‘‘parents’’ are selected pairwise at random to undergo crossover,
in which a single point is chosen randomly, and the subsequences up to the point in each

parent are swapped, creating two new ‘‘offspring’’ variants. Each parent and each offspring

are mutated once (mutate), and the result forms the incoming population for the next

generation (Sect. 2.5). The GP loop terminates if a patch is found that causes the input

program to pass all of its test cases, or when resources are exhausted (i.e., a predetermined

time limit is exceeded). If GenProg succeeds in producing a repair, the resulting patch can

be minimized in a deterministic post-processing step that combines tree-structured dif-

ferencing (Al-Ekram et al. 2005) with delta debugging (Zeller 1999). Multiple executions

of the algorithm are typically run in parallel for a given bug, each with a distinct random

seed. Each execution, or run, is referred to as a trial.

In theory, the ‘‘best known’’ patch could be returned if no repair is found within the

given time limit. Previous work has shown that developers address bug reports associated

with a candidate patch more quickly than when no suggested patch accompanies the bug

report, even if the proposed patch is incorrect (Weimer 2006). A ‘‘partial solution,’’ or the

best known patch found at a certain point, might serve as a useful guide for developers

faced with repairing a bug by hand when the automated process fails. In an alternative use

case, human advice or input might be solicited by the automated process when it is

struggling, perhaps based on the ‘‘best known’’ patch to date. We have not yet investigated

these scenarios in detail, but we speculate that they might provide alternative use cases to

improve fault localization and debugging processes in practice.

2.3 Representation

The current version of GenProg represents each variant as a patch, or a sequence of edit

operations with respect to the input program. In earlier work, and in keeping with a

considerable proportion of the GP literature, GenProg represented an individual by its

entire abstract syntax tree (AST), combined with a novel weighted execution path (Weimer

et al. 2009). We subsequently found that the full AST representation limits scalability. For

Fig. 2 High-level pseudocode for the main GenProg loop; figure adapted from (Le Goues et al. 2012b).
Typically, multiple trials (instances of the main repair loop) will be run in parallel for a given bug, with each
trial initialized with a different random seed. Each trial is run either until a patch is found (line 6) or until a
resource limit is reached (e.g., a certain number of iterations of the loop). The resource limit is externally
checked and does not appear in the pseudocode
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example, for at least 36 of the 105 defects in our largest dataset of real, historical defects in

open-source programs (Le Goues et al. 2012b), a population of 40–80 full ASTs did not fit

in 1.7 GB of main memory. Over the same dataset, however, half of patches were 25 lines

or less. Thus, two unrelated variants are likely to differ by at most 2 9 25 lines, with all

other AST nodes in common. As a result, we now favor representing individuals as patches

to avoid storing redundant copies of untouched code (Le Goues et al. 2012b). This design

choice allows each individual in the population to be stored more compactly, and it scales

sublinearly with the size of the code to which GenProg is being applied, a clear efficiency

advantage.

Returning to our running example, one random individual in the population might

correspond to ‘‘Delete the statement on line 10.’’ We index statements by assigning them

unique integer values when the program is initially parsed, and thus, the candidate patch

can be represented as ‘‘Delete(N),’’ where N is a unique identifying integer. This consumes

much less storage than an entire secondary copy of the code, with the code from line 10,

buff=DoGETReq(sock,len);, replaced by an empty block. To evaluate each can-

didate, the edits are applied to the input program in order to produce a new AST, whose

fitness is measured as described in the next subsection.

2.4 Fitness

The fitness function guides a GP search. The fitness of an individual in a program repair

task should assess how well the patch causes the program to avoid the bug while still

retaining all other required functionality. We use test cases to measure fitness by applying a

candidate patch to the original program and then rerunning the test suite on the result.

We typically take these test suites from the regression tests associated with many open-

source projects. Regardless of its provenance, the input test suite should contain at least

one case that initially fails, encoding the bug under repair, as well as at least one (but

typically several) that initially pass, encoding required functionality that should be

maintained post-patch.

For the running example, we write a test case that demonstrates the bug by sending a

POST request with a negative content-length and a malicious payload to the Web server in

order to try to crash it, and then, we check whether the Web server is still running.

Unmodified nullhttpd fails this test case.

However, defining desired program behavior exclusively by what we want null-
httpd to not do may lead to undesirable results. Consider the following variant of

nullhttpd, created by a patch that replaces the body of the function with return
null:

This version of ProcessRequest does not crash on the bug-encoding test case, but it

also fails to process any requests at all. The repaired program should pass the error-encoding

test case, but it must also retain core functionality before it can be considered acceptable.

Such functionality can also be expressed with test cases, such as a regression test case that

obtains index.html and compares the retrieved copy against the expected output.2

Running test cases typically dominates GenProg’s run-time, so we use several strategies

to reduce the time to evaluate candidate patches. First, test cases can often be evaluated in

parallel (Weimer et al. 2009). Second, our problem, like many GP problems, is tolerant of

noisy fitness functions (Fast et al. 2010), which allows us to evaluate candidates on

2 In practice, we use several test cases to express program requirements. We describe only one here for
brevity.
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subsamples of the test suite. The function SampleFit evaluates a candidate patch on a

random sample of the positive tests and on all the negative test cases. For efficiency, only

variants that maximize SampleFit are fully tested on the entire test suite (using FullFit-
ness). The final fitness of a variant is the weighted sum of the number of tests it passes,

where negative tests are typically weighted more heavily than the positive ones. This

biases the search toward patches that repair the defect (Le Goues et al. 2012c). Programs

that do not compile are assigned fitness zero.

We have experimented with several test suite sampling strategies and found that a

random approach works well: The benefits gained by more precise sampling are out-

weighed by the additional computation time to select the samples. Sampling introduces

noise into fitness evaluation, in that the value produced by SampleFit may differ from the

value produced by FullFitness for the same individual. Too much noise could lead to more

fitness evaluations over the course of the search. Although we have not been able to

characterize the amount of noise SampleFit introduces across bug or benchmark type,

our experiments show that it can vary from around 15 % to as high as 70 %. Overall, we

observe the additional cost of increased sampling (more fitness evaluations required to find

a successful repair) is strongly outweighed by the much smaller cost per evaluation

achieved through sampling.

2.5 Mutation and crossover

Mutation operates on AST nodes corresponding to C statements (e.g., excluding expres-

sions or declarations), which limits the size of the search space. In each mutation, a

destination statement d is chosen from the set of permitted statements according to a

probability distribution (Sect. 2.6). In GenProg, there are three distinct types of mutation,

and the algorithm chooses randomly which one to apply. We have experimented with

different mutation operators, but recent versions of GenProg use delete, insert, or replace.

If insert or replace is selected, a second statement s is selected randomly from elsewhere

in the same program. Statement d is then either replaced with s or with a new statement

consisting of d followed by an inserted s. These changes are appended to the variant’s

current list of edits.

Crossover selects two variants and exchanges subsequences between the two list of

edits. The motivation for this operator is that valid partial solutions might be discovered by

different variants, and crossover can combine them efficiently, helping to avoid local

optima in the search. GenProg currently uses one-point crossover (Rowe and McPhree

2001) as follows: Given parent individuals p and q, crossover selects crossover points pn

and qm. The first portion of p is appended to the second portion of q, and vice versa,

creating two offspring, both of which are evaluated by SampleFit.

2.6 Search space

Because the space of all possible edits to a program is so large, GenProg restricts the search

to a smaller space that is likely to contain a repair. Consider again the bug in nullhttpd
(Fig. 1a). This code snippet represents only a small portion of the 5,575 line program.

Displaying all 5,575 lines is unnecessary, however, because not all program locations are

equally likely to be good choices for changes to fix the bug. Fault localization reduces the

number of destination statements d that can be selected as locations for mutation.

Once a location for the mutation has been chosen, GenProg next selects the source

statement s to be used as insertion or replacement code. We observe that a program that
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makes a mistake in one location often handles a similar situation correctly in another

(Engler et al. 2001). As a result, GenProg selects source statements s from code found

elsewhere in the same program. This approach applies to nullhttpd. Although the

POST request handling in ProcessRequest does not perform a bounds check on the

user-specified content-length, the cgi_main function, implemented elsewhere,

does:

This code can be copied and inserted into the buggy region, as shown in the repaired

version of the program (Fig. 1b).

The search space for program repair is therefore defined by the locations that can be

changed, the mutations that can be applied at each location, and the statements that can

serve as sources of the repair. We parameterize these components of the search along two

key dimensions:

Fault space GenProg mutates only statements that are associated with incorrect

behavior, and the statements are weighted to influence mutation probability. The input

program is instrumented and executed to identify which statements are executed by which

test cases. We initially believed that mutation should be biased heavily toward statements

visited exclusively by the negative test cases (Weimer et al. 2009). However, we subse-

quently found that this intuition does not hold on our largest dataset: A uniform weighting,

or one in which statements executed by both positive and negative test cases are weighted

more heavily, was found to be preferable (Le Goues et al. 2012c), although we do not

consider this issue completely resolved.

Fix space We use the term fix localization (or fix space) to refer to the source of insertion

or replacement code. Candidate fixes are restricted to those within the original program, and

they are currently restricted to statements visited by at least one test case (because we

hypothesize that common behavior is more likely to be correct). In addition, GenProg rules

out insertions that include variables that would be out of scope at the destination (to avoid

type checking errors). Such localization improves search efficiency because it greatly

reduces the proportion of generated variants that do not compile (Orlov and Sipper 2009).

3 Evaluation

We have evaluated GenProg along several dimensions. We established generality by

showing that GenProg can repair many different types of bugs in real-world programs, and

we demonstrated scalability by showing that GenProg can repair programs containing

millions of lines of code, without requiring special coding practices or annotations. We

have characterized and improved the algorithm in both of these dimensions. Performing

these evaluations has highlighted the challenge of developing benchmarks for automated

defect repair, a problem we have approached from multiple angles. In this section, we

summarize several of our recent evaluation efforts, focusing on high-level goals, results,

and challenges. We elide some details in the interest of space and direct the reader to

associated publications where relevant.

3.1 Benchmarks

One of the greatest challenges we have faced in evaluating GenProg has been finding a good

set of benchmark bugs and programs. Good benchmarks are critical to high-quality empirical

science: ‘‘Since benchmarks drive computer science research and industry product devel-

opment, which ones we use and how we evaluate them are key questions for the community’’
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(Blackburn et al. 2006). A good benchmark defect set should be indicative and generaliz-

able, and it should therefore be drawn from a variety of programs representative of real-

world systems. The defects should illustrate real bugs that human developers would consider

important and be easy to reproduce. Existing benchmark suites such as SPEC or Siemens

(Hutchins et al. 1994) do not fulfill these requirements. The SPEC programs were designed

for performance benchmarking and do not contain intentional semantic defects that are

required for the automated repair problem. The Siemens suite does provide programs with

test suites and faults. However, it was designed for controlled testing of software testing

techniques, and therefore, the test suites maximize statement coverage, the faults are almost

exclusively seeded, and the programs are fairly small.

A number of studies of automatic bug finding, localization, and fixing techniques have

used bugs ‘‘in the wild,’’ found through case studies, careful search through bug databases,

industrial partnerships, and word-of-mouth (e.g., Liblit et al. 2005; Perkins et al. 2009).

We have also taken this approach, identifying as broad a range of defects in as many

different types of programs as possible to substantiate our claim that GenProg is general

(Table 1) for the benchmarks used in many of our studies). The programs total 1.25M lines

of C code, and the bugs in the dataset cover 8 different fault types; a number are taken from

public vulnerability reports (indicated with a y in the table).

To enable large-scale evaluation of GenProg’s scalability and real-world utility, we

recently developed a larger benchmark defect set, leveraging source control, and regression

tests suites of open-source C programs in a systematic way (Le Goues et al. 2012b). Given

a set of popular programs from open-source repositories, we searched systematically

through each program’s source history, looking for revisions that caused the program to

Table 1 A set of benchmark programs used in experiments to evaluate GenProg’s generality, with size of
the program measured in lines of code (LOC)

LOC Description Fault

gcd 22 Example Infinite loop

zune 28 Example (BBC News 2008) Infinite loopy
uniq utx 1146 Duplicate text processing Segmentation fault

look utx 1169 Dictionary lookup Segmentation fault

look svr 1363 Dictionary lookup Infinite loop

units svr 1504 Metric conversion Segmentation fault

deroff utx 2236 Document processing Segmentation fault

nullhttpd 5575 Web server Remote heap buffer overflow (code)y
openldap 292598 Directory protocol Non-overflow denial of servicey
ccrypt 7515 Encryption utility Segmentation faulty
indent 9906 Source code processing Infinite loop

lighttpd 51895 Web server Remote heap buffer overflow (vars)y
flex 18775 Lexical analyzer generator Segmentation fault

atris 21553 Graphical tetris game Local stack buffer exploity
pphp 764489 Scripting language Integer overflowy
wu-ftpd 67029 FTP server Format string vulnerabilityy
total 1246803

The dataset contains bugs spanning 8 different fault types. See http://genprog.cs.virginia.edu/ for all
benchmarks and source code used in our evaluations. Table adapted from (Le Goues et al. 2012a)

y Indicates an openly available exploit
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pass test cases that failed in a previous revision. Such a scenario corresponds to a human-

written repair for the bug defined by the failing test case. Table 2 summarizes the programs

and defects in this dataset, which allows, to the best of our knowledge, the largest eval-

uation of automatic program repair to date. In total, it comprises 8 open-source C programs

and 105 defects, with at least 2 defects per program.

We used this larger set to evaluate GenProg’s real-world utility (Le Goues et al. 2012b)

(i.e., what proportion of real bugs can be repaired automatically and the cost of a repair on

publicly available cloud compute resources) and to conduct in-depth studies of critical

algorithmic choices (Le Goues et al. 2012c). These latter studies allow us to ask questions

about the nature of the search, how and why it works, why it does not always work, and

how we may improve it, and are ongoing.

3.2 Generality

GenProg repairs all the bugs in Table 1 in 356.5 s, on average, using relatively small sets

of regression test cases (automatically or human-generated or taken from the existing test

suites) on a machine with 2 GB of RAM and a 2.4 GHz dual-core CPU. These bugs cover

a variety of defect types, including one of the earliest reported format string vulnerabilities

(wu-ftpd). Of the sixteen patches, seven insert code, seven delete code, and two both

insert and delete code. We note that patches that delete code do not necessarily degrade

functionality, because the code may have been included erroneously, or the patch may

compensate for the deletion with another insertion. Similarly, it is also possible to insert

code without negatively affecting functionality, because the inserted code can be guarded

so it applies only to relevant inputs (i.e., zero-valued arguments or tricky leap years).

Although a comprehensive code review is beyond the scope of this article, manual

inspection (and quantitative evaluation, results not shown Le Goues et al. 2012a) suggests

that the patches are acceptable, in that they appear to address the underlying defect without

introducing new vectors of attack. In our experiments and experience with patches that

GenProg has produced, we observe that lost functionality in response to inadequate

positive test cases appears more likely than the introduction of new vulnerabilities. Overall,

GenProg patches are typically highly localized in their effects.

Table 2 A benchmark set of subject C programs, test suites, and historical defects, designed to allow large-
scale, indicative, and systematic evaluation of automatic program repair techniques

Program Description LOC Tests Bugs

fbc Legacy compiler for Basic 97,000 773 3

gmp Precision math library 145,000 146 2

gzip Data compression utility 491,000 12 5

libtiff Image manipulation library 77,000 78 24

lighttpd Lightweight web server 62,000 295 9

php Web programming language interpreter 1,046,000 8,471 44

python General programming language interpreter 407,000 355 11

wireshark Network packet analyzer 2,814,000 63 7

Total 5,139,000 10,193 105

Tests were taken from the most recent version available in May 2011; defects are defined as test case failures
that were repaired by developers in previous versions. See http://genprog.cs.virginia.edu/ for all benchmarks
and source code used in the evaluations, including virtual machine images and pre-packaged bug scenarios
that can be used to reproduce these defects. Table adapted from (Le Goues et al. 2012b)
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Using commodity cloud resources, and limiting all repair runs to a maximum of 12 h

(simulating an overnight repair run), GenProg repaired approximately half of the bugs in

Table 2, including at least one per program. Recall that this dataset was intended to

evaluate real-world cost and expressive power. Modifying certain parameter values or

changing various selection probabilities in the algorithm can influence GenProg’s ability to

find a repair, especially for the more ‘‘difficult’’ repair scenarios (that is, those on which

GenProg’s random success rate is lower on average). For example, altering the probability

distribution used to select the mutation type, changing the crossover algorithm, and

changing the fault and fix space weightings allowed GenProg to repair 5 new bugs when

compared against a default baseline (Le Goues et al. 2012c). Similarly, running the repair

algorithm for longer (von Laszewski et al. 2010) causes GenProg to repair at least another

6 of the 105 scenarios, when compared to the 12-h scenario.

We have investigated several of the important parameter, operator, and representation

choices (see especially Le Goues et al. 2012c), including two representations and four

versions of the crossover operator. We also investigated the mutation operators and their

selection probability as well as fault and fix space modifications and probability distributions.

These investigations leave open the possibility of additional parameter sweeps in future

work. Our results suggest additional avenues of future inquiry. For example, the patch

representation (Sect. 2.3) appears to be more effective than the original abstract syntax tree/

weighted path representation (Le Goues et al. 2012c), but the mechanism behind this

remains unknown. While the two representation choices encode the same types of changes,

we hypothesize that differences in the way are applied to the AST result in slightly different

search space traversals in each case. Regardless, the GP algorithm that we use in GenProg is

quite different from that typically used in many GP applications, a fact that motivates careful

consideration of the various operator and parameter choices that underlie its implementation.

Overall, we view the successful and efficient repair of at least 8 different defect types in

16 programs and half of 105 systematically identified defects from programs totaling 5.1

million lines of code as a strong result, indicating the potential for generic automated repair

algorithms such as GenProg.

3.3 Scalability and success

GenProg has repaired bugs in large programs with large test suites, as shown both in

Tables 1 and 2. We have found that the time to execute test cases dominates repair time

(comprising 64 % of the time to repair the benchmarks in Table 1, for example), which

motivated our efforts to find ways to reduce the time necessary for fitness evaluation (Fast

et al. 2010).

We are still working to characterize the conditions that influence GenProg’s success rate

and time to repair. However, we have investigated a number of potential relationships. We

consistently find a weak but statistically significant power law relationship between fault

localization size and both time to repair and probability of success (Le Goues et al. 2012a,

b; Forrest et al. 2009). As fault space size increases, the probability of repair success

decreases, and the number of fitness evaluations required to find a repair (an algorithmic

measure of search time) increases. We have also found a negative correlation between the

fix space size and repair time. We speculate that larger fix spaces include more candidate

repair options, thus reducing the time to find any given one.

We have also analyzed the relationship between repair success and external metrics such

as human repair time and size, and defect severity. The only significant correlation we have

identified using such metrics is between the number of files touched by a human-generated
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patch and repair success: The more files the humans changed to address the defect, the less

likely GenProg was to find a repair. We have found no significant correlation between ‘‘bug

report severity’’ and ‘‘GenProg’s ability to repair,’’ which we consider encouraging.

3.4 Example patch

In this subsection, we describe one patch produced by GenProg for a php bug from

Table 2 and compare it to the one produced by humans for the same defect. We adapted

this description from Le Goues et al. (2012b) for the purposes of illustrating the types of

patches that GenProg can produce.

The php interpreter uses reference counting to determine when dynamic objects should

be freed. User programs written in php may overload internal accessor functions to specify

behavior when undefined class fields are accessed. Version 5.2.17 of php had a bug related

to a combination of these features. At a high level, the ‘‘read property’’ function, which

handles accessors, always calls a deep reference count decrement on one of its arguments,

potentially freeing both that reference and the memory it points to. This is the correct

behavior unless that argument points to $this when $this references a global vari-

able—a situation that arises if the user program overrides the internal accessor to return

$this. In such circumstances, the global variable has its reference count decremented to

zero and its memory is mistakenly freed while it is still globally reachable.

The human-written patch replaces a line that always calls the deep decrement with a

simple if-then-else: in the normal case (i.e., the argument is not a class object), calling the

deep decrement as before, otherwise calling a separate shallow decrement function. The

shallow decrement function will free the pointer, but not the object to which it points.

The GenProg patch adapts code from a nearby ‘‘unset property’’ function. The deep

decrement is unchanged, but additional code is inserted to check for the abnormal case. In

the abnormal case, the reference count is deeply incremented (through machinations

involving a new variable), and then, the same shallow decrement is called.

Thus, at a very high level, the human patch changes the call to deep_Decr() to:

while the GP-generated patch changes it to:

The logical effect is the same but the command ordering is not, and both patches are of

comparable length. The human patch is perhaps more natural: It avoids the deep decrement

rather than performing it and then undoing it.

4 Related work

Automatic program repair and related problems have received considerable attention in

recent years, including work on debugging and debugging assistance; error preemption,

recovery, and repair; and evolutionary search, GP, and search-based software engineering.

Debugging Work on debugging and debugging assistance focuses on identifying defects

or narrowing the cause of a defect to a small number of lines of code. Recent debugging
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advances include replay debugging (Albertsson and Magnusson 2000), cooperative sta-

tistical bug isolation (Liblit et al. 2003), and statically debugging fully specified programs

(He and Gupta 2004). Other techniques mine program history and related artifacts to

suggest bug repairs or otherwise provide debugging support (Jeffrey et al. 2009; Ashok

et al. 2009). Trace localization (Ball et al. 2003), minimization (Groce and Kroening

2005), and explanation (Chaki et al. 2004) projects also aim to elucidate faults in the

context of static defect detection.

Such work is best viewed as complementary to automated repair: A defect found or

localized automatically could also be explained and repaired automatically. However, a

common underlying assumption of such work is that unannotated programs must be

repaired manually, albeit with additional information or flexibility presented to the

developer. We propose several ways that these approaches might be extended or improved

to improve automated repair and related challenges, in Sect. 5.1

Automated error preemption and defect repair One class of approaches to automatic

error handling uses source code instrumentation and run-time monitoring to prevent

harmful effects from certain types of errors. Programs with monitoring instrumentation can

detect data structure inconsistency or memory over- or under-flows. Various strategies are

then used to enable continued execution (Elkarablieh and Khurshid 2008; Demsky et al.

2006), generate trace logs, attack signatures and candidate patches for the system

administrators (Smirnov and Chiueh 2005; Smirnov et al. 2006), or dispatch to custom

error handlers (Sidiroglou et al. 2005; Sidiroglou and Keromytis 2005). Jolt (Carbin et al.

2011) assists in the dynamic detection of and recovery from infinite loops.

Other research efforts (including our own) focus directly on patch generation. At the

binary level, ClearView (Perkins et al. 2009) uses monitors and instrumentation to flag

erroneous executions and generate candidate patches. ARMOR (Carzaniga et al. 2013)

replaces library calls with equivalent statements, using multiple implementations to sup-

port recovery from erroneous run-time behavior. AutoFix-E (Wei et al. 2010) uses con-

tracts present in Eiffel code to propose semantically sound fixes. SemFix uses symbolic

execution and program constraints to build repairs from relevant variables (Nguyen et al.

2013). Gopinath et al. also use formal specifications to transform buggy programs

(Gopinath et al. 2011). Axis (Liu and Zhang 2012) and AFix (Jin et al. 2011) soundly

patch single-variable atomicity violations, while Bradbury et al. propose to use GP to

address concurrency errors (Bradbury and Jalbert (2010), PACHIKA (Dallmeier et al.

2009) infers object behavior models to propose candidate fixes.

Many of these techniques are designed for particular types of defects, making use of

pre-enumerated repair strategies or templates. Buffer overruns are particularly well han-

dled in the previous work, but overall generality remains a dominant research concern.

Additionally, concurrency bugs remain a significant challenge. AFix and Axis are two of

the only techniques to address them explicitly, although several of the other techniques can

repair deterministic bugs in multi-threaded programs. However, non-deterministic bugs

remain very difficult to test, and addressing that challenge is largely independent of

integrating any solution into an automated repair framework that depends on testing. Some

techniques, such as AutoFix-E, require specifications or annotations. While this enables

semantic soundness guarantees, formal specifications are rare in practice (Palshikar 2001).

We discuss several potentially fruitful research directions suggested by the current state of

the art in program repair in the next section.

One major challenge in comparing these techniques for expressive power, generality, or

generality utility is the relative dearth of agreed upon benchmark defects and experimental

frameworks. Many researchers, ourselves included, identify bugs on which to test by
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combining through bug database histories, borrowing from other previous work, or fol-

lowing word-of-mouth. It can be difficult to reproduce the datasets from other work for

direct comparison. We have begun to propose a process for identifying candidate bench-

mark defects (as described in Sect. 3.1 and Le Goues et al. 2012b), but community con-

sensus would go a long way toward enabling comprehensive comparative studies of both

previously and newly proposed techniques.

SBSE and evolutionary computation Search-Based Software Engineering (SBSE)

(Harman 2007) traditionally uses evolutionary and related methods for software testing,

e.g., to develop test suites (Wappler and Wegener 1925; Michael et al. 2001). These

techniques typically focus on automatically generating high-coverage test suites (Jia and

Harman 2010), often with multiple competing search objectives (e.g., high-coverage tests,

optimizing for a smaller test suite Lakhotia et al. 2007). SBSE also uses evolutionary

methods to improve software project management and effort estimation (Barreto et al.

2008), find safety violations (Alba and Chicano 2007), and in some cases re-factor or re-

engineer large software bases (Seng et al. 1909).

Arcuri and Yao (2008) proposed to use GP to coevolve defect repairs and unit test cases;

the idea has since been significantly expanded (Arcuri 2011; Wilkerson et al. 2012). These

approaches use competitive coevolution: The test cases evolve to find more bugs in the

program, and the program evolves in response (Adamopoulos et al. 2004). Techniques

along these lines tend to rely at least in part on formal program specifications to define

program correctness, and thus the fitness function (Arcuri and Yao 2008; Wilkerson and

Tauritz 2011). More work remains to increase the scalability, usability, and applicability of

specification and verification-based approaches. We discuss potential extensions along

these lines in the next section.

There has been considerable recent interest in and independent validations of the

potential of GP (Bradbury and Jalbert (2010) or random mutation (Debroy and Wong

2010) for program repair. It has been applied to new languages (Orlov and Sipper 2011;

Schulte et al. 2010; Ackling et al. 2011) and domains (Sitthi-Amorn et al. 2011; Langdon

and Harman 2010), and has improved non-functional program properties, particularly

execution time (White et al. 2011).

5 Open research challenges

The research results summarized in the previous sections, both our own and those of

others, suggest that the prospects for automated software repair are promising. Trans-

forming research results into practicality, however, raises important challenges, which we

believe should guide future work. In this section, we summarize the near-term challenges

that we believe are most important to automated program repair. At a high level, these

challenges fall into two broad categories:

• Real-world practicality How can we transform automatic software repair research into

widely used real-world software maintenance techniques? Challenges include scala-

bility (how quickly they find repairs, how many lines of code they can handle) and

generality (what sorts of programs and bugs they can address). An additional challenge

is establishing the credibility of automated repairs in terms of programmers’ confidence

in them and their understandability.

• Theory of unsound repair methods How and why do current unsound repair techniques

work? The success of existing approaches, particularly those that are unsound or
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stochastic (e.g., ClearView Perkins et al. 2009 or GenProg Le Goues et al. 2012b), has

been demonstrated empirically, but we lack a theoretical underpinning. The empirical

results raise questions about the nature of extant software, its robustness in the face of

random modifications, and how robustness and evolvability can be leveraged and

enhanced.

The following subsections outline a set of specific challenges, each of which falls into

one of these two general categories.

5.1 Adapting fault localization for automated repair applications

There exists considerable research on the problem of fault localization which automatically

identifies (potentially) faulty code regions. In the context of automatic repair, these

techniques identify likely locations for making a code modification, i.e., where the code is

likely broken. We have consistently observed that well-localized bugs are more likely to be

repaired and take less time to repair than poorly localized bugs. As a result, there is a

concern that data-only bugs such as SQL injection vulnerabilities will be less suitable

candidates for automated repair. Because the fault localization methods we have used to

date are quite simple, there is more sophisticated methods (e.g., Chen et al. 2002; Abreu

et al. 2006) could be incorporated to allow automated program repair of data-only bugs.

Contrary to our initial intuition, statements that are executed exclusively by the bug-

inducing input may not be the best locations for a repair. This suggests the need to revisit

our ideas about fault localization, because GenProg and related techniques may not benefit

from increasingly precise identification of buggy statements. Rather, we need fault

localization techniques that identify good candidates for code change to affect the buggy

execution in a positive way, without breaking non-buggy execution. This reconception of

fault localization is a subtle but potentially important shift from its traditional purposes. It

may be necessary to modify, extend, or reimagine existing fault localization techniques,

designed for human consumption to help developers identify regions of code associated

with a bug, to this new task of identifying regions of code that are good locations to change

for repairing a particular bug.

Other extensions of the repair technique may require entirely novel innovations in fault

localization. For example, Schulte et al. extended the GenProg approach to repair pro-

grams at the assembly level (Schulte et al. 2013). They proposed a novel stochastic,

sampled fault localization technique to smoothly identify good candidate mutation loca-

tions along the assembly-level execution path. Applying the algorithm at other, different

levels of abstraction (at the component or software architectural level, for example) will

almost certainly demand similar types of innovation.

5.2 Automatically finding or generating code that is likely to repair software defects

Beyond the challenge of identifying good repair locations, it is also desirable to under-

stand, formalize, and automatically predict how best to make a repair, addressing the fix

localization problem. Progress in this area could increase the applicability and scalability

of automated repair techniques, and it might improve our understanding of bug repair in

general.

For example, GenProg currently restricts inserted code to statements that appear else-

where in the same program. New programming paradigms or APIs, or novel bugs or

vulnerability types, could stymie this paradigm. Considerable research attention has been
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devoted to mining information from source code or repositories (Lanza et al. 2012); this

work could suggest augmented mutation operators including repair templates, even for

novel bugs. We envision a technique that suggest candidate repairs by mining other related

projects or modules, perhaps adapting methods from specification mining (Robillard et al.

2012) or guided by software quality metrics (Buse and Weimer 2008; McCabe 1976).

Mined templates could also potentially introduce expression- or declaration-level modi-

fications in a domain intelligent way, without necessarily expanding the size of the search

space prohibitively. These types of modifications may enable the repair of more complex

defects than GenProg, and related techniques have addressed to date.

Even within the same project, identifying particularly promising code to serve as

sources for automated repair remains a largely open problem. We took an initial step in this

direction by restricting the genetic operators, such that they do not move variables out of

scope. Going beyond this general approach will likely involve special knowledge about the

nature of both the bug and the program under repair. For example, in the security domain,

specialized transformations have been proposed to repair or preclude buffer overruns

(Smirnov et al. 2006; Sidiroglou et al. 2005; Barrantes et al. 2003). If GenProg had reason

to believe that the bug in question is a buffer overrun (because of the results of a pre-

processing static analysis step, for example), it could apply such transformations with

higher probability than it might otherwise.

The fix localization challenge affects all automated repair techniques, not just EC- or

GP-based stochastic search methods, including those that use pre-specified templates and

those that make semantically guaranteed mutations. Which repair template is best for a

given defect type? This challenge is motivating other researchers in the area, and we expect

it will continue to do so (Kim et al. 2013). By accurately refining the search space for

repairs and identifying more semantically expressive fixes, fix localization could enable

more efficient searches for repairs and the repair of more complex bugs.

5.3 Formalizing patch quality and maintainability

Patch quality is an important impediment to the practical adoption of automated repair

techniques. Human developers, who may never fully ‘‘leave the loop,’’ must be confident

that a given patch correctly repairs a defect without violating other system requirements.

This problem arises in all techniques that do not provide soundness guarantees. In the

absence of fully automated programming, it is desirable for repair techniques, whether

sound or unsound, to produce patches that humans can understand and later maintain.

Formal models of repair quality would allow tools to present only the best repairs to

humans or provide confidence estimates of the repair’s quality. They could provide useful

insight about patches from any source, both human- and tool-generated.

Quantitative measures of quality could include existing techniques such as held-out test

suites and black-box fuzzing or new techniques which have not yet been discovered. We

anecdotally observe that GenProg is more likely to reduce program functionality in the face

of inadequate test cases than it is to introduce a new malicious and exploitable vulnera-

bility. Additional research in measuring, predicting, or ensuring functional patch quality

might profitably begin by focusing on generating high-coverage tests to validate the

behavior impacted by a patch, rather than on designing new operators to mitigate the

probability that new vulnerabilities are introduced.

A formal model of quality, with related metrics, could also be used to analyze and

improve existing techniques with repair quality in mind. Such a model would likely require

human studies to understand and quantify what factors affect programmer understanding of
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a patch. Many programmers appear to have an instinct about whether a not a patch is

‘‘good.’’ The research challenge is in formalizing, quantifying, and ultimately predicting

this judgment. We have previously published results that studied the impact of patches on

certain measures of maintainability (Fry et al. 2012). In a recent human study, Kim et al.

(Kim et al. 2013) evaluated machine-generated patches from GenProg and their PAR tool

in terms of ‘‘acceptability,’’ and found that their patches are comparable to human-written

patches. Much more work remains to be done in this general area, both to develop addi-

tional measures, study other repair methods, and improve existing repair search techniques.

We believe that a full model that predicts, measures, and controls for the effect of a patch

on higher-level system concerns will likely incorporate both syntactic and deeper semantic

features of a patch.

Extending such an approach so it can predict the impact of a given change may allow

automated repair techniques to optimize for both functional and non-functional patch

properties. Tools like GenProg and ClearView can often generate multiple patches for the

same bug, and a notion of patch quality could be used to select from multiple options, or as

an additional parameter in the fitness function.

Patch explanation or documentation techniques (Buse and Weimer 2010) could increase

developer confidence in the output of automated tools, improving usability and adoption.

Such work could also apply to human-generated patches. While existing change docu-

mentation techniques produces what may be referred to as ‘‘what’’ explanations, or

explanations of the externally visible behavior the patch impacts and under what condi-

tions, it may be possible to develop more helpful descriptions of what a patch is doing and

why. For example, dataflow or slicing analyses may be able to describe the input and

output variables affected by a proposed patch or provide an execution ‘‘frontier’’ beyond

which a patch will no longer have an effect. Alternatively, a patch could come with an

automatically generated ‘‘justification’’ for each change that explains what happens (which

test cases fail, for example) if it is removed.

5.4 Automatic generation of full test cases: inputs and oracles

Repair techniques such as GenProg use testing to guide a search or measure acceptability.

Test suites, found much more commonly in practice than formal specifications, serve as a

proxy for complete specifications and are used by many program analysis techniques (e.g.,

Jones and Harrold 2005). However, despite their prevalence in industrial practice, few

programs are comprehensively tested, constraining the applicability of automated repair

techniques that depend on test suites.

Although automated test case generation is a popular topic, most techniques intended

for large programs produce test inputs, not full test cases (e.g., Godefroid et al. 2005; Sen

2007). These methods typically generate successive inputs that help maximize code cov-

erage, for example, but are not full test cases in the sense of the oracle-comparator model

(Binder 1999). Unless the program crashes, it is often difficult to determine whether the

program has ‘‘passed’’ when presented with the input. There is promising recent work in

this arena (Fraser and Zeller 2012; Fraser and Zeller 2011), but we think there is much

more to be done, both for automated testing and automatic program repair.

Another natural way to lift the test case assumption is to integrate GenProg with

existing bug-finding tools, particularly those that identify faulty inputs or execution paths

associated with buggy behavior (Cadar et al. 2006). Such approaches could mitigate the

need for humans to identify the failing test cases that serve as observers for the bug in

question. Reconstructing inputs or even execution traces from static bug-finding tools is a
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known challenge (Jhala and Majumdar 2005). The problem of creating high-quality test

oracles applies here as well. Previous work has suggested that program-specific temporal

safety specifications are more useful for identifying bugs than library- or API-level

specifications (such as ‘‘lock should always eventually be followed by unlock’’) (Weimer

and Necula 2005). This suggests that advances in specification mining for extant software

may prove useful in this domain (Robillard et al. 2012; Le and Weimer 2012).

5.5 Combining unsound repair algorithms and formal methods

Today, few production programs come with a complete formal specification, and most

commercial software is validated through test suites. Formal methods, however, have made

enormous advances in the past decade, and there are several intriguing possibilities for

integrating the two approaches. In GenProg, for example, the fitness function is sensitive

only to whether or not a test case was passed, a binary signal. Measuring correctness only

through test cases is a crude and possibly misleading approach. For example, consider a

bug that requires the addition of the synchronization primitives lock and unlock around

the use of a shared variable. A candidate patch that inserts only a lock will almost

certainly lead to code that performs worse than inserting nothing at all, since it will likely

lead to deadlock.

It is therefore desirable to have a finer-grained fitness function that can report how close

a program is to passing a test case, especially the negative test cases. This might be

accomplished by incorporating program analysis information, such as learned invariants

(Ernst et al. 2007; Nguyen et al. 2012; Gabel and Su 2012), into the fitness function. In

other work, we performed an initial study of such an approach (Fast et al. 2010). We found

that, on a particular case study, it was possible to use behavior as measured by such

invariants to construct a fitness function that is more accurate than test cases alone (Jones

and Forrest 1995). However, the model we constructed was fairly opaque, and in sub-

sequent efforts, we were unable to generalize it to different bugs or programs. This is not to

say that such a general model of intermediate patch correctness as profiled by dynamic

invariants is impossible. Rather, using observed behavior on dynamic program predicates

to characterize intermediate program behavior en route to a repair shows promise as an

approach, but it will require additional insight before it can achieve general utility.

Other possibilities for integrating sound program analysis techniques into unsound

approaches for program repair include automatically generating proofs for repairs in the

context of proof carrying code (Necula 1997), or automatically mutating code in a

semantics-preserving way with a goal of simplifying automatic verification (because

equisatisfiable verification conditions are not always equally easy to discharge) (Yin et al.

2009). These potential applications could lead to higher-quality repairs as well as repairs

that are easier for humans to validate and trust.

5.6 Robustness and evolvability as first-order concerns

GenProg and other evolutionary search techniques modify code using guided random

mutations. Techniques such as ClearView use template-based repair systems that modify

the code to avoid faulty behavior, without necessarily knowing a priori what the specified

correct behavior should be (beyond universal ‘‘don’t crash’’ policies). Given that these

techniques often succeed, in the sense that the software passes all tests (Le Goues et al.

2012b), is just as maintainable by humans (Fry et al. 2012), and defeats red teams (Perkins

et al. 2009), they raise important questions about software robustness in the face of
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external perturbations (random or not). In this context, software is considered robust if it

continues to function correctly in the face of perturbations to its environment, operating

conditions, or program code. In our own experience, software appears surprisingly robust

to random statement-level changes, at both the abstract syntax tree and the assembly

language levels, regardless of the coverage of its test suite (Schulte et al. 2012). Why is

it that seemingly random mutations can improve software with respect to a set of test

cases?

The success these unsound techniques challenges common definitions of acceptability:

Continued execution of an adapted or evolved system may often be a better outcome than

complete failure. This is the general approach taken by Rinard et al. in their failure-

oblivious computing models, where programs are dynamically modified to continue exe-

cuting in the face of a defect such as a buffer overrun or infinite loop (Perkins et al. 2009;

Carbin et al. 2011; Rinard et al. 2004). Additional exploration of such ideas is warranted,

both to characterize why current repair techniques can succeed at all and to gain better

insight into the nature of software.

These observations apply to program repair as well as to software systems in general.

Software today is deployed in highly dynamic environments. Nearly, every aspect of a

computational system is likely to change during its normal life cycle (Le Goues et al.

2010). New users interact with software in novel ways, often finding new uses for old code;

the specification of what the system is supposed to do changes over time; the owner and

maintainers of the system are replaced by new developers; the system software and

libraries on which the computation depends are upgraded or replaced; and the hardware on

which the system is deployed is continuously modified.

A formal notion of software change and evolvability would open new avenues for

understanding, prescribing, and predicting software behavior. It also suggests extensions to

more traditional lines of software engineering research. One example might be new

methods for developing and maintaining evolving test suites that continue to encode

correct behavior for a given program as it evolves naturally throughout the software

engineering process.

5.7 Fully automated software development

Beyond the goal of automated software repair lies the challenge of fully automating the

entire software development process, including synthesizing complex programs from

scratch using unsound techniques such as genetic programming. GenProg starts with a

program that is almost correct and has a single identified defect. What would it take for

automated repair to start with a partially debugged program and iteratively improve the

program until all the defects were eliminated, perhaps in the style of extreme programming

(Beck 2000)? Or more ambitiously, what technical impediments are there to using a

technique like GenProg to synthesize full-length programs, perhaps beginning with a small

set of functional test cases and then coevolving the test suite with the program? We do not

know the answers to these questions, and we consider this a long-term goal for automated

software engineering rather than a near-term challenge. We note, however, that main-

taining large systems often consists of iteratively debugging small sections of code with a

goal of ever-increasing program functionality. It is not beyond the realm of possibility to

imagine a future GenProg, or another unsound method, developing software from scratch

using a ‘‘programming as iterated debugging’’ development paradigm.
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6 Conclusions

Software quality is an expensive problem, and the need for automated techniques for defect

repair is pressing. Existing work in the area is promising, receiving attention from DARPA

red teams, and other external measures of success. In this article, we have described the

current state of GenProg, a technique that uses genetic programming to repair unannotated

legacy programs. It does so by evolving a set of changes that causes a given buggy program

to pass a given set of test cases. In recent evaluations, we have established that GenProg is

expressive and scalable, evaluated against a varied set of bugs as well as a large, sys-

tematically generated set of defects.

As a result of our initial experience with automated program repair, we have identified a

number of design decisions that are critical to scalability and repair success, e.g., evolving

patches rather than programs, focusing the search on commonly visited code areas. In

addition, we have identified a number of challenges that we believe lie at the heart of future

progress in automated program repair: locating possible fixes, evaluating the quality of

repairs, operating without full test suites or formal specifications, understanding change,

and ultimately taking new steps toward automated software development.

We have released the source code for GenProg as well as our benchmark programs and

defects at http://genprog.cs.virginia.edu. We hope other researchers focusing on bugs in

legacy software will find utility in a relatively large set of objects to study, and that encourage

others to download, extend, and compare against our tool. Overall, we hope that this work will

motivate researchers to tackle this important and promising area, which is still in its infancy.
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