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ABSTRACT
As dynamically-typed languages grow in popularity, especially

among beginning programmers, there is an increased need to pin-

point their defects. Localization for novice bugs can be ambiguous:

not all locations formally implicated are equally useful for begin-

ners. We propose a scalable fault localization approach for dynamic

languages that is helpful for debugging and generalizes to handle a

wide variety of errors commonly faced by novice programmers. We

base our approach on a combination of static, dynamic, and con-

textual features, guided by machine learning. We evaluate on over

980,000 diverse real user interactions across four years from the pop-

ular PythonTutor.com website, which is used both in classes and by

non-traditional learners. We find that our approach is scalable, gen-

eral, and quite accurate: up to 77% of these historical novice users

would have been helped by our top-three responses, compared to

45% for the default interpreter. We also conducted a human study:

participants preferred our approach to the baseline (p = 0.018), and

found it additionally useful for bugs meriting multiple edits.
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1 INTRODUCTION
A key part of learning to program is learning to localize the root

cause of a failure. Novices unfamiliar with debugging tools or lack-

ing the expertise to interpret compiler error messages can have

a difficult time pinpointing (and hence fixing) what caused their
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1 year = int(time.strftime("%Y"))
2 age = input("Enter your age")
3 print("You will be twice as old in:")
4 print(year + age)

Figure 1: Multiple fault localizations (lines 1 and 2).

program to crash [7, 8, 23–25, 36, 43]. Solutions to this problem

are needed as class sizes grow and increasing numbers of non-

traditional learners progress with limited access to human instruc-

tional support.

Dynamically-typed languages like Python are increasingly pop-

ular for teaching programming [12], and many of those learning

Python require help debugging their code. For example, the Python-

Tutor online debugging and visualization tool alone is visited by

more than sixty thousand users per month, and almost half of the

program crashes they face take multiple attempts to resolve.

One key difficulty in localizing bugs is that there are often mul-

tiple possible fixes, some of which may be more informative to

programmers [34]. Consider the program in Figure 1, adapted from

our dataset. The program attempts to carry out arithmetic based

on a given number and the current year, but raises an exception on

line 4 (when adding an integer to a string). One possible “fix” would

be to remove the int() conversion from line 1: the + on line 4 would

then be string concatenation. However, another reasonable fix (and

the one that the novice actually used) would be to add an int() cast

on line 2. Both fixes are well-typed; but the second is more likely

to help a novice.

Thus, a useful debugging aid needs to provide debugging hints

that are helpful, implicating locations that correspond to developer

intent or aid novice learning. It should also be general, applying to a
wide variety of the errors that novices frequently encounter, includ-

ing more complex bugs involving multiple simultaneous concep-

tual mistakes spanning multiple lines. Finally, it should be scalable,
working quickly in large classes and non-traditional settings.

Our key insight is that we can learn a suite of heuristics for

how to debug and fix programs from a large corpus of real-world

examples of novices fixing their own bugs. Novice-written bugs

and fixes contain static, dynamic and contextual information about

where errors appear frequently in practice and about how those

errors can be fixed.
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We build on this insight to present a novel approach to localizing

defects in unannotated, beginner-written programs without test

suites. We learn from a corpus of novice programs and produce

answers which agree with human actions and judgments. Our

system Pablo (Program Analytics-Based Localization Oracle):

(1) takes as input a set of pairs of programs, each representing a

program that crashes and the fixed version of that program,

(2) computes a bag of abstracted terms (BOAT) [34] representa-
tion for each crashing program: each AST node is abstracted

to a vector of syntactic, dynamic, and contextual features

(3) trains a classifier on these vectors

Then, given a new novice-written crashing program, Pablo will:

(1) compute BOAT vectors for each AST node of the program

(2) classify each vector to obtain the likelihood that each corre-

sponding node is to blame for the crash

(3) return a list of k program locations, ranked by likelihood

Our hypothesis is that the combination of a rich corpus and domain-

specific features admits automatically classifying common classes

of defects and causes, thereby helping novices find the true sources

of their bugs. In this paper, we make the following contributions:

(1) We identify a set of features that admit precise classification

for dynamic imperative languages. We introduce and evalu-

ate static, dynamic, contextual and slice-based features that

enable scalable data-driven localization for Python.

(2) We evaluate Pablo in a user study and find that subjects

find it helpful, and also general enough to provide useful

debugging hints when multiple fixes are appropriate, which

the baseline Python interpreter cannot do.

(3) We perform a systematic evaluation on over 980,000 pro-

grams from four years of interactions with the PythonTu-

tor [12] website. Pablo is helpful, correctly identifying the

exact expression that humans agree should be changed 59–

77% of the time, compared to the Python interpreter’s base-

line of 45%, and general, retaining strong accuracy in all of

the most common classes of bugs that novices encounter.

2 ALGORITHM OVERVIEW
Wepresent Pablo, an algorithm for helping novices localize faults [13]

in their Python programs that exhibit non-trivial uncaught excep-

tions. We do not consider syntax errors or references to undefined

variables. Our algorithm uses machine learning models based on

static, dynamic, contextual and slicing features to implicate sus-

picious expressions. Unlike short ranked lists [24, Sec. 5.6], vo-

luminous fault localization output is not useful to developers in

general [37] and novices in particular [14]. We produce Top-1 and

Top-3 rankings; short lists are especially relevant for novices, who

frequently make mistakes spanning multiple program locations.

Our algorithm first extracts static and dynamic features from a

Python program (Section 2.1). Next, using a labeled training corpus,

we train a machine learning model over those features (Section 2.3).

Once the model has been trained, we localize faults in new Python

programs by extracting their features and applying the model.

Drawing inspiration from localization algorithms such as Nate [34]

and the natural language processing term frequency vector (or “bag

of words”) model [33], we represent each buggy program as a “bag

of abstracted terms”. A term is either a statement or expression.

We observe that many errors admit multiple logically-valid reso-

lutions (see Figure 1): we thus cannot effectively localize through

type constraints alone. Instead, we use static features to capture

structured program meaning, contextual features to capture the

relationship between a program fragment and its environment,

and dynamic features to reason about conditional behavior. Dy-

namic features are calculated using a trace of the program [3] after

applying a semantics-preserving transformation [10] that admits

expression-level granularity (instead of Python’s whole lines).

2.1 Model Features
Syntactic Forms (Static). We hypothesize that certain syntactic

categories of terms may be more prone to bugs than others. For

example, students might have more trouble with loop conditions

than with simple assignments. The first feature we consider is

the syntactic category of a node. This feature is categorical, using

syntax tree labels such as Return Statement or Variable Expression.

Expression Size (Static). This feature counts the number of de-

scendents in each subtree. Our intuition is that larger, complex

expressions may be more fault prone.

Type (Dynamic). We observe that some types may be inherently

suspect, especially for beginner-written code. For example, there

are few reasons to have a variable of type NoneType in Python. This

categorical feature includes all basic Python types (int, tuple, etc.)

and three special values: Statement for statements, Unknown for expres-

sions that are never evaluated, and Multiple for expressions which

are evaluated multiple times in a trace and change type.

Slice (Dynamic). The goal of this feature is to help eliminate

terms that cannot be the source of the crash [34]. We compute

a dynamic program slice [15]: a set of terms that contributed at

runtime to the exception. This boolean feature encodes whether the

term is a member of the slice, and is discussed further in Section 2.2.

Crash Location (Dynamic). We observe that the precise term

raising the exception is frequently useful for understanding and

fixing the bug. This boolean feature flags the exception source.

Exception Type (Dynamic). The type of error thrown is useful

for localization. For example, every division term may be more

suspicious if the uncaught exception is DivisionByZero. We encode

the exception type categorically.

Local contextual features. Our BOAT representation, like term

frequency vectors in general, does not include contextual informa-

tion such as ordering. However, the meaning of an expression may

depend on its context. For example, consider each 0 in x = 0 and

x / 0. Both have the same syntactic form, type, etc. To distinguish

the 0 in x / 0 we require contextual information. Structures like

syntax trees and flow graphs capture such contextual information,

but are not immediately applicable to machine learning.

We desire to encode such information while retaining the use of

scalable, accurate, off-the-shelf machine learning algorithms that

operate on feature vectors. We thus embed context in a vector,

borrowing insights from standard approaches in machine learning.



We associate with each term additional features that correspond to

the static and dynamic features of its parent and child nodes. For

representational regularity, we always model three children; terms

without parents or three children are given special values (e.g., zero

or NotApplicable) for those contextual features.

Global contextual features. Wehypothesize that advancing novices

will both use a wider range of Python syntax and face different

kinds of errors. We thus add boolean features indicating which

node types appear anywhere in the program. These features will be

sparsely populated for all nodes in simpler programs, and densely

populated in programs using richer language features.

2.2 Dynamic Slicing Algorithm
Slicing information can help our model avoid implicating irrelevant

nodes in the fault localization. Program slicing is a well-studied field

with many explored tradeoffs (e.g., see Xu et al. for a survey [39]).

We desire a slicing algorithm that is efficient (to scale to hundreds

of thousands of instances) yet will admit high accuracy: we achieve

this by focusing on features relevant to beginner-written programs.

We follow the basic approach of Korel and Laski [15, 16], building

a graph of data and control dependencies. We then traverse the

graph backwards to collect the set of terms that the excepting line

transitively depended on. This excludes lines that could not have

caused the exception, such as lines that never ran, or lines that had

no connection to the excepting step.

To balance ease of prototype implementation against coverage

for beginner-written programs, our slicing algorithm handles every

syntax node supported by the Python3 standard ast library except:

• Assignments where the left hand side is not a variable or a

simple chain of attribute indexing or subscripting

• Assignments where attribute indexing or subscripting on

the left hand side means something other than the default,

(e.g., if the operations are overridden by a class)

• Lambda, generator and starred expressions

• Set and dictionary comprehensions

• Await, yield, delete, with and raise statements

• Variable argument ellipsis

• Coroutine definitions and asynchronous loops

Dynamic slicing involves an unavoidable tradeoff between un-

soundness and over-approximation. For example, when the condi-

tion of an if statement is not met and so the code it guards is not

run, we exclude the entire if block from the slice, even though the

bug may indeed be in the condition. We observe that one common

case this strategy fails is the “early break” case (Figure 2). We thus

check if a break, return, or other statement for escaping structured

control flow is present inside of a conditional statement, and add

dependencies in the dependency graph between the enclosing con-

ditional and the statements that would have been skipped by the

break or return. While this heuristic is effective in practice, it does

not overcome all related problems: we thus treat slice information

as one of many features rather than as a hard constraint.

2.3 Machine Learning Model Generation
We formulate the localization problem as a standard binary classifi-

cation problem. For each term in a program, we extract the features

1 while True:
2 x = float(input ())
3 if x != 0: # bug: should be ==, not !=
4 break
5 print("One over your number is: %d" % (1 / x))

Figure 2: Example of slicing imprecision (line 3 and line 5).

(Section 2.1) and we assign it a label representing whether it should

be blamed (Section 3.2). We represent all features numerically by

performing one-hot encoding on categorical features.

Random Forests. We choose to work with random forest mod-

els [5], which train groups of decision trees, to balance accuracy

with scalability to our large dataset. Each decision tree is a binary

tree of simple thresholding classifiers. At each node, the training

procedure chooses a feature, and then directs each incoming sample

to one of its two children by comparing that feature to the chosen

threshold. The feature and threshold are chosen to minimize the

impurity of the two resulting partitions (e.g., measured by the Gini

index or entropy). Decision trees scale well to large datasets and

can learn non-linear prediction rules [6, 30, 31].

Decision trees are prone to overfitting. To mitigate this problem,

each tree in a random forest is trained on a subset of the data

and a subset of the features. The prediction and confidence of the

model as a whole is a weighted average of the predictions and

confidences of the individual trees. Random forests thus trade some

of the low computational cost of a plain decision tree for additional

accuracy.We use 500 trees, each with a maximum depth of 30. Other

parameters use the default scikit-learn [27] settings.

Training methodology. Given feature vectors describing every

term of every program in our dataset, we train a model on a ran-

dom 80% of the data and report the model’s performance on the

remaining 20%. Programs by the same user are always assigned

together to either training or testing. We report the average of

five such 80–20 splits. Each trained model takes in a feature vector

representing a single term in a buggy program, and returns a con-

fidence score representing how likely it is that the term was one

of the terms changed between the fixed and buggy programs. We

treat the model as providing a ranking over all terms by confidence.

For a given k , we score the model based on Top-k accuracy: the

proportion of programs for which a correct answer (i.e., a term that

was actually changed historically) is present in the top k results.

This is an imbalanced dataset in that non-buggy terms are much

more common than buggy terms, so during training we re-weight

to the reciprocal of the frequency of the corresponding class.

3 EVALUATION
We conducted both a large-scale empirical evaluation of Pablo and

also a human study to address these research questions:

RQ1 Do our localizations agree with human judgements?

RQ2 Which model features are the most important?

RQ3 Howwell does our algorithm handle different Python errors?

RQ4 Is our algorithm accurate on diverse programs?

RQ5 Do humans find our algorithm useful when multiple lines

need to be edited?



3.1 Dataset and Program Collection
Our raw data consist of every Python 3 program that a user exe-

cuted on PythonTutor.com [12] (not in “live” mode) from late 2015

to end of 2018, other than those with syntax errors or undefined

variables. Each program which throws an uncaught Python excep-

tion is paired with the next program by the same user that does not

crash, under the assumption that the latter is the fixed version of

the former. We discard pairs where the difference between crash-

ing and fixed versions is too high (more than a standard deviation

above average), since these are usually unrelated submissions or

complete refactorings. We also discard submissions that violate

PythonTutor’s policies (e.g., those using forbidden libraries).

Ultimately, the dataset used in this evaluation contains 985,780

usable program pairs, representing students from dozens of universi-

ties (PythonTutor has been used in many introductory courses [12])

as well as non-traditional novices.

3.2 Labeled Training and Ground Truth
Our algorithm is based on supervised machine learning and thus

requires labeled training instances — a ground truth notion of

which terms correspond to correct fault localizations. We use the

terms changed in fixes by actual users as that ground truth. Many

PythonTutor interactions are iterative: users start out by writing a

program that crashes, and then edit it until it no longer crashes. Our

dataset contains only those crashing programs for which the same

user later submitted a program that did not crash. We compute

a tree-diff [17] between the original, buggy submission and the

first fixed submission. For example, if the expression len({3,4}) is

changed to len([3,4]), then the node corresponding to the set {3,4}

as a whole will appear in the diff (since it has been changed to a

list), but neither its parent node nor its children nodes appear.

We define the ground truth correct answer to be the set of terms

in the crashing program that also appear in the diff. We discuss

the implications of this choice in Section 3.9. Given that notion of

ground truth, a candidate fault localization answer is accurate if it
is in the ground truth set. That is, if the human user changed terms

X and Y , a technique (either our algorithm or a baseline) is given

credit for returning either X or Y . A ranked response list is top-k
accurate if any one of the top k answers is in the ground truth set.

3.3 RQ 1 — Fault Localization Helpfulness
We train random forests and compute their Top-1, Top-2, and Top-

3 accuracy. For a baseline we compare to the standard Python

interpreter, i.e., blaming the expression whose evaluation raises the

uncaught exception. For fairness, we modify the Python interpreter

to report expressions instead of its default of whole lines (see Section

2). We discuss other fault localization approaches and why they are

not applicable baselines for our setting in Section 4.

Pablo produces a correct answer in the Top-1, Top-2, and Top-3

rankings 59%, 70%, and 77% of the time. The expression blamed by

the Python interpreter is only changed by the user 45% of the time.

Thus, our most directly-comparable model (Top-1), significantly

outperforms this baseline. Users who are only willing to look at a

single error message would have been better-served by our Top-1

model on this historical data. In addition, previous studies have

shown that developers are willing to use very short ranked lists [24,

Sec. 5.6], but not voluminous ones. Our Top-3 accuracy of 77%

dramatically improves upon the current state of practice for scalable

localization in Python.

3.4 RQ 2 — Feature Predictive Power
Having established the efficacy of our approach, we now investigate

which elements of our algorithmic design (Section 2) contributed

to that success. We rank the ~500 features in our model by Gini

importance (or mean decrease in impurity), a common measure for

decision tree and random forest models [5]. Informally, the Gini

importance conveys a weighted count of the number of times a

feature is used to split a node: a feature that is learned to guide more

model classification decisions is more important. We also rank the

features by a standard analysis of variance (ANOVA). In both cases,

we find that a mixed combination of static, dynamic, and contextual

features are important: no single category alone suffices.

To support that observation, we also present the results of a

leave-one-out analysis in which entire categories of features are

removed and the model is trained and tested only on those that

remain. When the model is trained without typing, syntactic, or

contextual features, the model’s accuracy drops by 14%, 15%, and

19% respectively. We generally conclude that syntactic, dynamic,

and contextual features (i.e., the design decisions of our algorithm)

are crucial to our algorithm’s accuracy.

3.5 RQ 3 — Defect Categories
We investigate the sensitivity of our algorithm to different cate-

gories of Python errors: does Pablo apply to many kinds of novice

defects? We investigate training and testing Top-1 decision trees

on only those subsets of the dataset corresponding to each of

the five most common uncaught exceptions: TypeError, IndexError,

AttributeError, ValueError, and KeyError. Together, these five excep-

tions are the most common faced by our novices, making up 97% of

the errors in our dataset (54%, 23%, 11%, 7%, and 3%, respectively).

These per-defect models have normalized accuracy between

86% and 115% of a comparable model trained on the dataset as a

whole. This shows that our algorithm is robust and able to give

high-accuracy fault localizations on a variety of defect types. Hav-

ing consistent, rather than defect-type-sensitive, performance is

important for debugging-tool usability [1, 4, 24].

3.6 RQ 4 — Diversity of Programs
To demonstrate that our evaluation dataset is not only larger but

also more diverse than those used in previous work, we compare

the diversity of programs used here to those in a relevant base-

line. The Nate algorithm [34] also provides error localization us-

ing a machine-learning approach, and its evaluation also focused

on beginner-written programs. However, Nate targets strongly

statically typed OCaml programs: submissions to just 23 different

university homework problems. Such a dataset is comparatively

homogeneous, raising concerns about whether associated evalua-

tion results would generalize to more diverse settings. In contrast,

in our PythonTutor dataset, users were not constrained to specific

university assignments. We hypothesize that the data are thus more

heterogeneous. To assess this quantitatively, we used agglomera-

tive clustering to find the number of “natural” program categories



present in both our dataset and the Nate dataset. Datasets with

more natural program categories are more heterogeneous.

Distance Metric. Many clustering algorithms depend on distance

metrics. To measure the distance between programs, we flattened

their ASTs into strings of tokens, and then computed the Leven-

shtein edit distance [18]. We do not compute an AST distance di-

rectly since that is less tractable on our large dataset (i.e., cubic [26]).

Levenshtein distance is not a good absolute measure of program

diversity since similar programs can have different tree structures,

but it does show comparative diversity.
Clustering Algorithm. We performed agglomerative clustering

on the datasets of flattened programs [22]: every datapoint starts in

its own cluster, and the two closest clusters are merged until there

are no clusters that differ by less than some threshold. We used

a single linkage approach in which the distance between clusters

is the minimum distance between their elements. To account for

differences between Python and OCaml, we z-score nodes against
not only others at the same tree depth, but also against others

one or two levels below [41]. This makes cluster counts at each

threshold value comparable. Our implementation uses the standard

scipy library (scipy.cluster.hierarchy.fcluster with the inconsistent

method).

We compare the Nate dataset to a random sample of equal size

from our dataset. For all values of the inconsistency threshold, there

are at least 48% more clusters in our sample than in the OCaml

dataset. This suggests that our dataset contains a more diverse set of

programs. We are not claiming any advances in clustering accuracy

in this determination (indeed, scalability concerns limited us to

coarser approaches); instead, our claim is that even with simple

clustering, it is clear that our dataset contains a greater diversity of

programs, even when controlling for size, than were considered by

previously-published evaluations. We view it as an advantage of our

algorithm that it can apply to many different program categories.

3.7 RQ 5 — Multi-Edit Bug Fixes
In addition to the automated metrics described above, we also

evaluate Pablo in an IRB-approved human study. We selected 30

programs at random from the PythonTutor dataset, and presented

each with 3 highlighted lines representing the Top-3 output of

Pablo. For this study we worked at the granularity of lines rather

than of expressions to simplify the presentation of three distinct and

non-overlapping localizations for comparison. Each participant was

shown a random 10 of these annotated-program stimuli and asked,

for each highlighted line, whether it “either clarifies an error’s root

cause or needs to be modified?” Not all participants answered all

questions, but we were able to use data from 42 participants in our

analyses.

Overall, participants find the first and second lines from Pablo

useful 75% and 28% of the time; at least one of Pablo’s top three

is useful 84% of the time. On the other hand, participants find the

line indicated by Python’s error message helpful only 77.3% of the

time. That is, the output of Pablo outperforms vanilla Python by

6.5% (p = 0.018, two-tailed Mann-Whitney test).

When considering only the 14 programs with complex bugs

where the original novice programmer made edits to multiple lines,

humans find Pablo even more helpful; Pablo’s first and second

Figure 3: A bug - ‘remove’ edits in place and returns None

Figure 4: A program with an off-by-one bug on line 2.

lines are helpful 79% and 36% of the time, and at least one of the top

three is useful 89% of the time. We observe that multi-edit bugs are

quite common, accounting for almost half the bugs in our data set.

For these complex multi-edit bugs, the Python interpreter alone

provides novices limited support while Pablo provides additional

useful information more than one-third of the time.

3.8 Qualitative Analysis
We highlight two indicative examples in detail to demonstrate

how our algorithm accurately localizes faults. These examples are

simplified slightly for presentation and to protect the anonymity

of the programmers, but retain their essential character.

NoneType. The function in Figure 3 attempts to remove all vow-

els from a given word. However the remove method in line 7 actually

modifies the list in place and returns None. The user-corrected ver-

sion forgoes the assignment and just calls w_list.remove(letter). In

the buggy case, Python does not crash until line 8, where its message

is the somewhat-misleading TypeError: can only join an iterable. How-

ever, Pablo flags the correct statement, based on the features that

it is an assignment statement whose second child has type NoneType.

This captures the intuition that there is rarely a good reason to

assign the value None to a variable in novice programs.

Note that Pablo uses both the syntactic form of the statement

(an assignment) and the dynamic type of one of its children, so all

our categories — syntactic, dynamic, and contextual — were useful.

Off-by-one bugs. In Figure 4, the programmer incorrectly adds

one to the high end of a range, causing an IndexError: list index

out of range on line 3 during the final iteration of the loop. The

correct expression to blame is the addition len(areaCodes) + 1. Some

of the features Pablo uses to correctly localize this bug include that

the error is an index error, the type of the parent, and the fact that

it is an addition expression. This example also highlights the use of

all three categories of features simultaneously to capture a notion

of root cause that more closely aligns with human expectations.

3.9 Threats to validity
Although our evaluation demonstrates that our algorithm scales

to accurately localize Python errors in large datasets of novice

programs, our results may not generalize to all use cases.

Language choice.We have only demonstrated that our technique

works for Python 3. We hypothesize that it should apply to similar

dynamically-typed languages, such as Ruby, but such evaluations

remain future work. Wemitigate this threat slightly by constructing



our algorithm so that it does not depend on Python-specific features

(e.g., in Section 2.2 we explicitly omit relatively “exotic” features

such as generators that may not be present in other languages).

Target population. Unlike many classroom studies of students,

we have less information about the makeup of our subject pop-

ulation. The general popularity of PythonTutor is an advantage

for collecting a large, indicative dataset, but it does mean that we

have no specific information about the programmers or what they

were trying to write. In general, while the website is used by many

classes, most of the users appear to be non-traditional students; our

results may apply most directly to that population.

Ground truth. The size of our dataset precluded the manual anno-

tation of each buggy program. Instead, we used historical successful

edits from actual users as our ground truth notion of the desired

fault localization. This has the advantage of aligning our algorithm

with novice intuitions in cases where there are multiple logically-

consistent answers (see Figure 1), and thus increasing the utility of

our tool. However, this definition of ground truth may be overly

permissive: the next correct program in the historical sequence may

contain additional spurious changes beyond those strictly needed

to fix the bug. We mitigate this threat by discarding as outliers

program pairs that had very large relative changes.

3.10 Evaluation Summary

Pablo is helpful, providing high-accuracy fault localization

that implicates the correct terms 59–77% of the time (for Top-1

to Top-3 lists, compared to the baseline Python interpreter’s

45% accuracy) and outperforming the baseline (p = 0.018).

Pablo is general, performing similarly on the top five excep-

tions that make up 97% of novices crashes, and providing

helpful information for multi-line fixes 36% of the time (com-

pared to the baseline Python interpreter’s 0%).

In addition, we investigated our algorithm’s design decisions, find-

ing that all our categories (i.e., static, dynamic, and contextual) were

critical. Our evaluations involved over 980,000 beginner-written

Python programs as well as a direct human study of 42 participants.

4 RELATEDWORK
Broadly, the most relevant areas of related work are software engi-

neering approaches to fault localization (typically based on dynamic

test information) and programming languages approaches to fault

localization (typically based on static type information). Fault local-

ization has only increased in relevance with the rise of automated

program repair [21], where many techniques depend critically on

accurate fault localization [29].

A significant body of work in fault localization follows from

the Tarantula project [13]. Jones et al. proposed that statements

executed often in failing test runs but rarely in successful test runs

were likely to be implicated in the defect. Such “spectrum”-based

approaches gather dynamic information and rank statements by a

mathematically-computed suspiciousness score. Projects like Mul-

tric [40] use machine learning to combine these spectrum-based

suspiciousness scores based on empirical data, and Savant [2],

TraPT [19], and FLUCCS [35] refine this process by also using

inferred invariants, mutation testing, and code metrics like age and

churn. CrashLocator [38] computes suspiciousness scores without

needing positive test cases, but it requires a large suite of crashing

cases as well as an oracle that groups crashes by similarity.

Where spectrum-based approaches traditionally focus on industrial-

scale programs, we target beginner-written software. Spectrum

methods require multiple test cases (ideally very many of them); we

use just one program execution and our work is aimed at novices

who may not even be familiar with the notion of test suites. Spec-

trum methods focus heavily on dynamic features; we make critical

use of syntactic, contextual and type information as well. Indeed,

the machine learning based approaches above use features that are

entirely disjoint from ours and inapplicable in our setting, with the

sole exception of the code complexity metrics of FLUCCS. Unlike

spectrum features, many of our features have no obvious connec-

tion to faultiness, so our surprising positive result is that we can still

use these features to localize faults in our domain. In addition, some

human studies have focused specifically on accuracy and expertise

for fault localization [11, 28, 32]; our decision to use features to

support novices is informed by such insights.

Zeller’s popular Delta Debugging algorithm [42], interpreted gen-

erally, efficiently finds a minimal “interesting” subset from among a

large set of elements. When the set of elements represents changes

made to a source code version control system and interesting is

defined with respect to failing a test suite, it can quickly locate

program edits that cause regressions. Alternatively, when consider-

ing correct and failing execution states, such approaches can help

focus on variable values that cause failures [9]. While our slicing

information can be viewed as a coarse approximation to the precise,

fine-grained localization such an approach can provide, a key differ-

ence is our use of machine learning to agree with human judgments

in cases where multiple causes are equally logically valid.

In the programming languages community, a large body of work

has focused on localizing faults and providing better error messages,

typically through the use of type information. Mycroft [20] modi-

fies existing type inference algorithms to produce a “correcting set”

for a program with a type error. Mycroft assumes that the minimal

such set is the most desirable to the user, and has no way to rank

multiple equally small sets. We instead use machine learning to

agree with human judgements. Our work is most directly inspired

by the Nate [34] system, which introduced the notion of training

classifiers over pairs of buggy-and-fixed programs, and uses ma-

chine learning on static and contextual features to localize type

errors in OCaml code. However, this work was limited to purely

functional OCaml programs where the static type discipline was

crucial in both restricting the class of errors, and providing the

features that enabled learning. We employ a similar approach to

localize Python faults, but we use dynamic features as well as static

and contextual ones, we handle a variety of errors, and we evaluate

our approach on a set of programs far more heterogeneous and

more than two orders of magnitude larger.

5 CONCLUSION
We present an approach for accurately localizing novice errors

in off-the-shelf, beginner-written Python programs. Our approach

uses a combination of static, dynamic and contextual features. Static



features, such as syntactic forms and expression sizes, are a partic-

ularly powerful heuristic for novice programmer defects. Dynamic

features can both implicate relevant terms and rule out irrelevant

program regions. Contextual features allow our approach to gain

the benefits of precise AST- or CFG-style information while retain-

ing scalable performance. We use off-the-shelf machine learning to

accurately combine those disparate features in a way that captures

and models human judgments of ground-truth correct answers — a

notion that is especially relevant when multiple program locations

are equally formally implicated but not equally useful to the user.

We desire an approach that is helpful, general and scalable. We

evaluate our approach with respect to historical defects and fixes.

All feature categories (static, dynamic, and contextual) were rele-

vant to success, as measured by multiple analyses (Gini, ANOVA

and leave-one-out). Our evaluation demonstrates significant scal-

ability and generality. Our 980,000 instances were two orders of

magnitude more numerous than similar related work and measur-

ably more diverse; we augmented our dataset with a direct human

study of 42 participants. Ultimately, Pablowas quite accurate, impli-

cating the correct program location 59–77% of the time (compared

to the Python interpreter’s 45% accuracy), outperforming the base-

line (p = 0.018) and providing additional useful information 36% of

the time (compared to Python’s 0%).
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