
Speeding Up Dataflow Analysis Using
Flow-Insensitive Pointer Analysis

Stephen Adams1, Thomas Ball1, Manuvir Das1, Sorin Lerner2,
Sriram K. Rajamani1, Mark Seigle2, and Westley Weimer3

1 Microsoft Research
2 University of Washington

3 UC Berkeley

Abstract. In recent years, static analysis has increasingly been applied
to the problem of program verification. Systems for program verification
typically use precise and expensive interprocedural dataflow algorithms
that are difficult to scale to large programs. An attractive way to scale
these analyses is to use a preprocessing step to reduce the number of
dataflow facts propagated by the analysis and/or the number of state-
ments to be processed, before the dataflow analysis is run. This paper
describes an approach that achieves this effect. We first run a scalable,
control-flow-insensitive pointer analysis to produce a conservative repre-
sentation of value flow in the program. We query the value flow repre-
sentation at the program points where a dataflow solution is required, in
order to obtain a conservative over-approximation of the dataflow facts
and the statements that must be processed by the analysis. We then run
the dataflow analysis on this “slice” of the program.
We present experimental evidence in support of our approach by con-
sidering two client dataflow analyses for program verification: typestate
analysis, and software model checking. We show that in both cases, our
approach leads to dramatic speedups.

1 Introduction

In recent years, static analysis has increasingly been applied to the problem of
program verification. Two kinds of algorithms for static program analysis have
been proposed. Flow-insensitive algorithms such as [DLFR01,HT01,OJ97] scale
to large programs, but do not handle strong updates precisely. Flow-sensitive al-
gorithms [CRL99,WL95], on the other hand, can handle strong update precisely
but do not scale to large programs. The absence of strong update adversely af-
fects software engineering and program verification tools, which produce many
false positives with conservative analysis. Therefore, these tools often employ
costly interprocedural dataflow algorithms, even though this choice precludes
application to large programs. This paper is based on two key insights. The first
insight is that the points-to algorithm of Das [Das00] can be viewed as produc-
ing a lightweight, conservative representation of the value flow in a program,
called the value-flow graph (VFG). The second insight is that by querying the

M. Hermenegildo and G. Puebla (Eds.): SAS 2002, LNCS 2477, pp. 230–246, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 231

VFG before a client dataflow analysis is run, both the number of dataflow facts
propagated by the analysis and the part of the program that must be analyzed
can be reduced.

Two small examples that demonstrate our approach are given in Figure 1.
Figure 1(a) shows a procedure whose file I/O related behavior must be sum-

marized for all callers. By performing a “typestate slice” in the VFG, we can
remove dataflow facts corresponding to the states of the file handle g2 (since the
state of g2 is not changed by bar) and statements that do not affect the state
of g1, before analyzing bar.

Figure 1(b) shows a program fragment on which we wish to determine
whether the abort function is called. One way to do this is to determine a
set of predicates over program variables, construct a boolean program abstrac-
tion [BR01a] over these predicates, and then model check the abstraction using
dataflow analysis. The predicates required for proving that the abort statement
is unreachable are x == 5, y == 5, x == 10, and y == 10. These predicates can
be discovered in two iterations of iterative refinement (see Section 4). By per-
forming a “predicate slice” in the VFG, we can infer the set of constants that
flow into variables x and y and generate these predicates in advance, eliminating
the iteration overhead.

These examples show the sort of information we hope to provide to client
dataflow analyses. The typestate slice and predicate slice can both be obtained
from the VFG. Each slice reduces the workload of the client dataflow analysis.

Two alternative approaches for achieving the same effect are demand-driven
versions of the client dataflow analyses or standard program slicing. Both ap-
proaches have drawbacks. Frameworks for demand-driven dataflow [DGS95,
HRS95] do not handle a general enough class of dataflow problems to allow
application to problems that involve value flow. Program slicing [HRB90], which
is based on dataflow analysis, it typically too expensive to apply on large pro-
grams.

(a) FILE *g1, *g2;
void bar() {
FILE *l, *m;
l = g1;
m = g2;
fclose(l);

}

(b) void baz(bool b) {
int x , y;
if (b) {
x = 5;
y = 5;

} else {
x = 10;
y = 10;

}
if (x != y)
abort();

}

Fig. 1. Examples of speeding up dataflow analysis. Figure (a) above shows a fragment
of C code to be sliced w.r.t. file I/O behavior. Figure (b) above shows a fragment of C
code to be sliced w.r.t. reachability of calls to abort.

232 S. Adams et al.

The main contributions of this paper are:

– We show how the flow-insensitive pointer analysis of Das can be used to
produce a program-point-independent graph representation of value flow (the
VFG) in a program.

– We show how the VFG can be used to perform client-specific program slices
that significantly speed up client dataflow analyses.

– We demonstrate the effectiveness of our technique with two specific applica-
tions of slicing using the VFG:
• Typestate slicing: We use typestate slicing to reduce the number of ob-

jects whose state is tracked by ESP [DLS02], a typestate checker for large
programs. We apply ESP to check file I/O properties of the gcc com-
piler. Typestate slicing reduces the average number of objects tracked
per procedure from 1100 to less than 1, making the dataflow analysis in
ESP practical.
• Predicate slicing: We use predicate slicing to generate a candidate set

of predicates for the initial boolean program abstraction used by SLAM
[BR01a], a software model checker. We apply SLAM to check properties
of several Windows device drivers. Predicate slicing reduces the running
time of SLAM by a factor of 2-10, and allows SLAM to terminate in
some cases where it did not terminate before.

The rest of this paper is structured as follows. In Section 2, we describe our
value flow representation, its computation, and its interface to dataflow clients.
We then present two concrete applications of our value flow slicing approach. In
Section 3, we demonstrate the use of typestate slicing in ESP. In Section 4, we
show how predicate slicing can be used to aid predicate discovery in SLAM. We
discuss related work in Section 5, and conclude in Section 6.

2 Value Flow via Pointer Analysis

Pointer analysis algorithms typically produce graph representations (“points-to
graphs”) of pointer relationships in programs. These graphs encode information
about which memory locations hold references to other memory locations. More
importantly, algorithms based on subtyping encode constraints that arise from
value flow through assignments in the program: every assignment that causes
flow of pointer values is represented either implicitly or explicitly in the graph.
The key insight of this paper is that if pointer analyses based on subtyping are
modified to process all assignments, rather than just pointer assignments, and
if constant values are represented explicitly in the graph, the resulting points-to
graph encodes a conservative approximation of all value flow in the program
(we call this the value flow graph, or VFG). In addition, if the fragments of the
graph that result from processing constraints are labeled with the identities of
the statements that generated the constraints, the VFG encodes slices of the
program: each slice represents the set of program statements that contribute to
the value of a given expression. In the terminology of program slicing [Tip95],

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 233

these slices encode flow dependences, but not control dependences. When the
client dataflow analysis ignores control dependences (this is typically true of
many dataflow analyses, including the examples considered in this paper) the
flow dependence slices encoded in the VFG preserve the results produced by the
client dataflow analysis.

We focus on flow-insensitive analyses, which produce a single representation
of all of the value flow in the program that is applicable at every point in the
program. Flow-sensitive analyses could be used to produce VFGs as well: they
would produce separate graphs at each program point, though every graph needs
to encode only values relevant at the program point.

2.1 One-Level Value-Flow Analysis

In this paper, we use the one-level-flow subtyping analysis of Das [Das00] to
produce value flow information. The points-to graphs produces by this algorithm
make value flow through assignments explicit, via so-called “flow” edges.

The graph includes two kinds of nodes: source nodes, and expression nodes.
Source nodes represent variables in the program, and are labeled by the vari-
able name. Expression nodes represent pointer dereferences of source nodes. An
expression node can be named by a path starting from a source node with a
dereference (*) prefixed for every points-to edge on the path from the source
node. Due to aliasing, expression nodes do not have unique names, and are thus
not labeled.

The graph includes two kinds of edges: points-to edges (written →) and flow
edges (written →F). A points-to edge connects (the node of) an expression e
with (the node of) an expression *e. A flow edge ∗ e1 →F ∗e2 encodes an as-
signment from e1 to e2 in the program. Because the algorithm sometimes merges

i

x y

i

i

i

x

y

i

i

(a) (b)

Fig. 2. Figures (a) and (b) above show the VFGs computed by the one level flow
algorithm for i: x = y and i: x = &y, respectively. Points-to edges are solid arrows.
Flow edges are labeled dashed arrows.

234 S. Adams et al.

expressions into the same node, value flow is also encoded in node equality: every
node can be viewed as having a flow edge to itself.

The graph fragments produced by the analysis for two kinds of assignments
are shown in Figure 2. The assignment x = y induces an edge ∗y →F ∗x, indi-
cating that the value of y may flow to x, and induces node equality for **x and
y, *x and ***y, and so on, indicating that the assignment also implicitly
creates value flow between *x and *y, **x and **y, and so on. The assignment
x = &y induces an edge y →F ∗x, indicating that the address of y may flow to
x. A more detailed discussion of the algorithm can be found in [Das00].

We extend the analysis in two ways to create the VFG: First, we add nodes
for values that are not stored in any memory location (e.g. constants). Second, we
label flow edges with the assignments that induced the edges. We also transitively
label all of the self-loop flow edges that are induced at lower (in terms of points-to
edges) levels of the graph.

0: void main() {
1: int a,b,c,*x,
2: *y,*z,**p,**q;
3: x = &a;
4: y = &b;
5: p = &y;
6 q = &z;
7: z = &c;
8: p = q;
9: *x = 22;
10: **p = 88;
11: }

x

a22

p

y

q

z

b c 88
3

3
9

3,9

5 8 6

4 7

10
5,6,8

4,5,6,7,8

4,5,6,7,8,10

(a) (b)

Fig. 3. (a) A fragment of C code and its VFG, augmented with source code labels and
nodes for constants, and (b) its value-flow graph.

Example 1 A small C program is shown in Figure 3(a). The VFG computed
for this program by the one-level value-flow analysis is shown in Figure 3(b).
This graph encodes all of the value flow in the program. For instance, the flow
of the value 22 to variable a at line 9 is encoded in the flow edge from *22 to *a
labeled 9. Notice that the statement at line 3, where x is assigned the address
of a, also contributes to this value flow. The role of this statement is captured
by the self-loop flow edge on *a labeled 3. ✷

For our purposes, the VFG produced by the modified one-level-flow algorithm
has several interesting properties:

– The graph can be computed in almost-linear time.

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 235

– Points-to sets can be obtained from the graph in linear time: the set of
variables pointed-to by p (written Vars(∗p)) may be obtained by performing
backwards reachability along flow edges from *p and including all of the
variables encountered along the way.

– Value flow can be queried in linear time: the set of expressions whose values
may flow to e may be obtained by performing backwards reachability along
flow edges from *e and including all of the expressions with points-to edges
to nodes encountered along the way.

Example 2 The VFG in Figure 3 can be used to answer a number of points-to
and value flow queries. A backwards flow query from **x picks up *22, which
means that the value 22 can flow to any variable in the points-to set *x, including
a. Because the query does not pick up any of b, c, y, z, p, or q, all of these
variables can be ignored by a dataflow client that is tracking the flow of the
value 22 through the program. ✷

2.2 Slicing Interface

Although the entire value flow graph could be presented to a client analysis,
in practice most clients make a series of structured queries to the graph. This
interface to the value flow graph is summarized below:

– N(v) is the node representing v, ∀v ∈ ProgVar .
– Deref(p) = q where p→ q.

Deref(p) performs a single pointer dereference from p in the VFG.

– N(e) =
{

N(v) if e = v
Deref(N(e′)) if e = ∗e′

N(e) maps expression e to its node in the VFG.

– Vars(e) = {v ∈ ProgVar | v→∗
F e},

Vars(e) is the set of variables that may be aliases of expression e.

– FlowsInto(e) = {q | Deref(q)→∗
F Deref(e)}.

FlowsInto(e) returns all expressions whose values may flow into e.

– FlowsTo(e) = {q | Deref(e)→∗
F Deref(q)}.

Conversely, FlowsTo(e) returns all expressions into which the value
of e may flow.

The case studies presented in the next two sections use this interface to the value
flow graph. In this description we have not considered objects with structure.
The value flow representation can be extended in a straightforward manner to
encode structure field accesses.

236 S. Adams et al.

3 Typestate Slicing in ESP

ESP [DLS02] is a verification tool that identifies violations of programmer speci-
fied properties in large C programs. ESP tracks “typestate” [SY86]: As a program
executes, it creates values. Every value is associated with a type that is invari-
ant during program execution. Some values are additionally associated with a
state that may be updated by certain operations on values. Transitions between
states are encoded in a state machine. The machine has a special error state;
transitions to the error state indicate violations of the property. An example of
a user specified property (valid file output) is given in Figure 4(a).

The core engine of ESP is an interprocedural dataflow analysis that computes
the possible states of every value at every point in the program. Because ESP is
intended for application on large programs, the dataflow analysis is performed
bottom-up on the call graph, one strongly connected component at a time. As a
result, ESP must summarize the typestate behavior of a function foo for all pos-
sible callers before any of the callers of foo are analyzed. The typestate summary
of a function foo includes (a) the state changes caused by execution of foo on
values live before the execution of foo, and (b) any new stateful values created
by execution of foo, and their states on exit from foo. In order to compute the
summary of a function, ESP first computes the set of memory locations that
may hold stateful values at entry to the function, and then performs dataflow
analysis for each such value. In a language with type coercion such as C, if ESP
is computing the states of values of a particular type, for instance file handles
with type FILE *, it must also consider values of all other possible types.

The set of locations that may hold a stateful value at entry to a function foo
includes all globals, formal parameters of foo, and transitive dereference targets
of these. We refer to this set as inNodes (input interface nodes):

☛
✡

✟
✠$uninit

❥
fopen

fclose *

☛
✡

✟
✠Opened

☛
✡

✟
✠$error❥

fclose

✯

fopen

✮

�
fprintf

fprintf

❘

FILE *e, *f, *g, *h;

void foo () {
int *x, y;
y = 3; x = &y;
g = fopen(...);
bar(x);

}

void bar (int* p) {
fprintf (h, "%d", *p);
fclose (h);

}

(a) (b)

Fig. 4. (a) A finite state property that specifies correct usage of a file output library,
and (b) an example program that uses the library. Function foo calls bar with an
integer pointer. bar prints its dereferenced parameter to h and then closes h.

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 237

inNodes(f) =
⋃

p∈params(f) reached(p) ∪ ⋃
g∈globals reached(g)

reached(v) = {v} ∪ reached(Deref(v))
reachedp(v) = reached(v)− {v}
Similarly, the set of locations that may hold a freshly created value at exit

from foo includes all globals, the return value of bar, and dereference targets of
these and the formal parameters of bar. We refer to this set as outNodes (output
interface nodes):

outNodes(f) = reached(returnf) ∪
⋃

p∈params(f) reachedp(p)
∪ ⋃

g∈globals reached(g)

Example 3 A small program that manipulates file handles is given in Figure
4(b). The sets of possible interface nodes for the functions in this program are:

inNodes(foo): {e, *e, f, *f, g, *g, h, *h}
outNodes(foo): {e, *e, f, *f, g, *g, h, *h}
inNodes(bar): {e, *e, f, *f, g, *g, h, *h, p, *p}
outNodes(bar): {e, *e, f, *f, g, *g, h, *h, *p}
In large programs with many globals, the interface node sets can be large

enough to make typestate checking infeasible. Clearly, these sets include many
locations that contain values whose state is not changed by the called function.
A preprocessing step that can eliminate many of the spurious locations from
the interface node sets will increase the efficiency of the subsequent typestate
analysis.

3.1 Eliminating Interface Nodes via Value Flow

ESP uses a slicing procedure over the VFG to eliminate nodes from inNodes
before the typestate analysis is run. The slicing procedure is based on the fol-
lowing observation: A location l must be included in inNodes(f) only if there
is some expression e such that e is an argument to a state changing operation
performed during execution of f, and the value held by l at entry to f can flow
to e. Therefore, we can query the VFG to obtain an over-approximation of the
set of locations that must be included in inNodes(f). We refer to this procedure
as “typestate slicing”.

A similar procedure can be used to eliminate nodes from outNodes. A location
l must be included in outNodes(f) only if there is some expression e such that
e is the result of a value creation operation, and the value of e can be held by l
at exit from f.

ESP uses a language of syntactic patterns to identify state changing opera-
tions in the code. The control flow graphs produced by the ESP front-end contain
two kinds of distinguished, mutually exclusive, pattern nodes:

– PATTERN(name, p): Represents a call to a function whose name appears
along a transition in the protocol, i.e. fclose(f). p is the expression on
which the operation is applied.

238 S. Adams et al.

– CPATTERN(name, p): Represents a call to a function which creates fresh
stateful values, i.e. f = fopen(...). In this case p represents the recipient
of the new value.

The set of expressions that are arguments to pattern nodes can then be defined
as follows:

pNodes(f) = {n|PATTERN (,n) ∈ f }
cpNodes(f) = {n|CPATTERN (,n) ∈ f }

The sliced sets inNodess and outNodess are given by:

inTargets(f) = pNodes(f) ∪⋃
g∈callees(f) inNodess(g)

inNodess(f) = inNodes(f) ∩⋃
n∈inTargets(f) FlowsInto(n)

outSrcs(f) = cpNodes(f) ∪⋃
g∈callees(f) outNodess(g)

outNodess(f) = outNodes(f) ∩⋃
n∈outSrcs(f) FlowsTo(n)

The equations above describe a slicing procedure that is applied bottom-up
on the call graph, one strongly connected component (SCC) at a time. Although
the equations appear to require a fixpoint computation for SCCs containing more
than one function, the solution can be obtained by combining a single flow query
each for inNodess and outNodess with intersection operations for each function
in the SCC.

Example 4 After typestate slicing is applied, the sets of interface nodes for the
functions in the program from Figure 4(b) are:

inNodes(foo): {h} outNode(foo): {g}
inNodes(bar): {h} outNodes(bar): {}

3.2 Experiments

We have implemented typestate slicing as a preprocessing step in ESP. The
dataflow engine in ESP performs an exhaustive dataflow analysis of the entire
code in a strongly connected component for every node in the interface node sets
of functions in the SCC. Therefore, the performance of ESP is directly related
to the number of interface nodes. ESP also uses typestate slicing to dramatically
reduce the number of relevant CFG nodes before dataflow analysis. We do not
discuss those results here.

File output in gcc. ESP has been applied to the problem of verifying the
file output behavior of a version of the gcc compiler, taken from the SpecInt95
benchmark suite, using the property specification given in Figure 4. gcc has
140,000 LOC in 2149 functions over 66 files; there are 1,086 global and static
variables; the call graph contains a single SCC with over 450 functions.

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 239

Typestate slicing applied bottom-up on gcc requires 200 seconds on a Toshiba
Tecra 8200 laptop with a 1GHz Pentium III processor and 512MB RAM, running
Windows XP. Slicing reduces the number of interface nodes from roughly 1100 to
< 1 on average, with a median of 15 for functions with non-empty interface node
sets. This dramatic reduction in the sizes of the interface node sets allows ESP to
successfully verify gcc in less than 15mins and 750MB of memory. Verification
of gcc w.r.t. the file output property would be infeasible if the set of global
interface nodes were not pruned.

Registry key leakage in cmd. We have also used ESP to find resource leaks
in the command shell interpreter (cmd) of a version of the Windows operating
system. cmd has 40,000 LOC; there are 483 global and static variables. Typestate
slicing applied bottom-up on cmd requires 33 seconds on a Compaq Evo W6000
desktop PC with a 2.2GHz Pentium IV processor and 2GB RAM, running Win-
dows XP. Slicing reduces the number of interface nodes from roughly 500 to
<< 1 on average, with a median of 1 for functions with non-empty interface
node sets.

4 Predicate Slicing in SLAM

4.1 SLAM Overview

The SLAM toolkit validates temporal safety properties of C programs through
a process of boolean abstraction [BMMR01,BR01a], interprocedural dataflow
analysis, and counterexample-driven refinement. The first step in this process
involves abstracting the C program to a boolean program. Boolean programs
have all of the control structure of C programs but contain only boolean vari-
ables. These boolean variables represent predicates over expressions in the orig-
inal program. For example, a boolean variable might represent “(*ptr)==2”.
The soundness of the boolean abstraction means that if a variable “(*ptr)==2”
is true at a point L in the boolean program then (*ptr)==2 will be true at the
same point L in the original C program. Given a set of predicates P and a C
program, SLAM generates the corresponding boolean program. A key property
of this transformation is that if the error state is not reachable in the boolean
program then it is not reachable in the original program. Assuming P has been
well-chosen, checking the safety of the original program reduces to checking the
safety of the boolean program.

Since the boolean program involves only control flow (if, goto, function
calls) and a finite set of boolean variables, interprocedural dataflow analysis can
be used to explore its state-space exhaustively [BR01b].1 If the error state is
not reachable, the program adheres to the safety policy. If there is a path to the
error state then the path can be checked for feasibility in the original C program.
If the path is feasible then the SLAM produces an error trace demonstrating
how the original program violates the safety policy. Otherwise, the path is an
1 When viewed as a dataflow problem, P is the set of dataflow facts and the boolean
abstraction process gives the transition function for every statement in the program.

240 S. Adams et al.

infeasible counterexample (or false positive) and SLAM generates new predicates
to increase the precision of the boolean program abstraction on the subsequent
iterations of SLAM.

4.2 Better Predicate Generation

The SLAM process is an example of “counterexample-driven refinement”. When
SLAM was first implemented, the initial set of predicates P was the empty set,
and counterexample-driven refinement was used to expand the set of predicates
as necessary. This process required many iterations in some cases (over 20 iter-
ations for some Windows device drivers).

If, instead, we could start SLAM off with a “good” set of predicates that
included most (if not all of the predicates) that would be discovered by the
counterexample-driven refinement process, then SLAM would terminate more
quickly. On the other hand, if we start with too many predicates (for example,
all boolean relations between all pairs of expressions in the program) the search
space may be too large and SLAM’s dataflow analysis might exhaust system
resources. Such a general approximation of predicates would link variables that
are never meaningfully related by the flow of values in the original program.

We present a predicate slicing algorithm that works for a restricted subset
of the C language. Given a VFG G for a program written in that subset, the
algorithm produces a set of predicates P that is provably sufficient to avoid false
positives but avoids linking unrelated terms. For C programs that fall outside
this restricted subset, the algorithm produces a good set of initial predicates,
and the remaining false positives can be eliminated using iterative refinement.
This algorithm has been used in practice to produce predicate sets that allow
for the rapid analysis of programs for which the naive analysis was either very
slow or infeasible. By using the VFG, we were able to hit a “sweet-spot” and
generate an initial set of predicates detailed enough to eliminate false positives
but small enough to make the analysis scale.

4.3 Input Language

For the purposes of presentation, we consider a restricted subset of C which
contains local scoping, procedural abstraction and the following statements:

s ::= vi ← n (n ∈ Z)
| vi ← vj

| if (�) s1 else s2
| vi ← fun(vj , ...)
| return(vj)
| abortif(vi ≈ vj)

vi and vj represent variables. All non-parameter variables are assumed to be
initialized before use. Integer constants n form the set of ground terms in the
program. The if (�) construct represents a non-deterministic if. The abortif(vi ≈
vj) statement represents the safety policy: if such a statement can be reached

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 241

when (vi ≈ vj) is true, the program violates the safety property. The relational
operator ≈ is left abstract but is assumed to be deterministic. While severely
restricted, this language is motivated by device driver handling of status codes.
The codes are enumerated constants defined in header files and no transforming
operations (e.g., plus, bitwise-and) may legally be performed on them. However,
the safety policy may insist that status codes be propagated or that certain
functions be called (or not called) depending on status code values. In such a
device driver example the set of ground terms would be the set of status code
values considered by the program.

4.4 Predicate Slicing Algorithm

Given a program C in this language, let G be its VFG. Intuitively, the algorithm
uses G to track all variables and ground terms that can flow into vi and vj for
every abortif(vi ≈ vj) statement and generates predicates to keep track of that
flow of values.

Ideally the algorithm would emit the predicate “a==b” if Deref(N(a)) →F

Deref(N(b)) ∈ G. Unfortunately, such predicates are often meaningless. For ex-
ample, in Figure 5, although Deref(N(r)) →∗

F Deref(N(b)) will be in G, the
predicate “r==b” cannot be interpreted at any point in the program since r is a
local variable in select and b is a local variable in main. That predicate is thus
not suitable as a dataflow fact for the SLAM toolkit. A similar scoping problem
occurs between actual arguments and formal parameters.

We will use the set of ground terms (constant values) to bridge the gap
between variables in different scopes. For example, given that the predicates

int select(int f)
{
int r;
if (�) r ← f;
else r ← 10;
return(r);

}
void main() {
int a,b,c;
a ← 5;
b ← select(a);
if (*) c ← 15;
else c ← 20;
abortif(b > c);

}

a 5r fb 10

c 2015

(a) (b)

Fig. 5. An example of predicate slicing. An example program is shown in (a) above.
The value flow representation for this program produced by one level flow points-to
analysis is shown in (b) above.

242 S. Adams et al.

“10==r” and “10==b” are true, we can logically conclude “r==b” even if we can-
not express it as a well-scoped predicate. The predicate slicing algorithm will
emit special predicates linking all formal parameters and function return values
to an appropriate set of ground terms. These predicates and the transitivity of
equality will allow for reasoning that crosses scope boundaries. In the exam-
ple above, with the predicates “10==r”, “5==r”, “10==b” and “5==b” we have
enough dataflow facts to reason about the value of b after the call to select.

With this intuition in mind, we present the complete algorithm. For each
abortif(vi ≈ vj):

1. Let Fi = FlowsInto(vi).
2. For every x, y ∈ Fi with Deref(x)→F Deref(y), emit the set of predicates {

“a==b” | a ∈ Vars(x) ∧ b ∈ Vars(y) ∧ ShareScope(a, b)}.2
3. Let Ti = { n | N(n) ∈ Fi} be the set of ground terms n that can flow into vi.
4. For every x ∈ Fi, consider every a ∈ Vars(x). If return(a) ∈ C or a is a formal

parameter then emit the set of predicates { “n==a” | n ∈ Ti}.
5. Repeat steps 1–4 with vj and Fj .

Since the relation ≈ is kept abstract, the algorithm generates predicates that
keep track of the flow of ground terms throughout the program. Intuitively, the
algorithm walks along chains of flow edges and generates equality predicates for
every such edge (step 2). Edges that cross scope boundaries are linked using
ground terms (step 4). If this set of predicates is used for dataflow analysis,
when the abortif(vi ≈ vj) statement is reached some chain of predicates of the
form “vi==x”, “x==y”, “y==n” should be true. By transitivity, vi==n. A similar
value can be obtained for vj . Given ground term values for vi and vj , the safety
of the abortif statement can be decided statically.

For this restricted language the above algorithm can be proved correct: the set
of generated predicates is always sufficient to statically verify all abortif(vi ≈ vj)
statements. The proof is by induction on the length of chains of flow edges
leading into vi in G and makes use of the fact that in this language vi must
always take on a value from Ti (no other values are possible). The algorithm
generates a sufficient number of predicates to keep track of the flow of ground
terms through the program.

Example 5 Consider the program in Figure 5(a) and the associated value flow
representation in 5(b). Let b be the variable under consideration. In step 1, Fb

will be {10, r, f, a, 5}. In step 3 we will emit the predicates “5==a”, “f==r”,
“10==r” (predicates like “a==f” have no valid scope). In step 3, Tb is {10, 5}. So
in step 4, f and r qualify so we emit the predicates “5==f”, “10==f”, “5==r” and
“10==r”. The algorithm then repeats with c as the variable under consideration
and generates “15==c” and “20==c”. ✷

The algorithm can be optimized to produce a smaller set of sufficient pred-
icates if the relation ≈ is not abstract (e.g., if it is < or ==) or if one of the
2 ShareScope(a, b) is true if either a or b is a global variable or if a and b are declared
in the same procedure.

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 243

arguments is constant. For example, to handle abortif(x == 7), step 3 can be
replaced by “Let Ti = {7},” since at every point we only care if the value that
will flow into x is 7 or not. In addition, because value flow representations often
merge source variables of different types into the same node, the algorithm can
be refined to emit equality predicates over variables of matching types only.

4.5 Experiments

Figure 6 shows the performance of the predicate slicing algorithm on Windows
NT device drivers that have been instrumented with input–output request and
locking safety properties. In reality, these programs do not fit within the re-
stricted subset of C we presented. For example, the subset does not capture
correlations between conditionals: in such cases the algorithm will generate an
insufficient set of predicates. As mentioned before, SLAM uses a form of counter-
example driven refinement to add in those missing predicates. We compare
SLAM with the predicate slicing algorithm against SLAM with all predicates
generated by counter-example driven refinement.

“Original Runtime” shows the time for SLAM to either find a bug or prove
the driver correct using only counter-example driven refinement. In the case of
iscsiprt, SLAM does not terminate. “Improved Runtime” shows the execution
time when SLAM begins with the predicate slice computed using the previous
algorithm. “Generated Predicates” gives the number of distinct predicates in
the slice. “Missing Predicates” gives the number of necessary predicates not in
the slice that must be found by counter-example driven refinement (e.g., those
predicates that correlate conditionals).

Using this technique SLAM was able to scale to some previously unreachable
real-world device drivers and performs 2–10 times better on others. The predicate
slice provides between all and two-thirds of the necessary predicates. However,
since SLAM must generally iterate once to find 3–7 missing predicate and each
iteration is exponential in the number of predicates already discovered, the net
performance increase is more than linear.

Driver Lines Original Improved Generated Max Preds Missing
Name of code Runtime Runtime Predicates In Scope Predicates
apmbatt 2207 299 s 22 s 85 10 0
pnpmem 3849 1132 s 125 s 143 9 4
floppy 7562 1063 s 600 s 154 16 33
iscsiprt 4543 ** 729 s 146 10 42

Fig. 6. Performance of predicate slicing. The table above compares the performance of
SLAM with predicate slicing against the performance of SLAM with counter-example
driven refinement.

244 S. Adams et al.

5 Related Work

The main idea behind this paper is the use of cheap flow-insensitive value flow
information to speed up dataflow. The previous work most similar to our work
is that of Ruf [Ruf97] and Zhang et al. [ZRL96]. Ruf showed how a unification-
based non-standard type inference procedure such as Steensgaard’s pointer anal-
ysis could be used to partition the data in a program in such a way that dataflow
analysis could be scheduled one partition at a time. This reduces the memory
footprint of the dataflow analysis [Ruf97]. Ruf’s work can be viewed as pro-
ducing slices using a points-to graph where all flow edges are replaced by node
merging. In general, this will lead to larger slices. Ruf also had no mechanism
for identifying constraints and using this information to generate slices of the
program.

Zhang et al. used a unification-based pointer analysis to divide the pointer
variables in a program into equivalence classes, such that the points-to sets for
each equivalence class could be computed separately using a more expensive
pointer analysis [ZRL96]. Our work generalizes their result by introducing di-
rectional flow, and extends their idea to value flow analysis and clients of value
flow analysis in general.

Recent work by Foster et al. [FTA01] uses a unification-based analysis to
compute a set of dataflow facts that are then fed to a flow-sensitive type qualifier
system. We believe that their work, which appears similar to the typestate slicing
used in ESP, could be classified as an instance of our approach.

Rountev et al. developed a framework for combining flow-insensitive global
information with flow-sensitive local information [RRL99]. Our work differs from
theirs in that our use of flow-insensitive information does not affect the precision
of the client analysis, as is the case in their framework. We are merely interesting
in improving the efficiency of the subsequent dataflow analysis.

An alternative approach to the one we have presented is to develop demand-
driven versions of client dataflow analyses. Previous work on demand-driven
dataflow frameworks includes [HRS95] and [DGS95], among others. These frame-
works restrict the class of dataflow problems handled, usually to distributive
problems, whereas we are interested in value flow problems that are not distribu-
tive. It is possible that one could design distributive approximations of value flow
analysis that could then be performed from program points of interest, in order
to yield more precise slices than those obtained using our method.

Another alternative approach is to use standard program slicing techniques,
surveyed in [Tip95]. The drawback of program slicing is that it is based on flow-
sensitive reaching definition computation, which is likely to be too expensive to
scale to large programs.

The precision of our value flow can be improved through the use of an SSA
form [CFR+91].

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis 245

6 Conclusions

This paper is based on a simple hypothesis: systems that employ heavyweight
interprocedural dataflow analyses can benefit greatly by using a inexpensive flow-
insensitive value-flow analysis to prune the set of dataflow facts and program
statements over which they must operate. We have presented experiments using
two different client dataflow analyses to validate our hypothesis. In both cases,
we obtain significant gains in performance.

References

[BMMR01] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Raja-
mani. Automatic predicate abstraction of c programs. In Proceedings of
the ACM SIGPLAN ’01 Conference on Programming Language Design
and Implementation (PLDI-01), volume 35, pages 203–213, 2001.

[BR01a] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In Proceedings of SPIN ’01, 8th Annual
SPIN Workshop on Model Checking of Software, May 2001.

[BR01b] Thomas Ball and Sriram K. Rajamani. Bebop: A path-sensitive interpro-
cedural dataflow engine. In Proceedings of PASTE ’01, ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, June 2001.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

[CRL99] R. Chatterjee, B. Ryder, and W. Landi. Relevant context inference. In
Proceedings of POPL ’99, 26st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1999.

[Das00] Manuvir Das. Unification-based pointer analysis with directional assign-
ments. In Proceedings of the ACM SIGPLAN ’00 Conference on Pro-
gramming Language Design and Implementation (PLDI-00), 2000.

[DGS95] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven
computation of interprocedural data flow. In Symposium on Principles of
Programming Languages, pages 37–48, 1995.

[DLFR01] Manuvir Das, Ben Liblit, Manuel Fahndrich, and Jakob Rehof. Estimating
the impact of scalable pointer analysis on optimization. In Proceedings of
the 8th International Symposium on Static Analysis, 2001.

[DLS02] M. Das, S. Lerner, and M. Seigle. ESP: Path sensitive program verification
in polynomial time. In Proceedings of the ACM SIGPLAN ’02 Conference
on Programming Language Design and Implementation (PLDI-02), June
2002.

[FTA01] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-Sensitive Type
Qualifiers. Technical Report UCB//CSD-01-1162, University of Califor-
nia, Berkeley, November 2001.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming Languages
and Systems, 12(1):26–60, January 1990.

246 S. Adams et al.

[HRS95] Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand-driven inter-
procedural dataflow analysis. In Proceedings of the ACM SIGSOFT Sym-
posium on Foundations of Software Engineering Notes, volume 20, 1995.

[HT01] Nevin Heintze and O. Tardeau. Ultra fast aliasing analysis using CLA: a
million lines in a second. In Proceedings of the ACM SIGPLAN ’01 Con-
ference on Programming Language Design and Implementation (PLDI-
01), 2001.

[OJ97] R. O’Callahan and D. Jackson. Lackwit: A program understanding tool
based on type inference. In Proceedings of the 1997 International Con-
ference on Software Engineering, 1997.

[RRL99] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow anal-
ysis of program fragments. In Proceedings of the ACM SIGSOFT Sym-
posium on Foundations of Software Engineering, pages 235–252, 1999.

[Ruf97] E. Ruf. Partitioning dataflow analyses using types. In Conference Record
of the Twenty-Fourth ACM Symposium on Principles of Programming
Languages, 1997.

[SY86] R. Strom and S. Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Transactions on Software Engi-
neering, 12(1):157–171, 1986.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995.

[WL95] R. Wilson and Monica Lam. Efficient context-sensitive pointer analysis
for C progams. In Proceedings of the ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation (PLDI-95), 1995.

[ZRL96] S. Zhang, B. Ryder, and W. Landi. Program Decomposition for Pointer
Aliasing: A Step toward Practical Analyses. In Fourth Symposium on the
Foundations of Software Engineering (FSE4), 1996.

	Introduction
	Value Flow via Pointer Analysis
	One-Level Value-Flow Analysis
	Slicing Interface

	Typestate Slicing in ESP
	Eliminating Interface Nodes via Value Flow
	Experiments

	Predicate Slicing in SLAM
	SLAM Overview
	Better Predicate Generation
	Input Language
	Predicate Slicing Algorithm
	Experiments

	Related Work
	Conclusions
	References

