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Abstract. In this paper we describe a novel yet practical approach to the formal 
verification of implementations. Our approach splits verification into two major 
parts. The first part verifies an implementation against a low-level specification 
written using source-code annotations. The second extracts a high-level specifi-
cation from the implementation with the low-level specification, and proves that 
it implies the original system specification from which the system was built. 
Semantics-preserving refactorings are applied to the implementation in both 
parts to reduce the complexity of the verification. Much of the approach is 
automated. It reduces the verification burden by distributing it over separate 
tools and techniques, and it addresses both functional correctness and high-level 
properties at separate levels. As an illustration, we give a detailed example by 
verifying an optimized implementation of the Advanced Encryption Standard 
(AES) against its official specification. 

Keywords: Formal verification, formal methods, software dependability. 

1   Introduction 

In previous work, we introduced a novel approach to software verification called 
Echo [22]. In this paper we present details of a critical component of Echo, reverse 
synthesis, and we show how it is used in the overall verification process. We also pre-
sent an evaluation in which we applied it to a non-trivial system. 

In many cases, verification is undertaken by testing the developed software artifact 
against its specification. Testing, however, is not adequate for high levels of assurance 
[5]. Formal verification is an attractive alternative under such circumstances for sys-
tems in which safety and security are critical concerns. It provides confidence with 
mathematical rigor that many classes of errors in software development have been 
avoided or eliminated. In some cases—such as at Evaluation Assurance Level 7 of the 
Common Criteria [19]—it is required. Verification of functional correctness helps to 
avoid defects introduced in software development that manifest themselves as secu-
rity vulnerabilities or safety hazards. We note that this complements the notion of 
proving that a system possesses certain specific safety or security properties. 

Our approach is aimed at making formal verification of functional correctness more 
practical. It uses existing notations, tools and techniques, distributing the verification 
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burden over separate levels. At its core, a high-level specification is extracted from a 
low-level, detailed specification of a system. We refer to this activity as reverse syn-
thesis. This low-level specification is shown to both describe the program and also 
adhere to the high-level specification. Thus, formal verification by reverse synthesis 
involves two proofs each of which is either generated automatically or mechanically 
checked. These proofs are: (1) a proof that the source code implements the low-level 
specification correctly; and (2) a proof that a high-level specification which is ex-
tracted from the low-level specification implies the original system specification. The 
two proofs can be tackled with separate specialized techniques. 

In order to facilitate both proofs, a variety of semantics-preserving transformations 
are used to refactor the implementation. These refactorings reduce the complexity of 
verification caused by program refinements and optimizations that occur in practice. 
They are either effected or checked mechanically, and they are a crucial element of 
our verification approach because they can be used to simplify both of the proofs, in 
some cases making proofs feasible that otherwise would not be. 

The introduction of a low-level specification as an intermediate point and the ap-
plication of semantics-preserving refactorings allow our approach to dovetail with 
standard development processes more easily than existing approaches to formal veri-
fication. As a result, relatively few limitations are imposed on developers and many 
existing software engineering development methods can continue to be used, yet for-
mal verification and all of its benefits can be applied. 

In this paper, we begin by summarizing our approach to formal verification by re-
verse synthesis and then discuss the process and elements involved in detail. Next we 
present a detailed example of the use of reverse synthesis: verifying an implementa-
tion of the Advanced Encryption Standard (AES) against the official AES specifica-
tion. Finally, we compare our approach to formal verification to other approaches. 

2   Formal Verification by Reverse Synthesis 

A crucial element of our overall approach is the use of a low-level specification since 
it is the intermediate representation of the software upon which our proofs are based. 
The level that we define for this is an annotated implementation, i.e., an implementa-
tion supplemented with declarative property annotations such as preconditions, post-
conditions, and invariants. These annotations can be defined and inserted into the 
source code by the developers or partially generated directly from the code, to de-
scribe the desired behaviour of subprograms in the code. Existing annotation-and-
proof systems [3, 16] can verify source code against such annotations mechanically, 
and in our prototype system we use SPARK Ada [3]. Although we have not done so, 
our approach could be used with languages other than our choice of SPARK Ada, and 
so this choice is not a fundamental limitation. Annotations and proofs of the kind we 
require have also been adopted by Microsoft in both Vista and Office [8]. 

As part of our Echo approach [22], we assume that the original specification from 
which the software was developed is complete and its semantics have been restricted 
to those that can be implemented, and we assume a reasonable development practice 
has been followed to create an executable implementation together with proper anno-
tations. Then our verification approach, shown in Fig. 1, consists of the following steps: 
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(1) Implementation Proof: A proof that the implementation implements the annota-
tions correctly. Our prototype uses the SPARK Ada system [3] for this proof. 

(2) Reverse Synthesis: A mechanical extraction (with human guidance) of a high-
level abstract specification from the annotated implementation. Tools we have built 
perform this extraction, and the abstract specification is written in PVS. 

(3) Implication Proof: A proof that the properties of the extracted specification im-
ply the properties of the original specification. Our prototype uses the PVS system for 
this proof. 

The implementation proof, reverse synthesis, and the implication proof are partly 
automated and partly mechanically checked. Thus, with this process we have a com-
plete formal argument that the implementation behaves according to the specification. 

This approach makes verification more practical. It does this in part by combining 
existing powerful techniques, in part by introducing reverse synthesis, and in part by 
allowing an engineer to work with an existing implementation rather than requiring 
that an implementation be designed to show compliance. Showing compliance of an 
implementation with a specification should not necessitate a specific method for con-
structing the implementation: development decisions should be minimally restricted 
by the goal of verification. This is not the case currently with refinement-based ap-
proaches such as the B method [1]. 

By exploiting existing notations and tools, the approach offers the opportunity to 
make progress more quickly since existing tools both solve part of the problem and 
point in a positive technical direction. Annotations are tightly coupled with the source 
code, thus are suitable to prove low-level functional correctness. High-level specifica-
tion languages and are more expressive and are better at reasoning about high-level 
properties. Reverse synthesis provides a mechanical link between annotations and high-
level specification proofs thereby filling in the gaps left by tools already available. 

3   The Reverse Synthesis Process 

Reverse synthesis, shown in Fig. 2, is composed of three phases: (1) implementation 
refactoring; (2) implication refactoring; and (3) specification extraction. The refactor-
ing phases each transform the program being verified so as to preserve its semantics 
but to make the associated proof easier. Implementation refactoring assists the user in 
enhancing and completing the annotations of the source program and thereby  

 

Fig. 1. Formal Verification by Reverse Synthesis 
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facilitates the proof that the source code matches the annotations. Implication refac-
toring aids the specification extraction phase and reduces the effort in the proof that 
the extracted specification implies the original one. The specification extraction phase 
mechanically extracts a high-level abstract specification from the refactored annotated 
implementation. 

We examine these reverse synthesis steps and proofs in turn in the remainder of 
this section. Implementation proof uses code-level tools such as static code analyzers, 
proof obligation generators, and proof checkers. This technology is well established, 
and we do not discuss it further. 

3.1   Refactoring for Verification 

Software implementations are often influenced by the need for efficiency in time or 
space. More complex algorithms are used to reduce executions times and data struc-
tures are sometimes chosen to reduce computation (and vice versa). Such implemen-
tation decisions tend to add considerably to a program’s overall complexity. It is often 
easy to show that refactoring a program and reducing its efficiency does not change 
its computed function. Reducing efficiency can, however, reduce complexity and 
thereby facilitate verification. Hence instead of directly extracting a high-level speci-
fication from the annotated implementation and performing proofs on them, our ap-
proach first tries to refactor the implementation and reduce the complexity of proofs 
to the extent possible. 

Refactoring for verification is the application of semantics-preserving transforma-
tions to the annotated implementation. The transformations modify the implementa-
tion in some way, and this usually simplifies the implementation, decreasing the  
implementation’s efficiency. This is in sharp contrast to the usual role of semantics-
preserving transformations where some form of improvement in efficiency is the goal. 
The standard approach is exemplified by the use of optimizing transformations in 
compilation. 

We hypothesize that semantics-preserving transformations are easier to carry out, 
understand and prove correct at the level of the program than at the level of the proof 
system. That is, given complex proof obligations for a program, it is easier to simplify 
the program than to simplify the logical terms directly. A loop and its unrolled form 
yield proof obligations that are equi-satisfiable, but those obligations have different 
structures and are not equally easy to verify. Refactoring in reverse synthesis, there-
fore, reduces complexity while leaving the program semantics unaltered, thereby as-
sisting the proofs involved in the verification. 

Refactoring for verification involves both computation and storage. Programs can 
be made more amenable to verification by adding redundant computation or storage, 

 

Fig. 2. Detailed Reverse Synthesis Process 
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by adding intermediate computation or storage, or by restructuring the program.  
Examples of adding redundant computation include moving computations out of con-
ditionals, changing a loop that computes several things into a sequence of single-
purpose loops, increasing loop bounds to a convenient limit, and replacing iteration 
with recursion. Retaining values after their initial computation so that they can be 
used in other (possibly redundant or intermediate) computations is an example of add-
ing redundant storage. 

Refactoring is based on the following four stages: (1) identify candidate refactor-
ing transformations—since refactoring might address certain optimizations and  
refinements introduced during development, this usually needs guidance from devel-
opers to identify the occurrences of optimizations, although some can be found me-
chanically; (2) determine the order to apply the transformations—the order matters if 
there are dependencies among the transformations; (3) prove the transformations are 
semantics-preserving—all transformations should be proved to preserve the semantics 
and should not require the user to discharge complex proof obligations. In order to 
make the proofs reusable, we identify common refactoring transformations, character-
ize them into templates, and prove that they are semantics-preserving; and (4) apply 
the transformations to the code—all of the transformations should be applied me-
chanically to avoid introducing errors. In our prototype toolset, we adopt the Stratego 
[4] program transformation language and associated XT tools to achieve this. 

Presently, refactoring for verification in our reverse synthesis approach has two 
phases, namely refactoring to facilitate the implementation proof and refactoring to 
facilitate the implication proof: 

(1) Implementation refactoring: These transformations are intended to simplify the 
proof between the code and the annotations. The transformations are usually applied 
within subprograms and do not change the existing pre- and post-condition annota-
tions for the subprograms. However, corresponding proof obligations for these anno-
tations are likely to become much simpler to discharge. After the refactoring, the user 
also has the chance to enhance and complete the annotations for those elements that 
were otherwise obscured by the optimizations done in the original development process. 

(2) Implication refactoring: These transformations are intended to aid the later 
specification extraction and to simplify the proof between the extracted specifica-
tion and the original one. The transformations usually involve changes to the struc-
ture of the entire program with the goal of aligning the extracted specification and 
the original specification. This alignment simplifies the implication proof. Each 
transformation might involve several subprograms and the annotations usually need 
to be modified, although the modification can in many cases be done mechanically. 

The two refactoring phases can be overlapped since some transformations may 
help both proofs. Neither one of them is strictly required. However, if they are ap-
plied, the resulting proof obligations are likely to be much simpler to discharge than 
in most traditional verification circumstances because the proof involves a transfor-
mation from a more-complex to a less-complex program. Refactoring for verification 
plays an important role in the whole process, and we detail an example of its applica-
tion in Section 5. 
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3.2   Specification Extraction 

The specification extraction step extracts an abstract specification from the refactored 
annotated implementation to be used in the proof of implication with the original 
specification. Presently, specification extraction exploits three basic techniques: (1) 
architectural and direct mapping; (2) component reuse; and (3) model synthesis, 
which are discussed in detail below. For any particular program, combinations of 
techniques will be used, each contributing to the goal of successful specification ex-
traction for that program. We have developed a prototype toolset for specification  
extraction that handles architectural and direct mapping from SPARK Ada implemen-
tations to PVS specifications completely, along with minor elements of the other two 
techniques. 

Specification extraction is automated or mechanically checked, which ensures the 
extracted high-level specification is a correct representation of the annotated imple-
mentation. However, to make the verification sound, we must also make sure that the 
extracted specification is complete, suitably abstract but not too abstract, so that we 
can construct and complete the implication proof. Since we extract the high-level 
specification mostly from the low-level annotations, it means we have to make sure 
the annotations in the source code describe the entire semantics. Presently we have no 
completely automated way to check this property, and we rely on human review and 
cross-check with the derivation relations between input/output variables to do this. 

Architectural and Direct Mapping. We hypothesize that it is often the case that the 
architectural or high-level design information in a specification is retained in the im-
plementation. While an implementation need not mimic the specification architecture, 
in practice it will often be similar in structure because repeating the architectural de-
sign effort is a waste of resources. 

As an example, consider a model-based specification written in a language like Z 
that specifies the desired operations using pre- and post-conditions on a defined state. 
The operations reflect what the customer wants, and the implementation architecture 
would almost certainly retain those operations explicitly. 

The above hypothesis is implicitly assumed in the well-known Floyd-Hoare ap-
proach, which requires a stepwise proof that a function implementation complies with 
its specification. This implicitly requires a mapping from functions and variables in 
the specification to those in the implementation. Thus, we have not added assump-
tions, only evaluated existing ones in more detail. 

In a case where the implementation retains the architectural information from the 
original restricted specification, a simple way to begin the process of specification ex-
traction is to directly translate elements of the annotated implementation language, 
such as packages, data types, state/operation representations, preconditions, postcon-
ditions, and invariants, into corresponding elements in the specification language. The 
extracted specification will be structurally similar to the restricted specification. Such 
a strategy is straightforward, but it does have considerable potential in our approach. 

Component Reuse. Software reuse of both specification and code components is a 
common and growing practice. If a source-code component from a library is reused in 
a system to be verified and that component has a suitable formal specification, then 
that specification can be included easily in the extracted specification [24]. 
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Model Synthesis. In some cases, specification extraction may fail for part of a system 
because the difference in abstraction used there between the high-level specification 
and the implementation is too large. In such circumstances, we use a process called 
model synthesis in which the human creates a high-level model of the portion of the 
implementation causing the difficulty. The model is verified by conventional means 
and then included in the extracted specification. 

At present, our implementation of model synthesis relies on human insight. In  
future work, we plan to mechanize model synthesis by exploring ideas such as hy-
pothesizing invariants in extended static checking [11] and obtaining partial models 
and invariants from iterative abstraction refinement and software model checking. 

3.3   Implication Proof 

The extracted specification needs to be matched to the original specification to com-
plete the verification argument. The property that needs to be shown here is implica-
tion, not equivalence; by showing that the extracted specification implies the original 
specification, but not the converse, we allow the original specification to be non-
deterministic, and allow more behaviours in the original specification than the imple-
mentation. 

The implication argument is shown by matching the structures and components of 
these two specifications and setting up and proving an implication theorem using the 
prover associated with the specification language. The formal definition of implica-
tion we use for this is that set out by Liskov and Wing known as behavioral subtyping 
[18]. Behavioral subtyping was studied in the context of languages that permit inheri-
tance, in order to define what it meant for a subtype to comply with the type con-
straints of a supertype. Intuitively, the requirement is similar in verification: we want 
to ensure that the function implementation complies with the constraints defined in its 
specification. While our instantiation is more general, not making assumptions on 
what is or is not required of a type system, the principles are the same. 

Then, by implication, we mean that the types and functions in the extracted speci-
fication are subtypes of the matching types and functions in the original specification. 
More specifically, the extracted function specification (which represents the imple-
mentation) should have a weaker precondition and a stronger postcondition than the 
original function specification: 

originalextractedextractedoriginal PostPostPrePre                 ⇒∧⇒  

To set up the theorem, we need human guidance to match elements such as vari-
ables and functions between the two specifications, but in many cases they can be 
suggested automatically. The resulting proof obligations need to be discharged auto-
matically or interactively in a mechanical proof system. When the extracted specifica-
tion shows structure similarity to the original one, the proof usually does not require 
considerable human efforts as will be illustrated in Section 5. Also, by setting up the 
implication proof theorem function by function, not property by property, we can eas-
ily locate the error if the implication theorem fails to be proved, since it must be in-
side the structure or component that cannot be proved. 
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4   An Example Application 

In this section we present an example of applying formal verification by reverse syn-
thesis to a small but important application. This example illustrates the various as-
pects of the approach and provides some preliminary evaluation. A comprehensive 
evaluation and development of industrial-strength support tools is relegated to future 
work. 

Recall that one of our goals was to allow developers the maximum freedom possi-
ble in building a system. We sought a way to assess our success in meeting this goal 
as well as the utility of the overall technique. The approach we followed was to apply 
the technique to an important yet publicly-available system written entirely by others. 
Clearly, the system’s development was not constrained by our verification require-
ments. 

For this assessment, we used an implementation of the Advanced Encryption Stan-
dard (AES) [10]. We employed the following two artifacts: (1) the Federal Informa-
tion Processing Standard (FIPS) specification of the AES [10] that specifies the AES 
algorithm, a symmetric iterated block cipher, mostly in natural language, with 
mathematical descriptions of some algorithmic elements; (2) a publicly available im-
plementation written in ANSI C that contains various optimizations such as loop  
unrolling and function inlining. We assume that these artifacts were created by a tra-
ditional software development process, and that the developers took no actions that 
would make formal verification infeasible or very difficult.  

We supplemented these artifacts as necessary to apply the reverse synthesis proc-
ess. We translated the official FIPS specification into a formal specification in PVS. 
We formalized all the behaviors and constraints described in the FIPS specification in 
PVS and included them in the formal specification (as the original specification from 
Fig. 1). In practice, a formal specification might be produced by developers, making 
this type of translation unnecessary. We translated the ANSI C implementation into 
SPARK Ada and added annotations for pre- and post-conditions of functions (the an-
notated implementation from Fig. 1). Again, in practice an annotated implementation 
might be produced by developers, making this type of translation also unnecessary. 

With these artifacts developed, we applied our reverse synthesis approach to formally 
verify the functional correctness of the SPARK Ada implementation with respect to the 
PVS specification. The details of the verification are described in the next section. 

5   Verification of the AES Implementation 

To verify the AES implementation, we applied refactoring and performed a series of 
complexity-reducing, semantics-preserving transformations using Stratego/XT tools. 
A proof that the code—with applied refactoring—adheres to its annotations was com-
pleted using the SPARK toolset with some straightforward human intervention. A 
PVS specification was derived from the refactored annotated implementation using 
our automatic specification extraction tool. The implication proof between the ex-
tracted specification and the original one was then established using the PVS theorem 
prover with some straightforward human intervention. Fig. 3 shows the detailed tool 
configuration we set up and the process we followed to conduct this case study. In all 
cases we included and verified only functions related to encryption and decryption; we 
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Fig. 3. Tool Configuration for AES Verification 

did not describe or verify functions related to key expansion, or any of the NIST APIs. 
The relevant PVS specification contains 335 lines of functional specification, excluding 
lemmas and theorems that are required to prove its correctness. The relevant SPARK 
Ada code we are verifying has 733 lines of function declarations (including lookup ta-
bles), and 584 lines of function definitions excluding comments and annotations. 

5.1   The Refactoring Process 

According to the original AES documentation [7], the following four major optimiza-
tions had been applied to create the implementation: (1) loop unrolling; (2) word 
packing; (3) table lookup; and (4) function inlining. Table lookup and function inlin-
ing were dependent since the table entries encoded part of the defined functions. For 
each of the optimizations we identified, we developed a template defining the refac-
toring transformation so that they could be reused in other programs. We then charac-
terized them and proved them to be semantics-preserving using PVS. Finally, we  
applied the transformations mechanically using Stratego. Besides the four major trans-
formations, we also effected several minor transformations including adjusting interme-
diate variables, removing redundant statements, and aggregating data assignments. 
These transformations helped match the code to the transformation templates and clean 
up the code after the transformations. Each was proved to be semantics-preserving. 

Table 1 lists details of the versions of the AES code used in verification. AES1 is 
the original, optimized code and each subsequent version is the result of applying a 
refactoring transformation. The rightmost two columns in Table 1 present the sizes of 
SPARK Ada code associated with function definitions and declarations (including 
lookup tables) respectively. We used bytes instead of lines of code to more precisely 
denote the size of the code since our tool does not generate proper line breaks for in-
termediate refactored code. 

Table 1. AES versions transformed via refactoring for verification 

Transformation Definitions (bytes) Declarations & Tables (bytes) 
AES1 Original 25,415 41,924
AES2 undo loop unrolling 8,561 41,924
AES3 undo word packing 7,180 103,389
AES4 undo table lookups 8,036 7,545
AES5 undo func inlining 8,620 8,128
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5.2   The Refactoring Transformations 

Reversing Loop Unrolling. The first transformation we applied was to undo loop  
unrolling in AES1. Undoing loop unrolling involved locating the repeated code, rede-
fining it as a for-loop, and changing literal references to use the new loop induction 
variable. This transformation introduced two new loop induction variables and dra-
matically shrank the code size as shown in Table 1 since vast amount of repeated code 
were removed. After the transformation, loop invariants could be annotated to facili-
tate the verification. This transformation assisted the implementation proof, because 
by introducing new loop invariants and removing replicated loop bodies, it substan-
tially reduced the states involved in the proof. 

Loop unrolling is a well-known compiler transformation, and it might seem un-
usual for it to have been applied explicitly at the source code level in AES. However, 
it is not specific to AES, because not all compilers unroll loops and because manual 
unrolling is still a widespread practice (e.g. to expose concurrency). With further tool 
support, both identifying unrolled loops and verifying the reversing transformation 
can be done automatically (e.g., [17]). Here we manually identified two unrolled 
loops, but selecting the transformation spots, performing the transformation, and 
proving the preservation of the semantics were all machine checked using Stratego 
and PVS. 

Reversing Word Packing. The second transformation involved undoing a word-
packing representation optimization. The AES standard describes encryption in terms 
of bytes, but the original implementation packs the bytes into 32-bit words to utilize 
efficient word-level operations. AES1 and AES2 include utility functions to split and 
combine 32-bit words; the bytes inside a word are referenced by bit shifting. In AES3, 
we replaced references to 32-bit words by arrays of four bytes. Thus splitting, com-
bining, and references to bytes used native array operations. Specialized procedures 
for manipulating packed data were removed, but every line of code that referenced 
packed data had to be updated to use the new representation. As a result, the function 
definitions shrank slightly while the lookup tables expanded considerably. This is be-
cause the tables were originally composed with 32-bit words but were composed of 
four-byte arrays after undoing word packing. This transformation assisted the implica-
tion proof since the code and the specification used the same basic type to refer to 
data after it and were thus easier to verify.  

Data structure transformations and efficient representations are also not specific to 
AES. While there has been some work toward automatically locating likely spots for 
such transformations (e.g., [15]), we assume that this step is manually guided. We let 
the user indicate the links between the old and new representations or provide a type 
transformer. Once the types and the operations on the types have been selected, the 
behavioral equivalences of the representations are checked mechanically using PVS. 
Then transformation spots are selected and the code is transformed mechanically by 
Stratego. 

Reversing Table Lookup. The third transformation replaced table lookups with ex-
plicit computations. A major optimization in the AES implementation was combining 
different cryptographic transformations into a single set of table lookups. The tables 
contain pre-computed outputs and thus reduce the run-time computation. The  
properties of those tables have been documented [7], and AES4 replaced references to 
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these tables with inlined instances of the appropriate computations using Stratego. As 
a result, all tables were removed causing a dramatic code-size reduction as shown in 
Table 1. This transformation supported the next one (reversing function inlining), be-
cause some inlined functions were encoded in the tables. It also made the implication 
proof easier since the specification was phrased in terms of the computations, not the 
tables. 

This transformation can be viewed as a general form of property substitution. The 
original implementation maintains the invariant Table[i] = computation(i); 
the transformation replaces reads of Table[i] with instances of computa-
tion(i). Reasonable sites for such a transformation cannot, in general, be selected 
automatically, but the number of computations so described in the specification is 
limited, and the conventional software development artifacts may well record why 
and where such pre-computed tables were applied. In general, once a human has iden-
tified a table and the computation, the transformation can be checked mechanically by 
going through all the table entries and comparing them with corresponding computa-
tions. Selecting sites and performing the transformation can be done automatically 
and was in our example. 

Reversing Function Inlining. The final transformation we applied was to undo func-
tion inlining. After the above transformations, inlined functions continued to obscure 
events that are explicitly required by the specification. Reversing such inlining aided 
both the implementation proof and the implication proof. By finding cloned code 
fragments, it removed replicated or similar proof obligations in the implementation 
proof. By reversing the inlining, it aligned the code structure with the specification 
structure so that the implication proof was easier to be constructed. In this example, 
we identified and factored nine specified functions, each of which was quite small. 
After undoing inlining, the verbose function-definition syntax actually increased the 
source code size shown in Table 1, but the conceptual complexity was reduced. 

Inlining functions is certainly not specific to AES. Finding places to undo function 
inlining is known in the compiler literature as procedural abstraction [20] and is used 
when optimizing for code size. Finding appropriate sites for this transformation can 
thus be done automatically, or it can be guided based on the specification structure. 
We prove it is semantics-preserving and perform the transforming mechanically using 
PVS and Stratego respectively. 

5.3   Specification Extraction and Proofs 

The final program version, AES5, contained 262 lines of function declarations and ta-
ble, and 214 lines of function definitions, including 126 lines of annotations. Proof 
functions and rules are also provided in additional files to facilitate the proof of the 
annotations. Most of the annotations were simple postconditions that could be 
straightforwardly derived, while others were loop invariants. The compliance of the 
code to the annotations was proved using the SPARK toolset. It automatically dis-
charged 93% of the verification conditions, and the remaining ones needed very little 
human guidance to be discharged. 

Using our prototype tool, a PVS specification was then automatically extracted us-
ing architectural and direct mapping. The result contained 606 lines of PVS and 
showed great similarity in structure to the original specification. Thus an implication 



316 X. Yin  et al. 

proof relating that extracted specification to the original specification was easily con-
structed, and all resulting obligations were discharged in seconds using the PVS theo-
rem prover. More than half of the implication proof obligations could be discharged 
by a simple (grind) command. Others could be discharged by applying a sequence 
of proof commands and lemmas that demanded little human insight. These proofs, 
combined with the proofs that the transformations were correct, provide a formal as-
surance guarantee that the AES implementation adheres to the specification. 

To get an idea of how refactoring helped verification, we tried to verify the original 
implementation as it was before refactoring. However, the off-the-shelf SPARK tool-
set could not even generate verification conditions. Instead it quickly exhausted heap 
space and stopped, presumably because the generated proof obligations were too 
large. We then tried annotating and verifying AES1, the version with loops rerolled. 
The SPARK toolset generated more than 15M bytes of verification conditions which 
is around 30 times larger than the refactored version. It took approximately 2 hours on 
a dual 1.0 GHz UltraSparc IIIi with 2GB RAM for the tools to analyze the verifica-
tion conditions, while on the same machine it only took minutes for the refactored 
version. Moreover, unlike the refactored version, the verification conditions that could 
not be automatically discharged here were mostly major postconditions, whose proof 
simulated traditional formal verification, and required significant human insight and 
efforts. 

6   Related Work 

Light-weight program analyses [9] are often used to find bugs in or gain confidence 
about programs. Compared to more complete formal verification, their expressive 
power is limited and no formal proof of compliance is produced. Heavier-weight 
techniques like the B method [1] are more suited to full formal verification, but they 
intertwine code production and verification. Using the B method requires a B specifi-
cation and then enforces a lock-step code production approach on developers. 

A more general technique is traditional Floyd-Hoare verification [12]. Unfortu-
nately, it requires generation and proof of many detailed lemmas and theorems. It is 
very hard to automate and requires significant time and skill to complete. Annotations 
and verification condition generation, such as that employed by the SPARK Ada tool-
set, is used in practice. However, the annotations used by SPARK Ada (and other 
similar techniques) are generally too close to the abstraction level of the program to 
encode higher-level specification properties. Thus, we use verification condition gen-
eration as an intermediate step in our approach. 

Automated code generation from a formal specification to an implementation, us-
ing tools such as the SCADE Suite [21], provides an alternative to verification. This 
approach constructs an implementation automatically from the specification using 
formal translation rules. If the translation rules are correct, it offers the possibility of 
assuring that the behaviour of the implementation is consistent with the formal speci-
fication. However, for most safety-critical systems, it is very difficult to automatically 
generate a well-structured or efficient implementation from a formal specification. If 
the developer changes the generated code to refine its structure or increase efficiency, 
the verification argument is invalidated.  
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Other techniques are available for the properties that we do not address. Model 
checking techniques [14], for example, have been quite successful at verifying hard-
ware, protocols and temporal properties; they complement our approach in such areas. 
While model checking can generate proofs that the software model adheres to the 
specification, it does not prove that the software model is faithful to the original pro-
gram. More recent model extraction [14], aims to address this problem and mechani-
cally extracts a system model from the source code so that model checking can be  
applied. However, model extraction does not produce a full assurance argument since 
model checking is not targeted at full functional correctness. 

Related work in the reverse engineering domain retrieves high-level specifications 
from the source code by semantics-preserving transformations and abstractions [6, 
23]. These approaches are similar to reverse synthesis, but the goal is to make poorly-
engineered code amenable to further analyses and not to aid verification. Our ap-
proach, which incorporates intermediate annotations, can more easily capture the 
properties relevant to verification while still abstracting implementation details. These 
techniques, however, show the feasibility of approaches similar to reverse synthesis. 

Andronick et al. developed an approach to verification of a smart card embedded 
operating system [2]. Similar to reverse synthesis, they proved a C source program 
against supplementary annotations and generated a high-level formal model of the an-
notated C program that was used to verify certain global security properties. Our ap-
proach incorporates refactoring and allows us to show broad compliance with the 
original specification from which the system was built. 

Heitmeyer et al. developed a similar approach to ours for verifying a system’s 
high-level security properties [13]. Their approach is focused on verifying security 
properties, whereas ours is aimed at general functionality. 

7   Conclusion 

We have defined a verification technique based upon the use of an intermediate point of 
abstraction between a high-level formal specification and its concrete implementation. 
This intermediate point is a low-level specification documented by annotated source 
code. Our verification approach shows that the source code correctly implements the 
annotations and that the annotated source code implies the high-level specification. 

We have introduced the new technique of reverse synthesis that mechanically cre-
ates a high-level specification from the low-level specification. A crucial component 
of reverse synthesis is the application of complexity-reducing but semantics-
preserving refactoring transformations. In general, it is easier to transform the  
program than to transform the proof. Thus, transformations facilitate verification by 
reducing the complexity of the source program and thereby the proof obligation. 

Human insight guides much of the process, but the analysis and thus the verifica-
tion is either automatic or machine-checkable. It dovetails directly with traditional 
development processes and artifacts. We evaluated our approach by verifying an AES 
implementation against its formal specification. 

Although our approach provides certain benefits over existing techniques, it is in 
no way a verification “silver bullet”. As with any formal verification technique, it re-
quires the use of formal languages, various analytic tools including a theorem-proving 
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system, and considerable skill on the part of the developer. One specific additional re-
sponsibility placed on the developer is to annotate the source code with pre- and post-
condition documentation. Although the various elements we have incorporated are not 
often part of current practice, our approach can be conducted in a production setting 
with comparable resources to those used now but with substantially higher assurance. 
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