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ABSTRACT

Disk storage continues to be an important medium for data record-
ing in software engineering, and recovering data from a failed
storage disk can be expensive and time-consuming. Unfortunately,
while physical damage instances are well documented, existing
studies of data loss are limited, often only predicting times between
failures. We present an empirical measurement of patterns of heat
damage on indicative, low-cost commodity hard drives. Because
damaged hard drives require many hours to read, we propose an
efficient, accurate sampling algorithm. Using our empirical mea-
surements, we develop LOGI, a formal mathematical model that, on
average, predicts sector damage with precision, recall, F-measure,
and accuracy values of over 0.95. We also present a case study
on the usage of LOGI and discuss its implications for file carver
software. We hope that this model is used by other researchers
to simulate damage and bootstrap further study of disk failures,
helping engineers make informed decisions about data storage for
software systems.

CCS CONCEPTS

• Computing methodologies→Model development and anal-

ysis; • Hardware→ Fault models and test metrics.
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1 INTRODUCTION

With the rise of data centers and big data in software engineering,
there is increasing demand from industries to store and manage
information. It has been predicted that the amount of data will
grow over five times between 2018 and 2025 and that over 80% of
enterprise bytes will continue to be stored on hard drives [36].

However, as the bit-density of the hard drives increases, hard
drives become more vulnerable [3, 33] as even a simple failure may
lead to severe data loss which may have negative impacts on com-
pany revenue, productivity, or reputation. Additionally, other sec-
tors of the economy, such as aviation and autonomous transporta-
tion, store telemetry that is used in the event of accidents [2, 27].
These data recorders can be exposed to extreme physical forces
(e.g., physical shock and heat), making recovery of critical data chal-
lenging [10, 29]. For example, recovery of such data is considered
so critical and challenging that a working group was convened by
the French civil aviation accident investigation agency to study
alternate methods for collecting and recovering flight data [6]. Ul-
timately, understanding hard drive failures and the factors that
influence recovery is essential for providing reliable data storage in
software engineering. Such knowledge would lay the groundwork
for developing data loss prevention- and mitigation-strategies.

Previous work studied the failure trends of hard drives either
by monitoring their field behavior or by analyzing self-monitoring,
analysis, and reporting technology (SMART) data post factum.
SMART is an industry-standard technology embedded in most
modern drives that records internal parameters such as read/write
error rate and temperature periodically during the operation. These
studies reported that heat is one of the leading environmental fac-
tors that impact hard drive failure. Overheating is among key failure
sources at data centers [34], and has caused outages and brought
down services of big tech companies, including Microsoft’s Cloud
service [24], Amazon AWS [26], and Wikipedia [25]. A 2016 survey
of 63 data centers reported that the cost of a service downtime
would be more than $540,000 per hour, a significant 38% increase
over 2010 [16]. While previous studies model mean time to failure
(MTTF), there is a current lack in direct studies—and modeling—of
the particular pattern of data loss resulting from a failure. This is
relevant because where to store data on a disk, and thus how to
mitigate loss from failures, can be a software decision.

There have also been research and engineering efforts to de-
velop effective data recovery tools [1, 12, 32], often referred to
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as file carvers, which often reconstruct stored files by examining
software or file system data structures [7] or searching the drive
for magic numbers [37]. Existing analyses and comparisons of file
carvers often assume undamaged drives; most benchmarks involve
no damage, and an ideal carver could (theoretically) recover all files.
Unfortunately, these benchmarks are not indicative of real-world
use cases in which drives have been damaged.

In this work, we address limitations in previous studies of both
drive damage as well as file carver performance. First, we design a
protocol for—and conduct a series of—controlled experiments to sys-
tematically damage hard drives by deliberately overheating them.
We apply this protocol to 40 OEM disk drives to collect real-world
damage patterns. Second, to measure the extent of the damage, we
develop a hierarchical sampling algorithm to read the damaged
drives and record the damage status at the granularity of the sector
level. Modern drives take significantly longer to respond to read
requests of damaged areas, even when low-level access methods
are used. Where conventional recording methodology would take
over a year for an exhaustive assessment, our approach is tun-
able, trading off fidelity with recovery time to produce accurate
approximations of drive damage in 48 hours or less.

Third, using our empirical measurements, we develop LOGI,1 a
formal model that captures the context and extent of heat damage.
We use an n-gram model to leverage the spatial locality of dam-
aged sectors. LOGI allows researchers and practitioners to apply
indicative damage to data, simulating varying levels of heat-related
damage. Our model provides a framework for bootstrapping further
studies without the need to induce damage directly on disks under
test. Further, our methodologies may be extended to capture other
failure modes, such as electronic or physical shock.

We demonstrate one example use case for LOGI by conducting
an evaluation of open-source file carvers. We present a partial
replication of a previous study while also injecting realistic faults
at the sector level. Also, we evaluate the performance of these file
carvers across several commodity file systems. In total, we test 9 file
system configurations with 6 data sets and 75 generated damage
patterns, clarifying the nuanced relationship between data recovery
throughput and accuracy as well as software file system type.

For example, we find higher file carver throughput for the sim-
pler FAT32 compared to other file systems (𝑝 < 0.05). Our results
also show lower performance for file carvers that are highly con-
figurable, emphasizing that current-generation tools are highly
context-dependent. Furthermore, our results show the negative
impact of heat-induced damage on file carver performance as the
damage intensity increases.

The contributions of this paper are as follows:
• We develop a formal protocol for controlled experiments
to systematically damage drives with heat. We apply this
protocol to 40 drives to form the basis for our modeling and
analyses. We make the raw measured disk image data from
controlled heating experiments available for further analysis
and replication.
• We propose a sampling-based algorithm to record sector-
level damage. Our approach trades off fidelity with runtime

1In Norse mythology, Logi is a fire giant.

to produce close approximations of damaged sectors and is
two orders of magnitude faster than direct-read approaches.
• We introduce LOGI, an empirically backed formal model of
heat damage for hard drives, achieving precision, recall, F-
measure, and accuracy values over 0.95. LOGI can be used by
researchers to simulate drive damage to support additional
studies of data loss and recovery.We include a study of off the
shelf file carvers, including software that uses higher-level
semantic information (e.g., for image storage).
• As one application of our model, we present a case study
of popular commodity file systems to compare file recover-
ability using open source file carvers. We find statistically
significant results relating certain aspects of file system com-
plexity to recovery performance.

2 BACKGROUND AND RELATEDWORK

In this section, we present background on disk failures, our model-
ing approach, file systems, and file recovery techniques. We also
position our work in the context of related efforts from each of
these domains.

2.1 Hard Drive Failure Analysis

Previous studies, mainly performed by drive manufacturers, in-
vestigate the electromechanical characteristics of hard drives and
discuss how several environmental factors and usage activities can
impact the device [8, 30, 47]. Temperature, power-on-hours, and
duty cycle were found to be the main parameters that affect the
failure rate of the drives [8, 47].

A set of user studies provided a detailed error analysis of failure
rates by monitoring a broad set of hard drives for a period of time.
Elerath et al. analyzed a large pool of enterprise hard drives [11,
39, 40]. They reported that a variety of factors, including the drive
model and environmental elements, have a significant impact on
drive reliability.

Further, previous studies have shed some light on the failure
behavior of hard drives by mining and analyzing SMART signals.
Pitakrat et al. compared the performance of 21 machine learning
algorithms on hard drive failure detection and found that some
SMART signals are strongly correlated with higher failure probabil-
ities [31]. Conversely, studying a large deployment of hard drives,
Pinheiro et al. found that that, despite having some recorded strong
correlations, a large fraction of failed drives showed no SMART
error failure [30].

Our work complements these previous efforts: we develop a
sector-level model of failures to predict data loss due to environ-
mental factors (overheating in particular). Our model does not rely
on SMART signals and does not predict times between failures, but
instead is derived from controlled experimentation on a population
of drives. Our work focuses on results that are actionable at the
software level (e.g., informing how to lay out or recover data) rather
than at the hardware level.

2.2 N-Gram Models

In machine learning, an n-gram model is a probabilistic model
that predicts the most likely item that might follow in a sequence.
Initially proposed for natural language processing [5], n-grams are
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now widely used for many applications [9, 19, 46]. As a type of
probabilistic language model, an n-gram model predicts the next
item the sequence of tokens (e.g., letters or bits) based on the pattern
of the previous tokens. Further, n-grammodels are generative. While
many models produce classifiers, which are able to label previously-
unseen data with a category or value consistent with the labels of a
training set, an n-gram model can produce new, artificial data. This
generated data mimics training input, creating a sequence based
on the observed patterns of the extracted 𝑛 − 1 sequences.

N-gram models are particularly well-suited for problems where
the possible outputs are not extremely diverse. Due to its extreme
sparsity, an n-gram model can only generate the exact seen in-
stances or interpret unseen instances with respect to learned train-
ing data [15]. Our experiments in Section 3 demonstrate that heat-
induced failure patterns in disks have high spatial locality. Also,
while the failure patterns are quite long, they consist of a limited,
not-diverse set of macro-patterns that inspire us to develop LOGI,
a generative n-gram model to produce synthetic damage patterns.
With LOGI, researchers can study the impact of sector-level dam-
age due to overheating without the need for inducing or collecting
physical damage, reducing the overall burden and cost for many
larger-scale experiments.

2.3 File Systems Error Injection and Robustness

Analysis

There is a body of research using fault injection to study both ro-
bustness to failure and error-handling mechanisms of commodity
file systems [17, 33, 43]. Prabhakaran et al. analyzed how file sys-
tems handle various drive failure modes and proposed the IRON
file system, which implements new policies to handle hardware
failures [33]. Shehbaz et al. performed a similar analysis on Solid-
state drives [17]. Moreover, a handful of studies focus on errors in
the read and write operation and analyze the crash resiliency and
performance of commodity file systems with respect to these types
of errors [14, 28, 44].

Our work extends these finding orthogonally by specifically
studying how file system recovery handles errors due to overheat-
ing. Since such errors are neither transient nor fully random, our
model allows us to study the resilience of common commodity file
systems and compare their recoverability across low, medium, and
high damage patterns.

2.4 File Carvers

In software engineering and data forensics, file carvers are programs
used to recover data from drives [45]. These software tools can be
used by forensic experts to retrieve information for government
inquiries or by engineers or consumers to recover deleted files.
Carvers reconstruct data from drives using a variety of heuristics,
which ultimately reduces to scanning a drive for bit sequences
marking the start and end of relevant data and then “carving” the
data between these points.

File carvers generally fall into one of two categories: those that re-
cover entire files [37, 41] and those that attempt to discover snippets
of data (e.g., credit card numbers) [13]. In this paper, we focus on
the former class of carvers to compare with—and build upon—prior
work [21, 22]; we leave the latter category for future work. This

prior work investigated the quality and gaps of file carvers, identi-
fying precision, recall, F-measure, and throughput as key metrics.
To admit direct comparisons, we also evaluate on the the available
dfft and dfrws benchmarks from these experiments (cf. [22]).

This work extends previous findings by replicating experiments
on more file system formats and a larger corpus of benchmarks.
Our proposed model allows us to generate synthetic heat damage,
supporting the generation large populations of damaged drive data.
Further, we reveal challenges with recovering data from damage
drives and expose new opportunities for carver development and
innovation.

3 EMPIRICAL MEASUREMENT OF HEAT

DAMAGE

In this section, we present the design, execution, and data collection
for our controlled heat damage experiments. We heat each drive
using a precision-controlled oven. Then, we design a sampling-
based algorithm to record the sectors damaged by the heat. We use
the results of these experiments to develop LOGI, our generative
model of heat damage, in Section 4.2.

3.1 Heating Procedure

We used 40 commodity hard drives from a popular manufacturer, 18
of which had 160 GB capacity and 22 with 320 GB capacity. Prior to
heating each drive, we collected a baseline recording for each drive
by writing an alternating bit pattern to the disk and re-reading data
to verify that the returned pattern matched our written value. We
noted any sectors with extant failures (i.e., possibly from age and/or
manufacturing defects, but unrelated to our controlled experiments)
and exclude these locations from our subsequent analysis. Overall
only 10 of the 40 drives had pre-existing damage, and each such
case was limited to 0.46% of sectors.

Disk drives are sophisticated electromechanical devices that can
exhibit many different failure modes. We are particularly interested
in failures that manifest at the block or sector level (i.e., failures
in which the drive is still accessible but some data is unreadable).
To reduce the likelihood of other failure modes, we remove the
disk controller circuitry prior to heating. Thus, we explicitly study
heat damage to the mechanical and magnetic components of a hard
drive. We leave study of heat damage to the control circuitry for
future work.

We conducted all experiments using a Lindberg & Blue M. Grav-
ity Oven, with a temperature range of 40–260°C. This oven has a
uniformity of ⩽ ±3% and a temperature fluctuation of ⩽ ±1°C, thus
allowing for very precise control over the ambient temperature. We
waited for the oven to preheat to the set temperature, then shut
the drives inside the oven for exactly seven hours to ensure that
the entire hard drive reached a uniform temperature. We allowed
the hard drives to cool overnight once removed from the oven, so
drive internals were not still hot while testing for—and recording—
damaged sectors. Prior to recording, we replaced the controllers,
taking care that each drive received its original controller.2

During preliminary testing of our experimental protocol, we dis-
covered high variance in the effect of heating on drives. That is, for

2Many manufactures include device-specific ROM on the controller, and thus there is
a one-to-one mapping between controller and disk.
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Algorithm 1 Hierarchical Sampling. This divide and conquer algorithm dis-
tributes data probes across a drive to avoid collocated bad sectors and enable early
termination with indicative results. The procedure is breadth-first: each subsequent
pass over the drive collects finer-grained data about the location of bad sectors. The
key configuration parameter is the partitioning factor in partition_chunk().

1: procedure Hierarchically_Sample(𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑)
2: queue 𝑐ℎ𝑢𝑛𝑘𝑠 ← create_chunks(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)
3: while 𝑐ℎ𝑢𝑛𝑘𝑠 is not empty do

4: 𝑐ℎ𝑢𝑛𝑘 ← dequeue 𝑐ℎ𝑢𝑛𝑘𝑠
5: for 𝑠𝑒𝑐𝑡𝑜𝑟 ∈ 𝑐ℎ𝑢𝑛𝑘 do

6: if 𝑠𝑦𝑠𝑐𝑎𝑙𝑙_𝑟𝑒𝑎𝑑 (𝑠𝑒𝑐𝑡𝑜𝑟 ) is good then

7: report 𝑠𝑒𝑐𝑡𝑜𝑟 is good
8: else

9: report 𝑠𝑒𝑐𝑡𝑜𝑟 is bad
10: for 𝑠𝑢𝑏𝑐ℎ𝑢𝑛𝑘 ∈ partition_chunk(𝑐ℎ𝑢𝑛𝑘) do
11: 𝑐ℎ𝑢𝑛𝑘𝑠 ← enqueue 𝑠𝑢𝑏𝑐ℎ𝑢𝑛𝑘
12: end for

13: end if

14: end for

15: end while

16: end procedure

the same duration exposure to the same temperature, some drives
would experience total failure while others received only minor
damage. Since we are interested in modeling software-actionable
damage (e.g., drives with no damage do not need special recovery
or file carvers, and drives that are entirely inoperable do not admit
commodity tools), we developed a procedure with repeated expo-
sure to maximize the number of non-trivial data points produced
by our experiment. In the context of this experiment, we consider
a result to be trivial if (1) there is less than 10% new damage on the
drive, or (2) the drive no longer responds to the system. We initially
exposed each drive to 168°C, following the described procedure.
Then, we repeated the procedure while increasing the temperature
in 3°C increments. From our population of 40 hard drives, we were
able to successfully capture 15 different, non-trivial damage pat-
terns, each corresponding to a single iteration of our experimental
procedure. Temperature exposure for our data points ranged from
165°C to 186°C.

3.2 Recording Algorithm

Attempting to read a failed sector on a drive takes orders of mag-
nitude longer than a functioning sector (e.g., [35]). Our testing
indicates that this time is dictated by both the drive firmware and
OS configuration. In our experiments, lower-level utilities (e.g., dd,
ddrestore, etc.) and approaches (e.g., ioctl, low-level interfaces,
special timeouts) still suffered from long read times on bad sec-
tors or failed to read recovered data. While there is variance in
bad sector read times, for an indicative drive in our experiments,
reading a bad sector induced eight seconds of latency before a
subsequent probe could be made. For a 160 GB drive, which has ap-
proximately 312,581,808 sectors, exhaustively assessing non-trivial
damage could require months. Note that while special hardware
could potentially mitigate such latencies, we focus on a commodity
use case applicable to software engineering scenarios.

To gather data in a reasonable time frame, we devise a tunable
divide and conquer algorithm to sample a disk drive and approxi-
mate heat damage within a user-provided time budget. We refer to
our approach as hierarchical sampling and outline it in Algorithm 1.

At a high level, Algorithm 1 breaks the logical block address space
of a disk into chunks. The algorithm scans each chunk sequentially
until a bad sector is found. Upon finding a bad sector, the algorithm
recursively breaks up the address space into smaller chunks. Pro-
cessing of these chunks is performed in a breadth-first manner:
coarser-grained chunks are processed before subchunks.

Inherent in the formulation of our hierarchical sampling is the
assumption that bad sectors exhibit spatial locality. We base this as-
sumption on evidence collected during initial testing, during which
we frequently found collocated bad sectors from heat damage. Our
chunk-based sampling approach allows the algorithm to jump over
bad contiguous segments of the disk. As the algorithm proceeds,
it iteratively refines the locations of bad sectors, increasing the
fidelity of the recorded damage pattern with each pass.

Given infinite time, our proposed algorithm is isomorphic to a
naive reading of all sectors. However, our sector probing strategy
enables a tradeoff between time and fidelity. By setting a shorter
timeout, the algorithm terminates before probing all sectors, but
still produces a partial mapping of bad sectors from which a full
approximate mapping can be interpolated later. In our experiment,
we used a 48 hour budget, considering the use case of a company
conducting a software-based drive recovery over a weekend.

The quality of the damage mask produced by our hierarchi-
cal sampling algorithm is affected both by the chunk partitioning
scheme and also by how unscanned portions of the disk are interpo-
lated. To distribute probes across a drive, our hierarchical sampling
algorithm subdivides a disk into contiguous chunks. When a bad
sector is discovered, the algorithm further subdivides the remainder
of the chunk. We evaluated multiple partitioning configurations
using synthetic damage patterns and compared them against a
baseline of random probing. Our highest-performing scheme first
divided the logical block address (LBA) space into 1024 chunks
at the top-level, then broke each into 512 subdivisions at the sec-
ond level, and so on. Since the recording algorithm samples sectors
within a time budget, some sectors may not be probed. Based on our
observed spatial locality of damaged sectors and to simplify model
training and file system investigation, we use a nearest-neighbor
interpolation scheme to assign sectors a damage value. We note
that our initial hierarchical sampling is sound but incomplete (i.e.,
while correctly reporting those that it probes, it does not probe all
sectors); any approximation in our overall recording approach is
introduced by the interpolation step.

4 LOGI: A GENERATIVE MODEL OF HEAT

DAMAGE

In this section, we first provide the quantitative and qualitative de-
scription of the recorded heat damage collected using the procedure
described in Section 3.1. Using this data, we develop LOGI, a genera-
tive model of heat-based disk damage. Because of the spatial locality
of the heat damage, we argue that an n-gram model is appropriate
to capture the context (Section 4.1). Next, we present our n-gram
model, its characteristics, and evaluation (Section 4.2). Finally, we
assess the threat of over-fitting via 10-fold cross-validation and as-
sess the completeness and suitability of our training data set using
a perturbation analysis (Section 4.3).
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4.1 Damage Characteristics

In this subsection, we analyze the distribution of damaged sectors
and investigate the hypothesis that the distribution is positionally
symmetric across the drive.

To better understand the distribution of the damaged sectors
and find a suitable model, we consider summary statistics. For each
recorded drive, we split the data in half and compare the percentage
of the damaged sectors in the first and second halves of the drive.
The difference between the number of damaged sectors in the first
half compared to the second half of the drives is not significant
(Wilcox test:𝑊 = 40, 𝑝 = .25). On average, 47% of damaged sectors
are located in the first half, while the rest are located in the second.
We also categorized recorded samples into four quarterlies based on
the intensity of the damage, and found that the damage distribution
is fairly symmetrical across the drive.

In addition to a quantitative, statistical test of the distribution
of damaged sectors across the drive, we also present a qualitative
explanation to show that the distribution is independent of sector
positions. Figure 1 displays concrete damage distributions of an ex-
ample drive from each quartile. Each image shows adjacent sectors
from bottom to top (then left to right) in increasing memory ad-
dresses. That is, the y-axis encodes the minor, low-order bits of the
address, while the x-axis encodes the major, high-order bits. Low
memory addresses are on the left, and the addresses span 16k per
column as we move to the right. Each pixel in the image represents
a sector in the drive. Damaged sectors are shown in purple while
the healthy ones are yellow. Every full vertical line in the image
represents adjacent memory addresses starting from 𝑛 to 𝑛+16, 000.
The myriad set of rectangular purple segments demonstrates the
notable amount of spatial locality. This finding is also aligned with
the work of Bairavasundaram et al. on silent data corruption in
disk drives [4]: based on 400,000 instances of checksummismatches
over a 41-month period, they reported high spatial locality due to
consecutive disk sectors developing corruption.

This observation of spatial locality encourages us to look for
a model that leverages the history (the context) of the damaged
sectors by looking at the status of their neighbors. In the following
subsection, we propose such a model, constructed from n-grams to
capture the context between adjacent sectors.

4.2 N-gram Model of Heat Damage

In this subsection, we propose LOGI, a generative, n-grammodel for
producing synthetic damage patterns with spatial locality. LOGI em-
beds the recorded raw data into linear, numeric vectors to capture
the locality of the heat damage. Further, LOGI is computationally
inexpensive and predicts the state of a sector (i.e., damaged or
healthy) based on its adjacent sectors. Our n-gram model provides
the probability of a sector state based on the state of 𝑛 − 1 previous
sectors. We formally present our n-gram model, detail parameter
tuning, and explain its characteristics.

4.2.1 Formal Representation. To present data in terms of n-grams,
each recorded data item (i.e., each recording of a damaged drive),
𝑥 , is represented as a binary string of damaged (0) and healthy (1)
sectors. By considering all windows of 𝑛 sectors over each data item
𝑥 , we extract all substrings of length 𝑛. These substrings (n-grams)
are used to build a map to a high-dimensional vector space, where

Table 1: Pilot experiment to choose model order (n) based on

accuracy and F-measure. Random guessing is regarded as the

baseline. The value selected for our experiments is bolded.

Accuracy Precision Recall F-measure

Random 0.498 0.517 0.496 0.445
n = 2 0.895 0.895 0.895 0.895
n = 3 0.998 0.990 0.992 0.991
n = 4 0.988 0.989 0.989 0.997
n = 5 0.999 0.999 0.999 0.999

n = 7 0.997 0.988 0.989 0.989
n = 10 0.997 0.987 0.989 0.988

Table 2: The number of times that a given 5-gram appear

in the training set. [1,1,1,1,1] and [0,0,0,0,0] are the most

frequent 5-gram patterns.

Bit pattern

Number of occurrences

Zero (0) One (1)

[1,1,1,1] 53,278 3,546,993,106
[1,1,1,0] 53,279 0
[1,1,0,0] 53,279 0
[1,0,1,1] 0 1
[1,0,0,0] 53,279 2
[0,1,1,1] 1 53,271
[0,1,0,1] 0 1
[0,1,0,0] 1 0
[0,0,1,1] 0 53,271
[0,0,1,0] 1 1
[0,0,0,1] 3 53,271
[0,0,0,0] 3,639,695,709 53,272

each dimension is associated with the occurrences of one n-gram.
Formally, this map Ø is constructed by the set 𝑆 of all possible
n-grams as:

Ø : 𝑥 → (Ø𝑠 (𝑥))𝑠∈𝑆 with Ø𝑠 (𝑥) = fr (𝑠, 𝑥)

where the frequency function, fr (𝑠, 𝑥), returns the probability for
the occurrences of the n-gram 𝑠 in data 𝑥 .

4.2.2 Parameter Tuning. We tune performance by adjusting the
order of the model: the value of “n”. Because higher orders offer
diminishing accuracy benefits and also increase computation and
concerns of overfitting, we consider values 2, 3, 4, 5, 7, and 10.
To choose the order for our modeling, we follow the 90/10 rule
and divide the recorded data into a training set and a testing set,
obtaining the results shown in Table 1. There are small performance
gains when moving from order 2 to 5, but growth reverses from
order 5 to order 10. We select the most performant configuration,
n= 5. However, our results show that our model is not particularly
sensitive to order and that any value greater that 2 could be used.
Overall, we achieve a very high accuracy and F-measure.

4.2.3 Characteristics. We generate a 5-gram model to characterize
heat-induced damage patterns, which is presented in Table 2. Out
of 16 possible binary patterns, our empirical training set contains
12. The most dominant patterns are “[1, 1, 1, 1] followed by 1” and
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(a) Quartile 1 (1–25%) (b) Quartile 2 (25–50%) (c) Quartile 3 (50–75%) (d) Quartile 4 (75–100%)

Figure 1: Examples of damage patterns, one from each damage quartile. The x- and y- axes encode a sector’s major and minor

address, respectively. Yellow pixels are functioning sectors; purple pixels are unreadable. Large bands of purple indicate

significant spatial locality in our recorded drive samples.

“[0, 0, 0, 0] followed by 0” which demonstrate the sequential locality
of the damaged sectors. We also observe that the recorded pat-
terns are not diverse. For example, patterns [1, 0, 1, 1], [0, 1, 0, 1], or
[0, 1, 0, 0] occurred only once.

We use this information to generate synthetic patterns of dam-
age that closely conform to our empirical observations. We embed
this model in LOGI to generate a sequence of values (i.e., a synthetic
pattern of disk damage) where each value corresponds to a single
sector (i.e., encoding whether it is damaged or not). Starting with an
initial sequence of 5, LOGI generates the next sector’s status, using
the model to estimate the likelihood of the next sector being dam-
aged. More precisely, given a history of 4 previous sectors, LOGI
approximates the probability of the next one being damaged by
choosing a random number weighted by the modeled proportions.
Looking at the four previous sectors in the example, we observe
that the probability of a damaged sector occurring after the pattern
[1, 1, 0, 0] is 100%. We select 1 (damaged) and continue with the
next sequence of size four and moving forward. For round three (m
= 3), the probability of a health sector occurring after the pattern
[0, 0, 0, 0] is significantly low, but not zero. In such cases, the gener-
ative model flips a biased coin. We continue generating sectors in
this fashion until we create a list of the size of the target device.

While our model generally predicts damaged sectors from a con-
text of previous damaged sectors (and undamaged sectors from
undamaged contexts), unlikely predicted deviations are possible.
Since even our smaller 160 GB drives involve over 300 million sec-
tors (Section 3.2), the interplay between long arrays of predictions
and high probabilities of local similarity generates synthetic data
closely conforming to the patterns seen in the measured drives.

4.3 Suitability Criteria

To check for overfitting, we perform a 10-fold cross-validation anal-
ysis. Our model achieves an average performance of 0.957, 0.957,
0.958, and 0.974 in terms of precision, recall, F-measure, and accu-
racy, respectively. Our 10-fold cross-validation for all ten groups in
terms of accuracy reveals high agreement between folds (groups),
giving confidence that the performance of the model is not due to
overfitting.

We also look at perturbation to characterize the expected com-
pleteness of the training data. Per Wressnegger et al., perturbation

is “the expected ratio of n-grams in a benign data set that are not
part of the training data” [46]. A value of 0 means that we have
observed all possible n-grams of the data set in the training phase.
A high value indicates that despite training, a large number of un-
seen n-grams occur during testing. That is, a high perturbation
value means the model must often generate the next value from a
previously unseen sequence. Low perturbation limits the number of
false positives produced by unknown n-grams in testing data [46].
Our data set quickly approaches zero perturbation indicating that
our training set is sufficiently large, and we do not require more
data or training.

4.4 LOGI Usage

LOGI allows for the generation of synthetic damage patterns indica-
tive of heat damage to a disk. The damage map produced by LOGI
can be composed with actual sector data to produce data that has
been artificially damaged by heat. Because our model is generative,
we support variable drive sizes; test images need not be the same
size as our sample drives. Thus, our model enables a wide variety
of studies without the need for physically damaging a drive.

In addition to a model trained on all of our recorded drive sam-
ples, we also produced configurations of LOGI for low (less than
25% damaged sectors), mid-level (25%–75% damaged sectors), and
high (more than 75% damaged sectors) damage. Each of these mod-
els can be used to artificially increase damage the same data (e.g.,
to study file recovery performance as a function of the degree of
damage).

5 FILE SYSTEM AND RECOVERY EVALUATION

In this section, we demonstrate a case study on the usage of LOGI,
our formal model, to generate damage patterns. First, we present
a partial replication of previous studies on the performance of file
carvers. Second, we evaluate the impact of heat damage on file
recovery for various commodity file systems.

5.1 Experimental Setup

File Carver Selection. We choose three file carvers for this study:
Scalpel [37], Foremost [41], and Photorec [7]. All have been studied
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in prior work (e.g., [22]) and have wide file type support. For avail-
ability and replication, we restrict our attention to open-source file
carver software.

Data Set Benchmark Selection. We use a total of six data sets
to evaluate the performance of file-systems and file carvers: cfd,
dfft, dfrws, drupal, open_images, and wiki. We include the Chicago
Face Database (cfd) [23] to provide a larger data set with real-world
applications. Two data sets, dftt and dfrws, are taken from prior
work and are indicative of “challenge” benchmarks in the data
forensics community [22]. Our drupal benchmark is a snapshot of
a professional organization’s webserver, which uses the popular
content management system3 to serve files. Further, we include
the open_images benchmark, which is a random 5GB subset of
a large, indicative machine learning training data set. Finally, we
constructed a benchmark from Wikimedia using a snapshot of
uploaded files from March 2013.

These data sets contain a variety of file types commonly stored
to disk and are indicative of the types of files that would need
to be recovered in the event of disk failure. All files are either
documents, images, multimedia, or compressed archives. Our data
sets do contain some file types that are unsupported (e.g., PPT,
WMV, and TXT files) by our file carvers. In addition, the drupal and
wiki data sets include a set of web resource and asset files (e.g., CSS,
TTF, and ASP) that none of our file carvers directly support. As a
result, we believe these benchmarks are more indicative of general
software engineering use cases than are previous forensics-focused
benchmarks.

File System Selection. We consider four file systems: BTRFS, Ext4,
FAT32, and NTFS. BTRFS is a modern, copy-on-write file system
initially designed by Oracle for use in Linux [38]. The Ext4 file
system is particularly common for Linux systems, and we consider
multiple configurations to understand the impact of journaling
and metadata overhead on file recovery. While FAT32 is quite old,
FAT-based systems remain relevant due to their use in UEFI-based
booting [42, Section 13.3] and embedded systems. Finally, NTFS is
widely used in Microsoft ecosystems.

Damage Pattern Generation. We use LOGI to generate damage
patterns for our data sets. For each data set benchmark and file
system format, we generate 250 new disk images that are artificially
damaged according to a pattern produced by our formal mathemat-
ical model. To generate these images, we seed LOGI with a random
damage pattern of 10 sectors.

To study the effects of file carver selection as a function of the
amount of damage present, we also use three additional configura-
tions of LOGI as described in Section 4.4 to generate three specific
damage patterns: low damage, mid-level damage, and high damage.

Performance Measurement. We use known metrics from previous
work [21, 22] to measure file carver performance. Recall, Precision,
and F-measure evaluate correct recovery of files. Prior work distin-
guishes between carving and supported recall; we measure carving
recall, which is the fraction of files recovered in a benchmark. Fi-
nally, we use processing speed (or throughput) to evaluate the speed

3https://drupal.org

Table 3: File carving performance scores for all data sets.

Photorec has the best overall performance.

Data Set Recall Precision F-measure

Throughput

(MB/s)

Fo
re
m
os
t

All 0.31 0.79 0.39 23.7
dfft 0.29 0.72 0.32 2.9
dfrws 0.21 0.54 0.25 10.5
cfd 0.51 0.94 0.61 26.1
drupal 0.09 0.85 0.16 29.9
wiki 0.24 0.70 0.33 37.2
open_img 0.52 0.99 0.63 35.3

Ph
ot
or
ec

All 0.42 0.73 0.47 31.5
dfft 0.41 0.77 0.43 33.5
dfrws 0.40 0.79 0.73 50.4
cfd 0.50 0.51 0.46 23.7
drupal 0.26 0.63 0.34 42.9
wiki 0.41 0.65 0.46 20.3
open_img 0.52 1.00 0.63 18.8

Sc
al
pe
l

All 0.18 0.34 0.19 24.1
dfft 0.13 0.51 0.11 2.9
dfrws 0.20 0.20 0.15 12.0
cfd 0.04 0.03 0.03 46.2
drupal 0.03 0.14 0.05 8.9
wiki 0.15 0.16 0.14 5.3
open_img 0.52 0.98 0.63 69.4

of data recovery. Throughput, measuring total MB transferred per
second, is an indicator of how quickly a drive is processed.

5.2 File Carver Impact on File Recovery

First, we partially replicate the results of a previous study of file
carver performance [22] using our larger suite of data sets. Then,
we study the performance impact of introducing sector failures
produced by LOGI.

Operators typically desire file carvers that (a) recover the most
possible files, (b) do so quickly, and (c) include as few false positives
as possible. We evaluate file carvers along these dimensions and
present the results in Table 3.

File Carver File Recovery. Photorec achieves the highest overall file
recovery performance compared to Foremost and Scalpel. Photorec
makes use of heuristics to automatically detect relevant data files
while Foremost and Scalpel use pre-configured sets of supported
file types. Two of our data sets (wiki and drupal) include types of
files that are not supported by Foremost or Scalpel. In agreement
with the previous work [22], the lowest performance is observed
from tools that require expert configuration (Foremost and Scalpel).

File Carver Speed. Photorec yields the overall highest throughput
on our benchmarks. Further, our data set allows us to study the
performance impact of increasing the number of file types to be
recovered. For signature-based carvers (see Section 2.4), the number
of file types can have a large impact. Conceptually, the carver
must consider all possible signatures for each file type per chunk
of data. Increasing the number of file types increases number of
comparisons per chunk of data, resulting in lower throughput. For

https://drupal.org
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Figure 2: Comparison of file carver F-measures for various

damage models.

example, Scalpel shows the highest throughput of all carvers (70
MB/s) when only one file signature is present, but shows the lowest
throughput (3 MB/s) when more than five signatures are in play.
These results are in agreement with previous findings that file
carver heuristics can have significant performance implications.

File Carvers and Damage. Finally, we consider the impact of dam-
age rates on file carver performance. To the best of our knowledge,
this has not been studied previously. Figure 2 plots the F-measure
of each file carver as the amount of damage varies from none to
high. While Photorec and Scalpel are resistent to small amounts of
damage, their performance plummets at moderate damage levels.
By contrast, Foremost shows a sharp degradation for even small
amounts of damage, but has similar performance for low and mid
damage models.

All three carvers showed low absolute performance for high
damage models. Recall that our high damage model was trained
from real-world drives with sector damage rates higher than 75%.
Informally, if only 25% of the information is available, we expect
tool performance to drop by at least 75%. While this simplification
abstracts a number of important details (e.g., filesystem metadata),
Photorec and Foremost generally follow this pattern. For example,
Photorec’s normalized F-measure drops by 80% from no to high
damage while Foremost’s drops by 85%. By contrast, Scalpel’s per-
formance degrades more dramatically.

While we are wary of generalizing from a handful of tools, these
results do suggest that there are relevant tradeoffs in file carver
heuristics. In our experiments, Photorec was particularly resilient
to low levels of damage while the Foremost tool treated low- to
mid-levels of damage almost identically.

5.3 File System Impact on File Recovery

We investigate the effect of file system choice on file recovery.

File Systems and Recovery Performance. When all of our file
benchmarks (e.g., images, websites, etc.) are considered and av-
eraged, our results show no significant differences between file
systems with respect to file carver performance. Table 4 shows the
details.

However, FAT32 outperforms other file systems with regard to
throughput. For two (dfrws and open_images) out of six data sets,
we find that FAT32 admits faster recovery in a statistically signifi-
cant manner, as shown in Table 5.

Damage Severity and Recovery Performance. We also investigate
how the severity of the heat damage impacts the file recovery
performance and rates. We considered the high and low damage
models (i.e., trained from drives with greater than 75% damage and

Table 4: Summary of the file carvers performance score, av-

eraged for all data sets to compare various file systems.

BTRFS Ext4 FAT32 NTFS

Recall 0.3 0.3 0.1 0.3
Precision 0.6 0.6 0.6 0.6
F-measure 0.3 0.4 0.4 0.4
Throughput (MB/s) 26.6 25.4 30.0 26.5

Table 5: Throughput (MB/s) of file systems per data sets. The

Non-parametric Wilcox test (𝛼 = .05) was used to compare

FAT32 with other file system pair-wise. Significant results

(< 0.05 for FAT32 vs. BTRFS) are bolded.

BTRFS Ext4 FAT32 NTFS p-value

dfft 17.58 8.29 17.42 14.74 > 0.05
dfrws 23.31 17.72 25.05 26.67 < 0.05

cfd 29.90 33.68 32.43 32.80 > 0.05
drupal 29.06 24.97 32.86 20.49 > 0.05
wiki 20.61 22.09 25.08 19.17 > 0.05
open_img 35.82 42.17 46.81 40.58 < 0.05

less than 25% damage, respectively). First, we found no significant
differences between file carver throughput as a function of file
system with respect to damage amount. That is, no file system
supported particularly faster or slower recovery for higher levels
of damage.

In addition, we found no significant differences between file
carver recovery (i.e., precision, recall or F-measure) as a function
of file system with respect to damage amount. That is, for example,
no file system emerged as a clear champion for recovering data
particularly from high levels of damage.

File System Design Decisions. We also consider the hypothesis
that modern file system software techniques, such as journaling
and metadata frequency, might interact with file carvers (e.g., be-
cause the carvers may look for signatures that may not stored
contiguously given such file system design decisions).

We investigate the impact of journaling (which can be present
or not) and amount of file system metadata overhead (either high
metadata, 2048 bytes per 512 byte inode, or low metadata, 8192
bytes per 128 byte inode) on recovery for Ext4. The results are
shown in Table 6. While neither journaling nor metadata alone has
a statistically significant effect, a generalized linear model reveals
an interaction between journaling and metadata. This significant
interaction is present for both the F-measure of files recovered
(𝑝 < 0.001, t-value 10.989) and also for throughput rate (𝑝 < 0.001,
t-value 13.273). While the magnitude of the effect is small, the
interaction is strongly significant.

This preliminary results calls for further experiments and evalu-
ation on the impacts of such factors. For example, if the particular
combination of high metadata overhead and journaling means that
1–2% fewer files can be recovered, on average, but that disadvan-
tage can be mitigated by either removing journaling or reducing
metadata rates, administrators may use such information to guide
deployment decisions or storage software design decisions.
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Table 6: Comparison of the performance scores for Ext4 Jour-
naling and Metadata, averaged over all data sets.

Journaling Metadata F-measure Throughput (MB/s)

Off High 0.35 24.58
Off Low 0.36 25.51
On High 0.34 24.95
On Low 0.36 25.35

6 DISCUSSION

In this work, we developed LOGI, a generative model of sector
damage due to overheating disk drives. Using this model, we tested
the performance of file carvers and file systems in the face of failing
sectors. In particular, we found that the performance of file carvers
rapidly degrades as damage is introduced (Figure 2). This is rele-
vant because almost all previous work evaluates file carvers in a
zero-damage setting [21, 22]. Our findings motivate further devel-
opment of robust file carvers that are capable of partial recovery of
files. Such techniques might include “fuzzy matching” (e.g., within
some Hamming or Levenshtein edit distance) rather than the exact
matches currently employed. LOGI allows for direct evaluation of
prototype carving algorithms by allowing for the generation of
synthetic benchmarks.

We see this as an opportunity for research on software that
controls data layout and recovery. Our study demonstrates that
sector failures exhibit high spatial locality. Thus, a file system that is
robust to heat-induced failures should spread data throughout a disk.
Unfortunately, this is in direct contradiction to performance studies,
which recommend reducing fragmentation to improve performance
(e.g., [18, 20]). More relevant to recovery, however, this suggests
that more partial files may actually be recoverable, in theory, from
high-metadata journaling file systems, even if current-generation
file carvers do not employ expensive, system- and journal-aware
heuristics to find them. On the one hand, this suggests that partial
file recovery benchmarks andmetrics should play a larger role going
forward; many investigations favor simpler metrics that count only
fully-recovered files (e.g., [21, 22, 37]). However, repeated studies
of indicative high-damage patterns have not been feasible in the
past, to the best of our knowledge. LOGI supports such studies by
allowing arbitrary manipulation of a file system under test prior to
applying the damagemodel. RAID has also been used to improve the
performance and robustness of stored data at the cost of additional
storage space. Future studies using LOGI could also investigate the
ability to recover data from multi-disk arrays damaged by heat.

In summary, we present initial findings about the relationship
between sector-level data loss due to heat damage and the perfor-
mance of file systems. We find that a robust file system should
balance performance with risk of data loss due to spatial locality.
Our model, LOGI, enables subsequent studies to test candidate file
systems and recovery algorithms. In particular, we believe that a
number of our design decisions, such as including more software-
relevant file types and content types in our benchmarks and focus-
ing on software-only actions (e.g., using low-level reads, rather than
physically taking apart the disks) and their associated consequences
(i.e., orders-of-magnitude time differences between successful and
failed reads) mean that our results are more directly applicable to

software-level decisions (e.g., how to lay out or recover data given
the spatial locality of heat damage).

7 LIMITATIONS

The study carried out in this paper is based on a limited number of
hard drives of a single brand. Variation inmanufacturing techniques
may limit the generality of our results. For this initial study of
sector-level heat damage, we chose to use a single manufacturer
to increase the likelihood of collecting sufficient data points to
produce an accurate model. As noted in Section 4.3, LOGI performs
quite well in our testing scenarios. In particular, our model has low
perturbation, suggesting that we collected sufficient training data.

Additionally, our data sets are larger than prior work, but remain
orders of magnitude smaller than the capacity of modern disk drives.
Thus, there is a risk that synthetic damage produced by LOGI is
not indicative of real-world damage on larger drives. We tested the
performance of Scalpel on a 160 GB disk image using real-world
recorded damage (~81% of sectors unreadable). We could find no
statistically significant difference in precision, recall, and F-measure
between these large-scale tests and our experimental data sets. This
adds confidence that our results generalize to larger data sets and
are indicative of performance on real-world damage.

Finally, we record sector-level damage at a high level of abstrac-
tion. Disk controllers map virtual sectors to physical locations and
include functionality to remap sectors as they begin to fail. Our
recording technique is unable to capture these low-level details.
While disassembly and reading of data directly from the platters in
a clean room would avoid this problem, such a protocol is unneces-
sarily prohibitive. File systems are implemented at the OS level and
therefore interface with the disk using the same abstracted interface
at which we conducted our study. As such, our performance and
recovery findings are indicative of real-world deployments.

8 CONCLUSIONS

There is increasing demand to store information in software engi-
neering, even in the face of failures. This paper investigates heat-
based disk drive damage patterns. We conduct controlled experi-
ments and propose a novel, sampling-based algorithm to collect
damage patterns. We develop LOGI, a model for studying sector-
level heat damage. Our model generates synthetic heat damage,
which can be leveraged for large-scale studies.

We use LOGI to investigate three file carvers and four file sys-
tems, including a partial replication of previous file carver studies
on our indicative damage models. These carvers exhibit differing
behavior at increasing levels of damage (e.g., some carvers treated
no- and low-damage models similarly, while others treated low- and
mid-damage models similarly), confirming that carver heuristics
can be tailored to specific damage use cases. Our study reveals two
trends relating file system complexity and recovery. First, for some
data sets, the simple FAT32 file system admits the highest through-
put. Second, we found a significant interaction between journaling
andmetadata rates for Ext4. We hypothesize that both observations
relate to file fragmentation and fragment ordering and present an
opportunity for next-generation data recovery heuristics.

Although our work investigates the impacts of heat-induced
damage on stored data with regard to files, our proposed n-gram
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model and experimental design may support future investigations
of damage (e.g., electronic shock), file carving heuristics, or file
system data structures and configurations. To the best of our knowl-
edge, this work presents the first realistic, generative formal model
of sector-level, heat-induced damage on commodity drives and
uses it to assess file recovery as a function of the file systems and
file carvers used. Our data sets, recorded data, and algorithm are
publicly available for analysis and replication as a Zenodo artifact.4
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