
Digging into Semantics: Where do search-based
software repair methods search?

Hammad Ahmad1, Padriac Cashin2, Stephanie Forrest2, and Westley Weimer1

1 University of Michigan, Ann Arbor MI 48109, USA
{hammada,weimerw}@umich.edu

2 Arizona State University, Tempe AZ 85281, USA
{pcashin,steph}@asu.edu

Abstract. Search-based methods are a popular approach for automati-
cally repairing software bugs, a field known as automated program repair
(APR). There is increasing interest in empirical evaluation and compari-
son of different APR methods, typically measured as the rate of successful
repairs on benchmark sets of buggy programs. Such evaluations, however,
fail to explain why some approaches succeed and others fail. Because
these methods typically use syntactic representations, i.e., source code,
we know little about how the different methods explore their semantic
spaces, which is relevant for assessing repair quality and understanding
search dynamics. We propose an automated method based on program
semantics, which provides quantitative and qualitative information about
different APR search-based techniques. Our approach requires no manual
annotation and produces both mathematical and human-understandable
insights. In an empirical evaluation of 4 APR tools and 34 defects, we
investigate the relationship between search-space exploration, semantic
diversity and repair success, examining both the overall picture and how
the tools’ search unfolds. Our results suggest that population diversity
alone is not sufficient for finding repairs, and that searching in the right
place is more important than searching broadly, highlighting future di-
rections for the research community.

Keywords: Semantic search spaces · Program repair · Patch diversity.

1 Introduction

Early works on automatically repairing defects in software demonstrated that
evolutionary computation (EC) and related search-based approaches can be sur-
prisingly successful in this domain [1, 2, 20, 35, 54]. Since then, there has been
an explosion of research into what is now called the automated program repair
(APR) problem. This research has produced a wide variety of techniques and
tools aimed at reducing the manual effort required to repair software bugs or
otherwise improve software [23,31]. These tools typically operate on source code
containing one or more bugs, or defects, together with a test suite that encodes
required functionality and at least one test that exposes the defect. Multiple
candidate patches are often generated, which both repair the defect and pass

2 H. Ahmad et al.

the test suite [1, 20, 37, 38]. The field has standardized on a small number of
benchmark test suites to compare the performance of different tools and tech-
niques, often by measuring the fraction of successful repairs [12, 21]. However,
we still have little insight into fundamental questions such as: Why do some
algorithms outperform others? Which components of an algorithm are most re-
sponsible for its success (or failure)? How different are the patches produced by
different techniques? What kinds of bugs is APR better or worse at solving?

Traditional evaluation approaches are not always helpful for these questions.
For example, it can be difficult to determine from a pseudocode description of
a new repair algorithm whether it will find a more diverse set of repairs than
existing ones, or which parts of a search space it will visit [26]. Importantly,
today’s search-based APR methods use a syntactic representation, i.e., source
code, even though repairing bugs involves changing semantics.

Earlier research tackled some of these questions by considering the extent
to which proposed repairs are overfit to a test suite [19, 30, 34, 43, 46], non-
functional properties such as repair readability and maintainability [11,50], and
repair diversity [6,18,30,33,36,49,56]. Within the context of diversity, previous
studies examined the search space of a single tool to better understand patch
construction [14,55] and compared the search spaces explored by different tools
with respect to high-level program characteristics [30, 32, 52]. However, to the
best of our knowledge, this previous work considers only program variants that
are test-suite adequate [38], or plausible, meaning that they repair the bug and
pass all required tests. This approach ignores how the search process discovers
plausible repairs. In this paper, we propose a method for comparing the semantic
search spaces of different APR algorithms, and characterize the program variants
generated during the search in addition to the end product.

Insight and approach. Generating candidate variants through syntactic program
manipulation is central to search-based APR tools, yet their ultimate value de-
pends on inducing meaningful semantic change. We hypothesize that the effective
search spaces (the sets of candidate program variants considered or potentially
constructed) of different APR tools for a given software defect are distinct but
not disjoint. We further hypothesize that lightweight analysis of the run-time
semantics of each variant generated, regardless of correctness, can shed light on
how different APR tools search for repairs. To analyze the effective search space
of a particular tool, we propose to embed its generated variants in a semantic
invariant space, admitting an approximate notion of similarity. Because many
individual variants generated during a search are syntactically distinct but se-
mantically equivalent [53], we focus on source-level formal invariants. Since test
suites are generally available in this domain, we propose leveraging them for effi-
cient dynamic invariant detection [8], rather than resorting to expensive static or
manual approaches. Once each individual variant is characterized by its set of de-
tected invariants, we propose to use a form of weighted vector distance (Canberra
distance [17]) to assess differences. Because most programs have many invariants,
our vector distance approach has a significant scalability advantage over other
approaches, such as checking logical implications between invariant sets with a

Digging into Semantics: Search-based Software Repair 3

theorem prover. Ultimately, our approach allows both mathematical (i.e., via
principal component analysis) and human-understandable (i.e., two-dimensional
visualization) analysis of search spaces.

Contributions. The main contributions of this work are as follows:

– A framework for comparing the effective semantic search spaces of APR
algorithms.

– An automated analysis of individual program variants to produce a two-
dimensional visualization of their semantic diversity.

– An empirical analysis on four established search-based APR tools.
– A discussion of the relationship between syntactic and semantic diversity

and implications for APR algorithm design.

2 Background and Contextual Motivation

Automated Program Repair. Automated program repair (APR) methods seek
to locate and repair software defects without introducing side effects. Typically,
this involves modifying the program’s source code to produce a patched version.
Most methods rely on a test suite to certify the repaired program’s correctness.

Over the past decade, many search-based methods for APR have been pro-
posed, with some more recognizable as Genetic Programming (GP) solutions
than others (see Monperrus [31] or Le Goues et al. [23] for comprehensive re-
views). In this paper, we evaluate on four established tools that represent differ-
ent search-based APR techniques. GenProg implements a form of GP to search
for repairs [22, 54]. CapGen uses the same mutation operators as GenProg, but
allows more granular mutations to sub-elements of statements and mines contex-
tual information to select effective mutations [55]. SimFix mines prior patches,
both to construct particular mutations and to guide the selection of operations
based on code similarity measurements [14]. TBar is a recent approach that uses
35 different “fix patterns”, or templates, to modify the buggy program [25]. Over
time these tools have incorporated heuristic information about the software-
repair domain to what was originally a pure GP-based approach.

Dynamic Invariant Detection. To capture semantics, we use dynamic invariants
(i.e., logical predicates that always hold during the execution of the program)
to approximate code functionality. Dynamic invariant detection [8] algorithms
trace program state during execution to construct such invariants. These traces
contain the state of in-scope variables at specific points in execution, usually
before and after function calls. Because they do not rely on program source code
to construct invariants (cf. static invariant detection), dynamic approaches are
modular and scalable to our problem. However, a finite set of dynamic traces
may not capture all possible or relevant future executions and can overfit to the
observed traces. Because we are interested in how small regions of code (patches)
differ from one another, this issue is less of a concern for our task.

4 H. Ahmad et al.

Semantic Search Space. Earlier studies have investigated how well different APR
methods explore the search space created by their mutation operators. Typically,
the search space is defined as the union of the mutants that can be created by
applying n mutations to the original program [18,30,36]. For instance, if an APR
tool can only insert one statement before another, then its first-order search space
consists of all programs that can be constructed by applying that insert operator
a single time to the original. This approach has been used to characterize the
search space by measuring the density of programs with specific characteristics,
such as the number of passing tests or the number of correct patches [36]. By
contrast, we define the semantic search space of an APR algorithm in terms
of the set of reachable program invariants (via any of its generated mutants)
when applying its mutation operations to the original program. Since the goal of
the APR process is to construct a semantically correct program, understanding
what functionality a given algorithm can construct is crucial to understanding
its behavior. Similar to the syntactic search space, the semantic search space
is effectively infinite, even with simple operators. Rather than enforcing an n-
mutation restriction, as the aforementioned approaches do, we rely on the normal
operation of each APR tool, unchanged, to define its semantic search space. This
allows us to describe the search spaces of APR tools as they apply in practice.

Contextual Motivation: Does diversity lead to more repairs? Some researchers
have suggested that higher population diversity (syntactic or semantic) leads to
higher repair rates and better repairs [7, 10, 39, 44], and some tools (e.g., Mar-
riagent [16]) favor high-diversity edits. Other results suggest that high semantic
diversity does not necessarily improve repair rates [5,6,51]. If the latter is true, it
suggests that researchers should focus less on high diversity mutants, and more
on other properties of repair algorithms. If exploring widely in the search space
predicts high repair rates, we would expect to observe a correlation between how
much of the semantic search space is sampled and an ability to discover repairs.
Across the board, however, as we perform quantitative and qualitative analyses
to investigate the relationship between semantic diversity and repair rates for
APR tools, we find little evidence that this is true (see Section 5). This finding
challenges the conventional hypothesis that generating diverse mutants is the
key to improving repair rates, and supports recent results arguing otherwise.

3 Technical Approach

Even though most of today’s search-based APR methods inherit the concept
of mutation from evolutionary computation, such tools do not significantly rely
on crossover [24, 37, 38, 53]. We thus focus on the mutation operators of APR
tools. We begin with a set of mutants for each APR method. These are mu-
tated variants of the original program, which pass all of the positive (regression)
tests and may or may not pass the negative (bug inducing) tests. Given a set
of mutants, or candidate patches, we next use Daikon [9] (the state-of-the-art
for dynamic invariant detection) to generate a set of invariants, one set for each

Digging into Semantics: Search-based Software Repair 5

individual variant, regardless of correctness (Section 3.1), and then apply an
efficient heuristic to measure semantic similarity between invariant sets (Sec-
tion 3.2). Since large invariant sets are challenging to interpret and compare, we
also present two visualizations of induced APR search spaces (Section 3.3).

3.1 Sampling APR Search Spaces

We aim to reason qualitatively about the search spaces induced by different
APR tools and the techniques they employ (e.g., genetic operator-based vs.
template-based mutation). Schulte et al. have previously treated the syntactic
representation of each variant generated by an APR tool as a sample of the
tool’s search space [42]. We hypothesize, however, semantic diversity may be a
more relevant consideration for understanding tool effectiveness. Our approach
is motivated in part by the fact that syntactic variants often leave functionality
unchanged (neutral) [41, 42, 53]. Ultimately, an APR tool’s utility relates to its
ability to find new functionality that addresses the defect.

We sample the semantic search space in two ways. First, we consider the
early phase of a search by selecting the first x variants generated by each tool,
reflecting real-world scenarios with scarce computational resources. Our second
sampling method provides a broader picture. Some tools might initially search
less widely, but focus in later. Thus, we evaluate y mutants selected uniformly
at random after each tool completes its search.

We next consider how to capture the behavior of a mutant. Since our bench-
marks total 357,000 lines of code and have over 20,000 test cases [15], static anal-
ysis methods will not scale for our experiments. Instead, we use dynamic analysis
and restrict attention to a subset of the test cases. Because we are interested
in repairing bugs, we assume that the greatest variation in mutant functionality
will be along faulty execution paths, represented by the failing test. Intuitively,
since repair algorithms aim to retain required functionality, they are much more
likely to agree semantically on regression (positive) tests. We thus collect only
traces associated with negative tests, one set for each distinct mutant. The set of
invariants represents the most relevant program behavior. To compare variants,
we then compute the difference between each pair of invariant sets across all tools
in our study using a computational shortcut, which is surprisingly effective.

3.2 Computing Mutant Similarity

Earlier work defined a metric for computing semantic distance between two pro-
grams, based on logical implication between their sets of invariants [4]. This
metric reflects the content of individual invariants, and as such quantifies differ-
ence precisely. Unfortunately, implementations of this approach have O(n!) time
complexity in the worst case. Invariant detectors (e.g., Daikon) often report
thousands of invariants for a single complex program. Thus, implication-based
distance approaches are too expensive for use in our setting.

Instead, we use an efficient approximation of the semantic distance between
two mutants. By treating invariant sets as bit vectors (one dimension for each

6 H. Ahmad et al.

invariant), we can compute the Canberra distance [17], a numerical measure of
the distance between pairs of points in a vector space, between two invariant
sets. To do this, we define a canonical ordering of the union of all invariants
found across all mutants, and then associate one bit vector with each mutant,
where the nth bit is set if and only if the nth invariant was detected for that
program. We then compute the Canberra distance between the bit vectors, and
use these distances to embed each mutant in an implied semantic vector space.
In our setting, candidate patches are mostly identical except for a small number
of mutations, and thus, Canberra distance provides a scalable approach that
captures invariant differences between programs effectively.

3.3 Visualizing Search Spaces

Simply presenting a raw set of invariants, or even a string difference between
two sets of invariants, is not informative to humans [45]. As such, for each de-
fect, we compute the pairwise distance between invariant sets for every mutant,
producing one number per pair, regardless of the APR tool that generated it.
We use this information to visualize the semantic subspaces generated by each
tool by embedding it in a single two-dimensional plot. Since our metric is relative
(i.e., we compute the relative distance between the inferred invariant sets for two
mutants), we anchor the measurements to two key points: the invariant set for
the original defect, and the invariant set for the human-generated repair. Once
the distance measurements are computed, our vector distance metric embeds
mutants into a human-friendly two-dimensional visualization.

To complement the distance information, we also consider the number of
unique semantic invariants introduced by each new mutant. For each tool, we
examine the number of new unique invariants inferred for each mutant produced
and evaluated. While the 2D embeddings show where each tool is sampling in
semantic space, the rate at which unique invariants accumulate shows how much
time the tool spends generating mutants with new semantics (and thus new
functionality) compared to rediscovering old functionality with new syntax.

These two visualizations decompose our analysis into a spatial and temporal
component, both of which are key to understanding the APR search for solutions.

4 Experimental Setup

We now describe our experimental setup for comparing the search spaces of
various APR tools. We also make our replication materials publicly available.

Candidate Patch Collection. We gather candidate variants (mutants) from four
established tools: CapGen [55], GenProg [22], SimFix [14], and TBar [25]. All four
tools use search-based techniques, but each tool uses different mutation operators
and search methods. We ran each tool on 34 representative Java defects from
Defects4J [15] that all of the tools we consider operate on (see Table 1).

https://drive.google.com/drive/folders/1ckjFy2S2pIFcwbG_EdWpqxRNVDaFlQhn?usp=sharing

Digging into Semantics: Search-based Software Repair 7

Table 1: Experimental Benchmarks: 34 Java defects selected from Defects4J. X
means that the tool produced a repair. Defects not repaired by any tool (omitted
for space) comprise Math 7, 9, 12, 16, 17, 18, 19.

Chart Lang Math
8 11 24 6 26 57 59 1 2 3 4 5 8 11 15 20 30 33 53 57 59 63 65 70 75 80 85

CapGen X X X X X X X X X X X X X X X X X X X
GenProg X X X X X X
SimFix X X X X X X X X X X X X X
TBar X

CapGen reports each generated variant in numeric order, regardless of its
correctness. We instrumented the other tools to collect similar information. We
note that GenProg caches fitness to increase efficiency, so we record only the
variants that would be independently evaluated against the test suite, ignoring
duplicates. For all tools, we timestamp and store each variant that is evaluated
against the test suite to record how the search proceeds. These modifications
account for fewer than 20 lines of code and do not affect search logic.

Invariant Detection. For each program variant in our dataset, we apply the
mutations to a clean instance of the Defects4J bug and record a trace of a driver
program. Each driver is a small Java program that executes the failing test cases
for the mutant. A trace is a series of program state observations used to infer
program semantics. For each such trace, we then use Daikon to obtain a set of
invariants, representing the pre- and post-conditions of executed functions.

We use the invariant sets of the first x = 600 mutants generated by each
tool to construct a view of the early stages of its search process. We find that
the number of semantically unique invariants tapers off at around 300 mutants
(Figure 2a, Section 5.1), so we conservatively chose 600 as our cutoff point. We
also sample y = 1000 mutants uniformly at random from all generated variants
(per tool) to provide an overview of the space searched by each tool.

5 Experimental Results

This section presents our results which address the following research questions:

– RQ1. Do searches that explore more of semantic space find more repairs?
– RQ2. Do different APR tools generate semantically-distinct mutants for a

given defect?
– RQ3. How does the syntactic diversity of mutants produced by different

APR tools relate to their semantic diversity?

5.1 RQ1. APR Search Space Exploration and Repair Rates

We hypothesize that some APR methods sample more widely, that these dif-
ferences arise from algorithmic decisions, and that these differences lead to dif-

8 H. Ahmad et al.

(a) Semantic search space embedding
for the first 600 mutants generated by
each APR tool for Math 80.

(b) Semantic search space embedding
for the randomly sampled 1000 mu-
tants by each APR tool for Math 80.

Fig. 1: Search space visualization of the Math 80 defect. Invariant sets for to
generated mutants are embedded in 2D space using multidimensional scaling.
Green square is the correct repair, while red diamond is the defect. GenProg
and CapGen explore more of the search space than TBar and SimFix.

ferential repair rates for each tool depending on the search budget. We studied
each tool’s search progress on a representative defect from Defects4J, Math 80
(which relates to integer multiplication and Eigen decomposition).

Figure 1 visualizes our results using the two-dimensional embedding, for
both the resource-limited early sampling and the final sampling. In the resource-
limited cases (panel (a)), GenProg and CapGen explore more broadly (i.e., en-
close the largest area) than either SimFix or TBar, which spend most of their
evaluations in localized regions, and rarely test radically-different functionality.
We conjecture that the heuristics used to order the mutated programs for testing
in CapGen lead to a wider range of functionality being explored with relatively
few samples. Panel (b), however, shows substantial differences. GenProg samples
more broadly than the others, followed by CapGen, even though both use the
same insert, delete, and swap mutation operators. TBar and SimFix, by contrast,
are more clustered, with jumps between clusters from different repair templates.

The visualizations in Figure 1 show the relative scope of each tool’s search,
but they do not show the search trajectory. To address this issue, we treat
the number of unique invariants as a countable proxy for unique functionality
and ask how many unique invariants are explored by each additional individual
program mutant that the tool evaluates (Figure 2a). This allows us to visualize
both the number of unique invariants that are considered and approximately
when they are discovered. The results, shown in Figure 2, indicate that CapGen
and GenProg explore more unique functionality early in the search than TBar
and SimFix. Both TBar and SimFix plateau early and remain relatively flat for
the remainder of the search. We observed similar trends across the 1000-sample
datasets (Figure 2b) and across all the defects we studied (data not shown).

These results support the hypothesis that APR searches that explore more
widely also sample more semantically unique variants. However, the results do

Digging into Semantics: Search-based Software Repair 9

(a) Each tool’s unique invariant accumula-
tion for the first 600 mutants

(b) Each tool’s unique invariant accumula-
tion for 1000 randomly sampled mutants

Fig. 2: Unique invariants from each APR tool for Math 80 over time. x-axis is %
of traces evaluated, y-axis is the number of unique invariants. Tools that explore
more of the search space also find more unique functionality over time.

Table 2: Semantic overlaps among APR tools. Each row reports the % of mutants
that are semantically equivalent to at least one mutant from another tool.

CapGen GenProg SimFix TBar

CapGen – 29.0% 25.2% 23.8%
GenProg 31.5% – 10.8% 37.4%
SimFix 20.2% 86.0% – 81.9%
TBar 38.0% 59.5% 52.6% –

not predict relative repair rates. Remarkably, the tools that sample the largest
extent of semantic space have lower reported repair rates across the entire De-
fects4J database, and vice versa. For instance, TBar has the best reported re-
pair rates despite having the lowest exploration reach. Similarly, GenProg, which
searched most broadly, reports the lowest repair rate. To summarize, we find that
the targeted repair operations used by SimFix and TBar appear to outweigh the
advantage of a high-diversity search. This surprising result highlights the key
role of representation, since the implementation of mutation encodes a choice
about representation — although we acknowledge that this result could also be
related to the nature of the bug scenarios we studied. What remains unknown is
how repairs are distributed throughout the search space: when repairs are close
to the original program (e.g., defects in popular APR datasets that can be re-
paired with only one or two code edits), a thorough search of the nearby region
will likely succeed more often than an extensive search of a wider region.

5.2 RQ2. Similarity of Semantic Search Spaces

The success of TBar suggests that combining multiple operators into a single
tool increases the repair rate [25]. To test this, we examined the overlap between
variants produced by the different tools in our study. We define overlap to be
the total number of times each tool generates a mutant that is identical to one

10 H. Ahmad et al.

generated by another tool. The degree of overlap between two tools is a proxy
for their similarity: we hypothesize that tools with high overlap will also repair a
similar set of defects. Table 2 reports these results. CapGen and GenProg have
low overlap, ≈26% average, with other tools. SimFix and TBar, on the other
hand, are much more similar, as expected. TBar uses repair templates taken
from several APR tools, often corresponding directly to the mutation operators
of other tools in our study. It is thus unsurprising that TBar has the highest
minimum overlap (38%). SimFix uses learned templates mined from human-
generated repairs, but these also contain fix patterns [25] that mirror approaches
found in the other tools.

On our dataset, SimFix and TBar have average repair overlap comparable to
their semantic overlap rates (raw data not shown for brevity): 63% for SimFix
and 50% for TBar. GenProg, however, has a much higher repair overlap (83%)
compared to its semantic overlap (26%). Of the GenProg repairs, 67% are shared
with CapGen and all are shared with TBar. This result can be explained: TBar
incorporates all of GenProg’s mutation operators. On average, CapGen has 52%
repair overlap, ranging from 21% with GenProg to 84% with TBar.

This experiment reveals similarities among tools that may not be evident
from their formal descriptions. It also suggests that the strategy of incorpo-
rating methods from earlier tools into a composite approach (e.g., TBar [25],
Repairnator [47], and ARJA-p [57]) often succeeds. However, each such addition
increases system complexity. An ideal combination would maximize performance
and minimize cost and complexity. Search space visualizations (such as Figure 1)
support making semantically-guided choices. Finally, focusing only on mutation
operators may be misleading, as the tools we studied lack a powerful search
heuristic. Even the GenProg family of tools, based on evolutionary computa-
tion, searches only in a limited way and relies primarily on mutation.

5.3 RQ3. Syntactic and Semantic Diversity of Mutants

To investigate the relationship between syntactic and semantic diversity for
the mutants generated by different APR tools, we compared the rate at which
semantically-distinct variants are discovered against the rate of at which unique
syntactic variants are discovered. We find that syntactic variants are discov-
ered much more frequently than semantic variants, e.g., between 4 and 20 times
greater for Math80, depending on the tool. We observed similar trends for all
other defects in our dataset. One explanation for this finding is that many syn-
tactically distinct programs can compile to the same functionality.

Given this disparity, it is natural to ask if a higher semantic discovery ratio
(i.e., techniques that find more semantically unique variants per syntactically
unique variant) leads to higher overall performance. Our experiments do not
support this hypothesis. Instead, we find that high semantic discovery ratios
correlate with repair success only 30% of the time. GenProg had the highest
ratio (approximately 38%) and the lowest repair rate. Conversely, SimFix had
the lowest ratio across 30 of the defects while maintaining a high repair rate. For

Digging into Semantics: Search-based Software Repair 11

different defects, TBar and CapGen are typically intermediate between GenProg
and Simfix in terms of this ratio, with TBar having the higher ratio of the two.

These results show that repairs are sparse in the search space and that tar-
geting regions of the space where repairs are likely to be found is more effective
than randomly sampling a large area of the semantic space. Although each tool
finds many more syntactically-unique mutants than semantically-unique ones, it
is unclear that this is problematic, given the apparent inverse correlation between
semantic reach and repair rates. The success of the search algorithm depends
heavily on problem representation, as is well-known in evolutionary computation.

6 Limitations and Threats to Validity

Soundness of invariant detection. Despite being the gold standard for dynamic
invariant invariant detection, Daikon can infer invariants that may not hold in
some parts of the program. To combat this limitation, we consider only invariants
marked “high confidence.” Additionally, since our approach is based on relative
distances between detected invariants, any consistent detection errors are fac-
tored out by the difference operation and are unlikely to affect our results.

Syntactically-invalid patches. Some mutants produced by APR tools fail syntax
or type checks, and cannot be analyzed by our approach. We note that other
analysis methods also often fail on ill-formed patches [20], and a majority of the
patches produced by the tools we consider are included in our analysis.

Generality. The results from our experimental study may not generalize to other
APR tools beyond the four tools we examined, posing a threat to external va-
lidity. To mitigate this threat, we chose two tools from each of the main sub-
categories of APR tools that fall under the search-based paradigm (i.e., atomic
change operators and template-based change operators [12, Section 6.1]).

7 Related Work

Earlier APR and Genetic Improvement work also considers the search space,
typically characterizing it with respect to a specific characteristic, such as patch
correctness, energy efficiency, or neutrality [13, 18, 27, 30, 36, 40, 42, 48, 49]. Re-
searchers have characterized neutral mutations [13, 42] (mutations do not dis-
cernibly change program behavior — also called sosies or safe) and developed
methods to combine them effectively [40]. Similar to neutral mutation work,
Veerapen et al. visualized search spaces by considering local searches of the mu-
tation graph [48, 49]. Langdon et al. also completed an exhaustive experiment
on the triangle problem [18], concluding that the number of programs that pass
all tests is much smaller than the overall search space.

Long et al. [30] characterized the effect on the search space of different config-
urations of the SPR and Prophet APR tools [28, 29], and found that increasing
the search space generally increased the number of reachable repairs but also
made it harder to find repairs. Similarly, we found that increasing the size of

12 H. Ahmad et al.

the semantic search space was not sufficient to find more repairs. This trade-off
regarding choosing the best representation for a repair problem was explicitly
addressed by the Genesis tool, which attempted to manage the size of the search
space [27]. This prior work, however, does not consider the semantics of the un-
derlying program beyond measuring how many tests passed. In the end, program
behavior determines whether a patch correctly repairs a defect. This motivated
us to consider mutant semantic similarity based on invariant set similarity.

Population-based repair tools have used semantics to increase initial popula-
tion diversity [3] or guide exploration [5, 6]. In both cases, the authors failed to
find conclusive evidence that increasing population diversity leads to better APR
performance. Similarly, we find no correlation between methods that consider a
semantically-diverse set of programs and their ability to find repairs. However,
our approach enables quantitative and qualitative analysis to investigate this
relationship in greater detail than any of the previous works.

8 Conclusion

Many APR algorithms have been proposed, but relatively few ways have been
proposed to compare them beyond empirical measurements of success at passing
test cases or human assessment of patch quality. We add a new dimension to
this work by proposing to assess how these methods explore semantic search
spaces, extending earlier syntax-based analyses. Our automated, scalable ap-
proach leverages dynamic invariant detection and an efficient distance calcula-
tion to highlight the semantic differences between program variants. Further, our
approach can be easily visualized in 2D space, admitting human interpretability.

Our empirical evaluation of four different search-based tools showed that,
contrary to expectation, those methods that search most broadly can experi-
ence relatively low repair rates. This surprising result suggests that increasing
semantic diversity in the search may not be as helpful as is generally believed.
Second, tools that explore semantic mutants that are shared with other tools
tend to have higher repair rates, providing an explanation for the success of
modern composite tools like TBar or ARJA-p. Finally, tools that search exten-
sively for novel semantics do not necessarily find more repairs, suggesting that
tools with targeted repair mechanisms may explore important subsets of the
search space. Our results suggest several new research directions. For instance,
a deeper understanding of how repairs are distributed throughout syntactic and
semantic search spaces would refine our understanding of these results. We hope
that results like these will lead to a deeper re-examination of how APR tools
are studied and compared, ultimately leading to even more improvements in the
future.

Acknowledgements. We gratefully acknowledge the partial support of the
NSF (CCF 2211749, 2141300, 1763674, 1908633, and CICI 2115075), DARPA
(N6600120C4020, FA8750-19C-0003, HR001119S0089-AMP-FP-029), and AFRL
(FA8750-19-1-0501).

Digging into Semantics: Search-based Software Repair 13

References

1. Ackling, T., Alexander, B., Grunert, I.: Evolving Patches for Software
Repair. In: GECCO 2011. pp. 1427–1434. ACM, Dublin, Ireland (2011).
https://doi.org/10.1145/2001576.2001768

2. Arcuri, A.: Evolutionary repair of faulty software. Applied soft computing 11(4),
3494–3514 (2011)

3. Beadle, L., Johnson, C.G.: Semantic Analysis of Program Initialisation in Genetic
Programming. Genetic Programming and Evolvable Machines 10(3), 307–337 (sep
2009). https://doi.org/10.1007/s10710-009-9082-5, https://link.springer.com/
article/10.1007/s10710-009-9082-5

4. Cashin, P., Martinez, C., Weimer, W., Forrest, S.: Understanding Automatically-
Generated Patches Through Symbolic Invariant Differences. In: ASE 2019. pp. 411–
414. IEEE, San Diego, USA (nov 2019). https://doi.org/10.1109/ASE.2019.00046

5. Ding, Z.Y.: Patch Quality and Diversity of Invariant-Guided Search-Based Pro-
gram Repair. arXiv (mar 2020), https://arxiv.org/abs/2003.11667v1

6. Ding, Z.Y., Lyu, Y., Timperley, C., Le Goues, C.: Leveraging program invariants to
promote population diversity in search-based automatic program repair. In: 2019
IEEE/ACM International Workshop on Genetic Improvement (GI). pp. 2–9. IEEE
(2019)

7. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing, Natural Com-
puting Series, vol. 53. Springer (2003)

8. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant
program invariants. In: Proceedings of the 22nd international conference on Soft-
ware engineering. pp. 449–458 (2000)

9. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz,
M.S., Xiao, C.: The Daikon System for Dynamic Detection of Likely In-
variants. Science of Computer Programming 69(1-3), 35–45 (dec 2007).
https://doi.org/10.1016/j.scico.2007.01.015

10. Feldt, R.: Generating diverse software versions with genetic programming: an ex-
perimental study. IEE Proceedings-Software 145(6), 228–236 (1998)

11. Fry, Z.P., Landau, B., Weimer, W.: A Human Study of Patch Main-
tainability. In: ISSTA 2012. p. 177. ACM, Minneapolis, USA (2012).
https://doi.org/10.1145/2338965.2336775, http://dl.acm.org/citation.cfm?

doid=2338965.2336775

12. Gazzola, L., Micucci, D., Mariani, L.: Automatic Software Repair: A
Survey. IEEE Transactions on Software Engineering 45(1), 34–67 (2017).
https://doi.org/10.1109/TSE.2017.2755013

13. Harrand, N., Allier, S., Rodriguez-Cancio, M., Monperrus, M., Baudry, B.: A Jour-
ney Among Java Neutral Program Variants. Genetic Programming and Evolvable
Machines 20(4) (2019)

14. Jiang, J., Xiong, Y., Zhang, H., Gao, Q., Chen, X.: Shaping Pro-
gram Repair Space with Existing Patches and Similar Code. In: IS-
STA 2018. vol. 18, pp. 298–309. ACM, Amsterdam, Netherlands (jul
2018). https://doi.org/10.1145/3213846.3213871, https://dl.acm.org/doi/10.

1145/3213846.3213871

15. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A Database of Existing Faults to
Enable Controlled Testing Studies for Java Programs. In: ISSTA 2014. pp. 437–
440. ACM, San Jose, USA (jul 2014). https://doi.org/10.1145/2610384.2628055,
http://dl.acm.org/citation.cfm?doid=2610384.2628055

https://doi.org/10.1145/2001576.2001768
https://doi.org/10.1007/s10710-009-9082-5
https://link.springer.com/article/10.1007/s10710-009-9082-5
https://link.springer.com/article/10.1007/s10710-009-9082-5
https://doi.org/10.1109/ASE.2019.00046
https://arxiv.org/abs/2003.11667v1
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/2338965.2336775
http://dl.acm.org/citation.cfm?doid=2338965.2336775
http://dl.acm.org/citation.cfm?doid=2338965.2336775
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1145/3213846.3213871
https://dl.acm.org/doi/10.1145/3213846.3213871
https://dl.acm.org/doi/10.1145/3213846.3213871
https://doi.org/10.1145/2610384.2628055
http://dl.acm.org/citation.cfm?doid=2610384.2628055

14 H. Ahmad et al.

16. Kou, R., Higo, Y., Kusumoto, S.: A Capable Crossover Technique on Auto-
matic Program Repair. In: IWESEP 2016. pp. 45–50. IEEE, Osaka, Japan (2016).
https://doi.org/10.1109/IWESEP.2016.15

17. Lance, G.N., Williams, W.T.: A General Theory of Classificatory Sorting Strate-
gies: 1. Hierarchical Systems. The Computer Journal 9(4), 373–380 (1967)

18. Langdon, W.B., Veerapen, N., Ochoa, G.: Visualising the Search Landscape of the
Triangle Program. In: European Conference on Genetic Programming. vol. 10196
LNCS, pp. 96–113. Springer (2017). https://doi.org/10.1007/978-3-319-55696-3 7,
https://link.springer.com/chapter/10.1007/978-3-319-55696-3_7

19. Le, X.B.D., Thung, F., Lo, D., Le Goues, C.: Overfitting in semantics-based auto-
mated program repair. Empirical Software Engineering 23(5), 3007–3033 (2018)

20. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A Systematic
Study of Automated Program Repair: Fixing 55 out of 105 Bugs for
$8 Each. In: ICSE 2012. pp. 3–13. IEEE, Zürich, Switzerland (2012).
https://doi.org/10.1109/ICSE.2012.6227211

21. Le Goues, C., Holtschulte, N., Smith, E.K., Brun, Y., Devanbu, P., Forrest, S.,
Weimer, W.: The manybugs and introclass benchmarks for automated repair of c
programs. IEEE Transactions on Software Engineering 41(12), 1236–1256 (2015)

22. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A Genetic Method
for Automatic Software Repair. IEEE Transactions on Software Engineering 38(1),
54–72 (jan 2012). https://doi.org/10.1109/TSE.2011.104

23. Le Goues, C., Pradel, M., Roychoudhury, A.: Automated Program Repair
(dec 2019). https://doi.org/10.1145/3318162, https://dl.acm.org/doi/10.1145/
3318162

24. Le Goues, C., Weimer, W., Forrest, S.: Representations and operators for improving
evolutionary software repair. In: Proceedings of the 14th annual conference on
Genetic and evolutionary computation. pp. 959–966 (2012)

25. Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: TBAR: Revisiting Template-Based
Automated Program Repair. In: ISSTA 2019. pp. 43–54. ACM, Beijing, China
(jul 2019). https://doi.org/10.1145/3293882.3330577, https://dl.acm.org/doi/

10.1145/3293882.3330577

26. Liu, K., Li, L., Koyuncu, A., Kim, D., Liu, Z., Klein, J., Bissyandé, T.F.: A critical
review on the evaluation of automated program repair systems. Journal of Systems
and Software 171, 110817 (2021)

27. Long, F., Amidon, P., Rinard, M.: Automatic Inference of Code Transforms for
Patch Generation. In: ESEC/FSE 2017. vol. Part F1301, pp. 727–739. ACM, Pader-
born, Germany (aug 2017). https://doi.org/10.1145/3106237.3106253, https://

dl.acm.org/doi/10.1145/3106237.3106253

28. Long, F., Rinard, M.: Prophet: Automatic Patch Generation via Learning from
Successful Patches. Tech. rep., MIT-CSAIL (jul 2015), www.csail.mit.edu

29. Long, F., Rinard, M.: Staged Program Repair with Condition Syn-
thesis. In: ESEC/FSE 2015. pp. 166–178. ACM, Bergamo, Italy (aug
2015). https://doi.org/10.1145/2786805.2786811, https://dl.acm.org/doi/10.

1145/2786805.2786811

30. Long, F., Rinard, M.: An Analysis of the Search Spaces for Gener-
ate and Validate Patch Generation Systems. In: ICSE 2016. vol. 14-22-
May-, pp. 702–713. IEEE Computer Society, Austin, Texas (may 2016).
https://doi.org/10.1145/2884781.2884872

31. Monperrus, M.: Automatic Software Repair: A Bibliography. ACM Computing
Surveys (CSUR) 51(1), 17 (2018)

https://doi.org/10.1109/IWESEP.2016.15
https://doi.org/10.1007/978-3-319-55696-3_7
https://link.springer.com/chapter/10.1007/978-3-319-55696-3_7
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3318162
https://dl.acm.org/doi/10.1145/3318162
https://dl.acm.org/doi/10.1145/3318162
https://doi.org/10.1145/3293882.3330577
https://dl.acm.org/doi/10.1145/3293882.3330577
https://dl.acm.org/doi/10.1145/3293882.3330577
https://doi.org/10.1145/3106237.3106253
https://dl.acm.org/doi/10.1145/3106237.3106253
https://dl.acm.org/doi/10.1145/3106237.3106253
www.csail.mit.edu
https://doi.org/10.1145/2786805.2786811
https://dl.acm.org/doi/10.1145/2786805.2786811
https://dl.acm.org/doi/10.1145/2786805.2786811
https://doi.org/10.1145/2884781.2884872

Digging into Semantics: Search-based Software Repair 15

32. Motwani, M., Sankaranarayanan, S., Just, R., Brun, Y.: Do Automated Program
Repair Techniques Repair Hard and Important Bugs? Empirical Software Engi-
neering 23(5), 2901–2947 (oct 2018). https://doi.org/10.1007/s10664-017-9550-0,
https://link.springer.com/article/10.1007/s10664-017-9550-0

33. Motwani, M., Soto, M., Brun, Y., Just, R., Le Goues, C.: Quality of automated
program repair on real-world defects. IEEE Transactions on Software Engineering
(2020)

34. Nilizadeh, A., Leavens, G.T., Le, X.B.D., Păsăreanu, C.S., Cok, D.R.: Exploring
true test overfitting in dynamic automated program repair using formal methods.
In: 2021 14th IEEE Conference on Software Testing, Verification and Validation
(ICST). pp. 229–240. IEEE (2021)

35. Orlov, M., Sipper, M.: Genetic programming in the wild: Evolving unrestricted
bytecode. In: Proceedings of the 11th Annual conference on Genetic and evolu-
tionary computation. pp. 1043–1050 (2009)

36. Petke, J., Brownlee, A.E.I., Alexander, B., Wagner, M., Barr, E.T.,
White, D.R.: A Survey of Genetic Improvement Search Spaces. In:
GECCO 2019. pp. 1715–1721. ACM, Prague, Czech Republic (jul 2019).
https://doi.org/10.1145/3319619.3326870, https://dl.acm.org/doi/10.1145/

3319619.3326870

37. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The Strength of Random Search on
Automated Program Repair. In: ICSE 2014. pp. 254–265. ACM, Hyderabad, India
(2014). https://doi.org/10.1145/2568225.2568254

38. Qi, Z., Long, F., Achour, S., Rinard, M.: An Analysis of Patch Plausibility and Cor-
rectness for Generate-and-Validate Patch Generation Systems. In: ISSTA 2015. pp.
24–36. ACM, Baltimore, USA (2015). https://doi.org/10.1145/2771783.2771791

39. Renzullo, J., Weimer, W., Forrest, S.: Multiplicative weights algorithms for parallel
automated software repair. In: 35th IEEE International Parallel and Distributed
Processing Symposium (2021)

40. Renzullo, J., Weimer, W., Moses, M., Forrest, S.: Neutrality and Epistasis in Pro-
gram Space. In: ICSE 2018. vol. 18, pp. 1–8. IEEE Computer Society, Gothen-
burg, Sweden (jun 2018). https://doi.org/10.1145/3194810.3194812, https://dl.
acm.org/doi/10.1145/3194810.3194812

41. Schulte, E., Forrest, S., Weimer, W.: Automated Program Repair Through the
Evolution of Assembly Code. In: ASE 2010. pp. 313–316. ACM, Antwerp, Bel-
gium (2010). https://doi.org/10.1145/1858996.1859059, http://portal.acm.org/
citation.cfm?doid=1858996.1859059

42. Schulte, E., Fry, Z.P., Fast, E., Weimer, W., Forrest, S.: Software Mutational
Robustness. Genetic Programming and Evolvable Machines 15(3), 281–312 (jul
2014). https://doi.org/10.1007/s10710-013-9195-8, https://link.springer.com/
article/10.1007/s10710-013-9195-8

43. Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the Cure Worse than the
Disease? Overfitting in Automated Program Repair. In: ESEC/FSE 2015. pp. 532–
543. ACM, Bergamo, Italy (2015). https://doi.org/10.1145/2786805.2786825

44. Soto, M.: Improving patch quality by enhancing key components of automatic
program repair. In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). pp. 1230–1233. IEEE (2019)

45. Staats, M., Hong, S., Kim, M., Rothermel, G.: Understanding User Understanding:
Determining Correctness of Generated Program Invariants. In: ISSTA 2012. p. 188.
ACM, Minneapolis, MN (2012). https://doi.org/10.1145/2338965.2336776, http:
//dl.acm.org/citation.cfm?doid=2338965.2336776

https://doi.org/10.1007/s10664-017-9550-0
https://link.springer.com/article/10.1007/s10664-017-9550-0
https://doi.org/10.1145/3319619.3326870
https://dl.acm.org/doi/10.1145/3319619.3326870
https://dl.acm.org/doi/10.1145/3319619.3326870
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/3194810.3194812
https://dl.acm.org/doi/10.1145/3194810.3194812
https://dl.acm.org/doi/10.1145/3194810.3194812
https://doi.org/10.1145/1858996.1859059
http://portal.acm.org/citation.cfm?doid=1858996.1859059
http://portal.acm.org/citation.cfm?doid=1858996.1859059
https://doi.org/10.1007/s10710-013-9195-8
https://link.springer.com/article/10.1007/s10710-013-9195-8
https://link.springer.com/article/10.1007/s10710-013-9195-8
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2338965.2336776
http://dl.acm.org/citation.cfm?doid=2338965.2336776
http://dl.acm.org/citation.cfm?doid=2338965.2336776

16 H. Ahmad et al.

46. Tan, S.H., Yoshida, H., Prasad, M.R., Roychoudhury, A.: Anti-patterns in
search-based program repair. In: ESEC/FSE 2016. vol. 13-18-Nove, pp. 727–738.
ACM, New York, NY, USA (nov 2016). https://doi.org/10.1145/2950290.2950295,
https://dl.acm.org/doi/10.1145/2950290.2950295

47. Urli, S., Yu, Z., Seinturier, L., Monperrus, M.., Monperrus, M..: How to Design a
Program Repair Bot? Insights from the Repairnator Project. ICSE-SEIP 2018 p. 10
(2018). https://doi.org/10.1145/3183519, https://doi.org/10.1145/3183519.

48. Veerapen, N., Daolio, F., Ochoa, G.: Modelling Genetic Improvement Landscapes
with Local Optima Networks. In: GECCO 2017. vol. 6, pp. 1543–1548. ACM,
New York, NY, USA (jul 2017). https://doi.org/10.1145/3067695.3082518, https:
//dl.acm.org/doi/10.1145/3067695.3082518

49. Veerapen, N., Ochoa, G.: Visualising the Global Structure of Search Landscapes:
Genetic Improvement as a Case Study. Genetic Programming and Evolvable
Machines 19(3), 317–349 (sep 2018). https://doi.org/10.1007/s10710-018-9328-1,
https://doi.org/10.1007/s10710-018-9328-1

50. Vessey, I., Weber, R.: Some factors affecting program repair maintenance: an em-
pirical study. Communications of the ACM 26(2), 128–134 (1983)

51. Villanueva, O.M., Trujillo, L., Hernandez, D.E.: Novelty Search for Auto-
matic Bug Repair. In: GECCO 2020. pp. 1021–1028. ACM, Cancun, Mexico
(2020). https://doi.org/10.1145/3377930.3389845, https://dl.acm.org/doi/10.

1145/3377930.3389845

52. Wang, S., Wen, M., Lin, B., Wu, H., Qin, Y., Zou, D., Mao, X., Jin, H.: Automated
Patch Correctness Assessment: How Far are We? ASE 2020 pp. 968–980 (2020).
https://doi.org/10.1145/3324884.3416590

53. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging Program Equivalence for Adaptive
Program Repair: Models and First Results. In: ASE 2013. pp. 356–366. IEEE,
Silicon Valley, USA (2013). https://doi.org/10.1109/ASE.2013.6693094

54. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically Finding Patches
Using Genetic Programming. In: ICSE 2009. pp. 364–367. IEEE, Vancouver,
Canada (2009). https://doi.org/10.1109/ICSE.2009.5070536

55. Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.C.: Context-aware Patch
Generation for Better Automated Program Repair. In: ICSE 2018. vol. 2018-
Janua, pp. 1–11. IEEE Computer Society, Pittsburgh, Pennsylvania (2018).
https://doi.org/10.1145/3180155.3180233

56. Yang, D., Qi, Y., Mao, X.: Evaluating the strategies of statement selection in auto-
mated program repair. In: International Conference on Software Analysis, Testing,
and Evolution. pp. 33–48. Springer (2018)

57. Yuan, Y., Banzhaf, W.: Making Better Use of Repair Templates
in Automated Program Repair: A Multi-Objective Approach (2020).
https://doi.org/10.1007/978-3-030-39831-6 26, https://link.springer.com/

chapter/10.1007/978-3-030-39831-6_26

https://doi.org/10.1145/2950290.2950295
https://dl.acm.org/doi/10.1145/2950290.2950295
https://doi.org/10.1145/3183519
https://doi.org/10.1145/3183519.
https://doi.org/10.1145/3067695.3082518
https://dl.acm.org/doi/10.1145/3067695.3082518
https://dl.acm.org/doi/10.1145/3067695.3082518
https://doi.org/10.1007/s10710-018-9328-1
https://doi.org/10.1007/s10710-018-9328-1
https://doi.org/10.1145/3377930.3389845
https://dl.acm.org/doi/10.1145/3377930.3389845
https://dl.acm.org/doi/10.1145/3377930.3389845
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1007/978-3-030-39831-6_26
https://link.springer.com/chapter/10.1007/978-3-030-39831-6_26
https://link.springer.com/chapter/10.1007/978-3-030-39831-6_26

	Digging into Semantics: Where do search-based software repair methods search?

