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Abstract

Exceptional Situations And Program Reliability

by

Westley R. Weimer

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor George C. Necula, Chair

It is difficult to write programs that behave correctly in the presence of run-time

errors. Proper behavior in the face of exceptional situations is important to the reliability

of long-running programs. Existing programming language features often provide poor

support for executing clean-up code and for restoring invariants. We present a dataflow

analysis for finding a certain class of mistakes made during exceptional situations. We also

present a specification miner for automatically inferring partial notions of what programs

should be doing. Finally, we propose and evaluate a new language feature, the compensation

stack, to make it easier to write solid code in the presence of run-time errors.

We give a dataflow analysis for finding a certain class of exception-handling mis-

takes: those that arise from a failure to release resources or to clean up properly along

all paths. Many real-world programs violate such resource usage rules because of incorrect

exception handling. Our flow-sensitive analysis keeps track of outstanding obligations along
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program paths and does a precise modeling of control flow in the presence of exceptions.

Using it, we have found over 800 exception handling mistakes in almost 4 million lines of

Java code. The analysis is unsound and produces false positives, but a few simple filtering

rules suffice to remove them in practice. The remaining mistakes were manually verified.

These mistakes cause sockets, files and database handles to be leaked along some paths.

Specifications are necessary in order to find software bugs using program verifica-

tion tools. We give a novel automatic specification mining algorithm that uses information

about exception handling to learn temporal safety rules. Our algorithm is based on the

observation that programs often make mistakes along exceptional control-flow paths, even

when they behave correctly on normal execution paths. We show that this focus improves

the miner’s effectiveness at discovering specifications beneficial for bug finding. We present

quantitative results comparing our technique to four existing miners. We highlight assump-

tions made by various miners that are not always borne out in practice. Additionally, we

apply our algorithm to existing Java programs and analyze its ability to learn specifications

that find bugs in those programs. In our experiments, we find filtering candidate specifica-

tions to be more important than ranking them. We find 430 bugs in 1 million lines of code.

Notably, we find 250 more bugs using per-program specifications learned by our algorithm

than with generic specifications that apply to all programs.

We present a characterization of the most common causes of those bugs and discuss

the limitations of exception handling, finalizers and destructors. Based on that character-

ization we propose a programming language feature, the compensation stack, that keeps

track of obligations at run time and ensures that they are discharged. Finally, we present
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case studies to demonstrate that this feature is natural, efficient, and can improve reliability;

for example, retrofitting a 34,000-line program with compensation stacks resulted in a 0.5%

code size decrease, a surprising 17% speed increase (from correctly deallocating resources

in the presence of exceptions), and more consistent behavior.

Professor George C. Necula
Dissertation Committee Chair
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Dedication

A lungo il mio cuore di tali ricordi ha voluto colmarsi!

Come un vaso in cui le rose sono state dissetate:

Puoi romperlo, puoi distruggere il vaso se lo vuoi,

Ma il porfumo delle rose sarà sempre tutt’intorno.

Lang, lang soll die Erinnerung in meinem Herzen klingen!

Gleich einer Vase, drin Rosen sich einst tränkten:

Lass sie zerbrechen, lass sie zerspringen,

Der Duft der Rose bleibt immer hängen.

Mon coeur est brûlant rempli de tels souvenirs

Comme un vase dans lequel des roses ont été distillées:

Tu peux le briser, tu peux détruire le vase si tu le désires,

Mais la senteur des roses sera toujours là.

Muito, muito tempo seja meu coração preenchido com tais lembranças!

Tal qual o vaso onde rosas foram uma vez destiladas:

Pode quebrar, pode estilhaçar o vaso se o desejas,

Mas perdurará para sempre o aroma das rosas perfumadas.

D lugo, d lugo moje serce przepe lnione by lo takimi wspomnieniami!

By ly jak waza, w której kiedyś róże destylowa ly:

Możesz sprawić by pek la, możesz gruchotać waze jeśli chcesz,

Ale zapach róż bedzie wciaż czuć dooko la.
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How glorious it is—and also how
painful—to be an exception.

Louis Charles Alfred de Musset
French writer (1810-1857)

Chapter 1

Introduction

Software is increasingly important but much of it remains unreliable. It is much

easier to fix software defects if they are found before the software is deployed. It is difficult

to use testing, the traditional approach to finding defects early, to evaluate programs in

exceptional situations. We present an analysis for finding a class of program mistakes

related to such exception situations. We also present an algorithm for inferring what the

program should be doing in those circumstances. Finally, we propose a new language

feature, compensation stacks, to make it easier to fix such mistakes.

1.1 The Cost of Software Reliability

The NIST calculated the 2002 U.S. annual economic cost of software errors to

be $59.5 billion (or 0.6 percent of the gross domestic product). The report claims that

more than a third of that cost could be eliminated by enabling “earlier and more effective

identification and removal of software defects.” [NIS02]
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Once a piece of software has been shipped or deployed it can be from two to

thirty times more expensive to fix a bug. Those figures are somewhat conservative and

some sources suggest that a factor of one hundred is more reasonable. For example, in one

company surveyed by Rex Black, the “response to field failures was to fly a programmer

to the client’s site, along with sufficient tools to fix the bug, and keep him there until the

problem was fixed, which was typically about a week. Last-minute airfare, hotel costs, meals,

and car rental added about $2,000 to the $4,000 cost associated with the programmer’s lost

time.” [Bla02] An internal source who asked not to be named suggested that the general cost

for a software defect averaged over IBM’s software division was $10,000. Thus a compelling

case can be made for the importance of finding defects early.

1.2 Testing

Testing is the traditional approach to finding software defects before the software

is deployed. Testing typically involves running the program on a predetermined workload

or test case and evaluating the result. The result may be compared against a reference

that is known to be correct or it may merely be inspected to show the absence of some

catastrophic failure. A bad result usually means that the testing has found a bug.

Testing is very popular. An oft-quoted rule of thumb is that at least fifty percent

of a commercial software project’s budget is devoted to testing. Unfortunately, finding

indicative test cases is difficult. Selecting good test cases a priori has been compared to

baby-proofing a house in preparation for a child’s arrival. Invariably the child will find some

way to get in to trouble that the parents failed to forsee.
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Errors involving exceptional situations are particularly difficult to catch with con-

ventional testing. The complete input to a program consists not just of the values entered

by the user or found in files but also of the state of the local machine and other “environ-

mental” concerns. Typically a test case only specifies the values that would be entered by

the user or found in such files. For example, a program may have a bug that only sur-

faces when the local disk is full. No simple test case on an expensive testing server with

plenty of free space will reveal such a bug. However, end users with more modest machines

may legitimately run out of space and encounter the defect. Similarly, networked programs

that depend on local environmental factors like congestion and reachability are notoriously

difficult to test in advance.

Testing programs that are intended to run for a long time is also difficult. Resource

leaks and other API violations that usually do not matter in a program that is started and

terminated within a few seconds can bring down a longer-running program over time. For

example, a program that leaks a megabyte of virtual address space every thirty minutes

will still take around three months to exhaust the address range of a 32-bit machine. Until

such a program finally runs out of resources it will typically respond normally and correctly

to requests. A software developer can rarely spare the testing resources to keep a fixed

version of a program that is running for such a long time. Many companies producing

highly-available server software have taken a “live with leaks” attitude and make special

provisions to reboot their machines (and thus start with a blank slate of unleaked resources)

every twenty-four hours.

Gradual resource leaks in long-running programs can often be seen as a special
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kind of failure in handling unexpected situations. Typically, if a server answers multiple

requests per second and leaks resources on most requests the leak will be noticed rapidly

during testing. If, however, the server only leaks resources when processing certain rare

requests (e.g., requests from users with network connectivity problems or requests involving

items in a high-contention portion of the inventory database) the leak will usually escape

immediate detection. The occasional requests that trigger a leak can be viewed as an

exceptional situation.

1.3 Exceptional Situations

In this context an exceptional situation is one in which something external to the

program behaves in an uncommon but legitimate manner. For example, a request to write

a file may legitimately fail because the disk is full or because the underlying operating

system is out of file handle resources. Similarly, a request to send a packet reliably may

fail because of a network breakdown between the source and the destination. A request

to commit a database transaction may fail because of opportunistic concurrency control or

other locking considerations. A request to allocate memory may fail because the operating

system or virtual machine is out of memory. All of the above examples represent actions

that typically succeed but may occasionally fail through no fault of the requesting program.

Testing a program’s behavior in exceptional situations is difficult. Exceptional

situations, often called faults or run-time errors, must be systematically and artificially

introduced while the program is executing. The program and its intended context help to

determine a fault model, which governs the appropriate kind and number of faults. For
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example, a program may be expected to degrade gracefully if 10% of network send requests

fail but may not be expected to make forward progress if all network send requests fail. A

text editor may only care about recovering from user interface or file system faults while a

robust database may be expected to be ironclad in almost all circumstances. Finding the

right fault model is important.

Once the fault model has been established the faults must still be injected during

testing while the program is running. Some have used physical techniques (e.g., pulling

a network cable while the program is running to simulate an intermittent connectivity

error) [CDCF03]. Others have used special program analyses and compiler instrumentation

approaches [FRMW04] to inject faults at the software or virtual machine level. These

approaches are still based on testing, however, and require indicative workloads and test

cases.

1.4 Toward Reliability in Exceptional Situations

We theorized that difficulties in testing code under exceptional situations and in

understanding fault models would mean that many programs had latent bugs related to

their handling of such exceptional situations.

Our approach to improving software reliability involves fixing defects and facili-

tating the writing of defect-free code. In order to make it easier to write or rewrite such

code we must characterize why the mistakes are being made. Given such an understanding

we can propose features or analyses that handle or verify the complicated and error-prone

portions of the process. In order to apply such technology to existing code we must auto-
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matically find existing defects. Finding a defect related to an exceptional situation involves

formalizing both what can legitimately go wrong and what the program should have been

doing. The former is the fault model, the later is typically called a specification. While some

specifications are universal, most are program-specific. Thus we must be able to determine

specifications for a program by analyzing that particular program. If we can determine that

the program fails to do the right thing during a legitimate situation (i.e., that it violates

the specification with respect to the fault model) we have found a defect.

We will discuss a number of analyses and techniques to achieve those goals. In

Chapter 2, we present a static dataflow analysis for locating places where a program violated

a safety policy with respect to a fault model. In Chapter 3 we present a specification mining

algorithm for automatically inferring candidate specifications from programs. In Chapter 4

we propose new programming language features that make it easy to fix the class of defects

discovered by our analyses. For all of these we present empirical results to support our

claims.

Putting it all together, we have a multi-step process for addressing software re-

liability concerns related to exceptional situations. Given an existing program we apply

an analysis to the program, our fault model and some generic specifications. Given those

three components the analysis yields potential defects. In addition, we analyze the program

in order to determine locally-important specifications and use those to find potential de-

fects. Once the defects have been located we provide tools and language features for easily

removing the defects.

Beyond the primary goal of improving software reliability we have a number of
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secondary goals. It is often said that program analyses can either prove big things about

small programs or prove small things about big programs. We believe that any analysis we

develop should scale to large, real-world programs (i.e., should work on millions of lines of

code rather than just toy examples) and we are willing to sacrifice precision in a controlled

manner in order to achieve that goal. We also want any tools or techniques we propose to be

easy to use, especially in terms of the time or effort it takes in order to see an improvement.

Programmers certainly make cost-benefit comparisons when evaluating potential tools, but

we have found that a notion of “activation energy” is also important: if it takes too long

to get any benefit, even a large benefit, the tool will be discarded. Thus we aim to avoid

making programmers sift through hundreds of lines of output in order to find a single useful

piece of information. In addition, we do not want to require that programmers annotate

their code or otherwise spend time making it ready for our techniques. Ideally we should be

able to consider a new program and find real defects in it without requiring the programmer

to sift through the results or guide the process.
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In the finally, you protect yourself
against the exceptions, but you don’t
actually handle them. Error handling
you put somewhere else. ... But you
make sure you protect yourself all the
way out by deallocating any resources
you’ve grabbed, and so forth. You
clean up after yourself, so you’re always
in a consistent state.

Anders Hejlsberg, Lead C# ArchitectChapter 2

Finding Defects

This chapter builds up to a static dataflow analysis that can locate software errors

in a program with respect to a fault model and a specification of correct behavior. The

analysis examines each method in turn and keeps track of resources governed by the safety

specification along all paths, but especially along paths related to the exceptional situations

allowed by the fault model. We provide one such fault model and three such specifications

based on manual inspection of a large code base. A simpler form of the analysis presented

here was previously discussed in an earlier work [WN04].

2.1 Handling Exceptional Situations At The Language Level

Modern languages like Java [GJS96], C++ [Str91] and C# [HWG03] use a language-

level featured called exceptions to facilitate signaling and handling exceptional situations.

The most common semantic framework for exceptions is the replacement model [Goo75].

The program or an underlying library will signal or raise an exception and interrupt the
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normal flow of control in order to indicate the presence of an exceptional situation. In

the replacement model the result of a computation that is interrupted by an exception is

replaced by the result of evaluating the nearest enclosing appropriate exception handler.

An exception handler is conceptually similar to a subroutine and may itself signal or handle

exceptions.

Exception handlers are typically lexically scoped. In Java the syntax for an basic

exception handler is the try-catch block:

try {

boo();

} catch (Exception exc) {

minsc();

}

If boo() terminates normally the catch block is never executed. If boo() signals an excep-

tion, minsc() is executed with the variable exc containing information about the particular

exception (e.g., what caused it). Within a particular context a signaled exception that has

no handler is called an uncaught exception. If minsc() signals an exception control passes

to the nearest enclosing exception handler:

try {

try {

boo();

} catch (Exception exc1) {

minsc();

}

} catch (Exception exc2) {

imoen();

}

In this example, if boo() raises an exception it is handled by minsc() as exc1. If minsc()

raises an exception it is handled by imoen() as exc2. The two exceptions need not be

directly related. For example, if boo() is related to a networked e-commerce application,
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exc1 might be a network timeout. The exception handler minsc() might take that infor-

mation and attempt to write a log record to the disk. In the process boo() might discover

that the disk is full and be unable to proceed. The second handler imoen() deals with the

full-disk scenario in some other manner (e.g., by displaying a message on the console or by

trying to free up space).

Languages that support try-catch exception handling almost invariably also sup-

port a mechanism for executing important code in all cases. The Java syntax for this feature

is the finally block:

try {

boo();

} catch (Exception exc) {

minsc();

} finally {

edwin();

}

In this example if boo() terminates normally, edwin() is executed. On the other hand, if

boo() raises an exception then minsc() is executed and then edwin() is executed. There

are two important corner cases to consider. First, if minsc() raises an exception, edwin()

is still executed. Second, if boo() raises an exception and edwin() raises an exception, the

exception from edwin() will be propagated to the nearest enclosing handler.

Lexical nesting allows exception handlers to become quite labyrinthine. Compli-

cated exception handling is difficult for programmers to reason about and to code correctly.

As a result, it will prove to be a source of software defects related to reliability. In particular,

programs tend to make mistakes when attempting to handle multiple cascading exceptions.
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2.2 Handling Exceptional Situations In Practice

An IBM survey [Cri87] reported that up to two-thirds of a program may be devoted

to error handling and exceptional situations. We were initially skeptical and performed a

similar survey on more modern programs. We examined a suite of open-source Java pro-

grams ranging in size from 4,000 to 1,600,000 lines of code and found that while exception

handling is a lesser fraction of all source code than was previously reported it is still signif-

icant.

We found that between 1% and 5% of program text in our experiments was com-

prised of exception-handling catch and finally blocks. Between 3% and 46% of the pro-

gram text was transitively reachable from catch and finally blocks, which often contain

calls to cleanup methods. For example, if a finally block calls a cleanUp method, the

body of the cleanUp method is included in this count. While it is possible to handle errors

without using exceptions and to use exceptions for purposes other than error handling,

common Java programming practice links the two together.

Aside from programs specifically designed from the ground up for reliability (e.g.,

Brown’s database-like undo [BP03]), these proportions grow with program size and age.

That is, smaller and younger programs have less code devoted to exception handling. These

broad numbers suggest that error handling is an important part of modern programs and

that much effort is devoted to it.

Despite the importance of handling exceptional situations and the programmer

effort devoted to it, we will demonstrate that poor handling abounds. In order to claim

that a program is making a mistake, however, we must first specify what it should be doing.
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Figure 2.1: Microsoft PowerPoint exception-handling dialog box.

2.3 Proper Exception Handling

In general the goal of an exception handler is program-specific and situation-

specific within that program. For example, a networked program may handle a transmission

exception by attempting to resend a packet. A file-writing program may handle a storage

exception by asking the user to specify an alternate destination for the data. A security-

conscious program may respond to an access violation exception by attempting to acquire

additional credentials.

Figure 2.1 shows a dialog box displayed by Microsoft PowerPoint when the user

attempts to save a file using the name con. For legacy reasons the name con refers to the
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console device and is not a valid filename for user data under Microsoft Windows. A GUI

program that attempts to write to a file named con may receive an error from the operating

system (e.g., via the open(2) or write(2) system calls). In modern languages like Java

the interface with the operating system is handled by an abstraction layer that looks for

errors reported by the operating system and signals exceptions when they occur. In this

particular example Microsoft PowerPoint displays a warning dialog box that implicitly asks

the user to choose another filename. Other handling options were available. For example,

it could also have automatically renamed the file by appending “.ppt”.

We will not consider high-level policy notions of correctness like whether the de-

sired program behavior is to display a dialog box or to rename the file. Similarly, we will

not consider the particular details of the actions performed by the exception handler (e.g.,

whether the message is spelled “file name” or “filename” or whether there are two buttons

or one on the dialog box). Such specifications of proper exception handling behavior are

too high-level for our purposes.

Instead, we will consider more generic low-level notions of correctness. To continue

our example, regardless of whether PowerPoint displays a dialog box or renames the file it

should not crash. In addition, it should not lose the user’s work or prevent the user from

saving that work somewhere else. Faulty exception handling, however, could result in just

that scenario.

Common exception handling mistakes could easily cause PowerPoint to be unable

to save further files. In modern operating systems, programs like PowerPoint are only

allowed to access a limited number of files at once. When a file is opened the operating
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system returns a special file “handle” associated with it to the program. Each program

has a maximum number of outstanding file handles and must eventually return them to the

operating system before opening more. Normally programs like PowerPoint open a file, save

the data, and then close the file. In the case of the con file, however, the program may well

acquire a file handle associated with the file name con (it is legal to open the console device

file) but will be unable to save the data. The exception handler can display a dialog box or

rename the file and try again, but in all cases it should close the file handle associated with

con. If it forgets to do so PowerPoint will eventually “run out” of file handles and will be

unable to open any new files (e.g., to save the user’s work later).

While this particular example may be contrived (e.g., it is unlikely that an inter-

active user will just happen to pick a long string of reserved file names: con, aux, prn,

nul, etc.) it encapsulates all of the concepts in a large class of exception handling mistakes.

First, the program has some important resources (in this case, file handles) that are in-

volved in operations that may legitimately fail in exceptional situations. Those important

resources must be treated correctly (in this case, must be closed and returned to the oper-

ating system). Regardless of any application-specific logic, the program should treat those

resources correctly even in exceptional situations. A short interactive session with Power-

Point can tolerate a few leaked file handles but a webserver answering hundreds of requests

per second that mishandles an important resource whenever, for example, the webpage con

is requested (or the username con is used, etc.) will quickly crash.

The next section describes how exception handling looks from the programmer’s

perspective.
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01: Connection cn;

02: PreparedStatement ps;

03: ResultSet rs;

04: try {

05: cn = ConnectionFactory.getConnection(/* ... */);

06: StringBuffer qry = ...; // do some work

07: ps = cn.prepareStatement(qry.toString());

08: rs = ps.executeQuery();

09: ... // do I/O-related work with rs

10: rs.close();

11: ps.close();

12: } finally {

13: try {

14: cn.close();

15: } catch (Exception e1) { }

16: }

Figure 2.2: Ohioedge CRM Exception Handling Code

2.4 Exception Handling Example

We begin with a motivating example that shows how the mistakes described in Sec-

tion 2.3 can occur in practice. Consider the code in Figure 2.2, taken from Ohioedge CRM,

the largest open-source customer relations management project [Sou03]. This program

uses language features to facilitate exception handling (i.e., nested try blocks and finally

clauses), but many problems remain. Connections, PreparedStatements and ResultSets

represent important global resources associated with an external database. Our specifica-

tion of correct behavior, which we will formalize later, is that the program should close

each one as quickly as possible.

In some situations the exception handling in Figure 2.2 works correctly. If a run-

time error occurs on line 6, the runtime system will signal an exception, and the program
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01: Connection cn;

02: PreparedStatement ps;

03: ResultSet rs;

04: try {

05: cn = ConnectionFactory.getConnection(/* ... */);

06: StringBuffer qry = ...; // do some work

07: ps = cn.prepareStatement(qry.toString());

08: rs = ps.executeQuery();

09: ... // do I/O-related work with rs

10: } finally {

11: try {

12: rs.close();

13: ps.close();

14: cn.close();

15: } catch (Exception e1) { }

16: }

Figure 2.3: Revised Ohioedge CRM Exception Handling Code

will close the open Connection on line 14. However, if a run-time error occurs on line 8 (or

9 or 10), the resources associated with ps and rs may not be freed.

One common solution is to move the close calls from line lines 10 and 11 into

the finally block, as shown in Figure 2.3. This approach is insufficient for at least two

reasons. First, the close method itself can raise exceptions (as indicated by the fact that

it is surrounded by try-catch and by its type signature), so a failure while closing rs on

line 12 might leave ps dangling.

Failures while closing files most commonly occur in the presence of network filesys-

tems. In order to reduce write latency and network congestion, network file system clients

often locally buffer writes to remote files. Buffered data is sent out either when there is

enough of it to making sending a packet worthwhile or when the file is closed or flushed.

If the network connectivity between the client and the file server degrades while the data
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is buffered, closing the file will cause the client to try and fail to send the buffered data.

This will be reported to the user as an exception raised by close. Ideal but rarely seen

responses to such a situation including trying to close the file again later, warning the user,

and saving the data to a local file instead.

In this particular example the important resources are database objects (e.g.,

ResultSets) and not operating system file handles. The conceptual model is similar, how-

ever. A ResultSet is obtained by executing a database transaction on a remote database,

an action that is similar to doing a filesystem read or write. Problems with either the

database itself (e.g., the database may be using opportunistic concurrency control and may

thus notice transaction problems “late”) or the connectivity with the database may show

up when the ResultSet is closed. Such problems are rare but do occur in practice.

The code in Figure 2.3 may also attempt to close an object that has never been

created. If an error occurs on line 6 after cn has been created but before rs has been

created, control will jump to line 12 and invoke rs.close(). Since rs has not yet been

allocated, this will signal a “method invocation on null object” exception and control

will jump to the catch block in line 15, with the result that cn is never closed.

Using standard language features there are two common ways to address with the

situation. The first, shown in Figure 2.4, involves using nested try-finally blocks. One

block is required for each important resource that is dealt with simultaneously. After each

resource is acquired a try-finally block is immediately started, ensuring that if something

goes wrong with the code’s normally processing the resource will still be dealt with. Since

each finally block is limited to a handling a single resource an error in one close will not
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01: Connection cn;

02: PreparedStatement ps;

03: ResultSet rs;

04: cn = ConnectionFactory.getConnection(/* ... */);

05: try {

06: StringBuffer qry = ...; // do some work

07: ps = cn.prepareStatement(qry.toString());

08: try {

09: rs = ps.executeQuery();

10: try { 11: ... // do I/O-related work with rs

12: } finally {

13: rs.close();

14: }

15: } finally {

16: ps.close();

17: }

18: } finally {

19: cn.close();

20: }

Figure 2.4: Nested Try-Finally Ohioedge CRM Exception Handling Code

cause other closes to be skipped. Programmers tend not to like this approach because it

has a number of software engineering disadvantages. For example, programs commonly use

three to five important simultaneous resources but programmers are rarely willing to use

three to five nested try-finally blocks.

The second standard approach is to use special sentinel values or run-time checks

to ensure that the resources are handled properly. In Figure 2.5 the database objects are

explicitly initialized to the special sentinel value null. If an object is successfully created or

allocated it will no longer have the value null. In the single finally block each object is

checked against null. If the object is not null then it must have been successfully acquired

so an attempt is made to close it. In this example any exceptions signaled by close are

ignored on lines 11-13. This approach has the advantage that one try-finally statement
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01: Connection cn = null;

02: PreparedStatement ps = null;

03: ResultSet rs = null;

04: try {

05: cn = ConnectionFactory.getConnection(/* ... */);

06: StringBuffer qry = ...; // do some work

07: ps = cn.prepareStatement(qry.toString());

08: rs = ps.executeQuery();

09: ... // do I/O-related work with rs

10: } finally {

11: if (rs != null) then try { rs.close(); } catch (Exception e) { }

12: if (ps != null) then try { ps.close(); } catch (Exception e) { }

13: if (cn != null) then try { cn.close(); } catch (Exception e) { }

14: }

Figure 2.5: Run-Time Check Ohioedge CRM Exception Handling Code

can handle any number of simultaneous resources. Unfortunately it is often difficult for

humans to write such bookkeeping code correctly.

The code extracted from the Ohioedge CRM is quite typical and highlights a num-

ber of important observations. First, the programmer is aware of the safety policies: close

is common. Second, the programmer is aware of the general possibility of exceptional sit-

uations: language-level exception handling (e.g. try and finally) are used prominently.

Third, there are many paths where exception handling is poor and resources may not be

dealt with correctly. Finally, fixing the problem typically has software engineering disad-

vantages: the distance between any resource acquisition and its associated release increases,

and extra control flow used only for exception-handling must be included. In addition, if

another procedure wishes to make use of Connections, it must duplicate all of this ex-

ception handling code. This duplication is frequent in practice; the Ohioedge source file

containing the above example also contains two similar procedures that make the same
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mistakes. Developers have cited this required repetition to explain why exception han-

dling is sometimes ignored [BP03]. In general, correctly dealing with N resources requires

N nested try-finally statements or a number of run-time checks (e.g., checking each

variable against null or keeping track of progress in a counter variable). Handling such

problems is complicated and error-prone in practice.

In the next sections we will discuss an analysis for automatically discovering such

exception-handling mistakes. For example, the analysis will report three paths in Figure 2.2.

If an exception occurs on line 8, a PreparedStatement is leaked. If an exception occurs

on line 9, both the PreparedStatement and the ResultSet are forgotten. Finally, if the

first call to close on line 10 raises an exception, the PreparedStatement is again leaked.

First, however, we formalize our notions of what the program should be doing and what

may legitimately go wrong.

2.5 Specifications

We will use finite state machines to specify how programs should manipulate cer-

tain important resources and interfaces. The edge labels in such a finite state machine

represent important events that take place during the program’s execution relating to those

resources. For example, one event may represent the creation of a resource or the closing of

a resource. We associate one finite state machine specification with every dynamic instance

of such a resource. Each resource is tracked separately. A program may thus have two file

handle resources, for example, only one of which is currently open. Each finite state ma-

chine starts in its start state. At the end of the program each finite state machine must be
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closed opened

open

close

read
write
flush
…

Figure 2.6: A simple finite state machine specification for File resources.

in an accepting state or the program is said to violate the specification with respect to that

resource instance. In addition, if the finite state machine ever makes an illegal transition

the program is said to violate the specification.

Figure 2.6 shows a simple finite state machine safety specification for handling File

resources. An uninitialized File starts out in the closed state. From there the only valid

operation is to open the File which transitions the specification to the opened state. The

File can then be used (e.g. via read and write). In order to comply with the specification

the File must be returned to the closed state via the close event. It is also illegal to attempt

to read or write from a File when it is not in the opened state.

In order to demonstrate that existing Java programs violate safety policies while

handling exceptional situations we need to start with policies that those programs are

trying to enforce. In our survey of open-source Java programs we manually examined

all catch, finally and finalize blocks in order to find what policies were important

in common programs. Many of those policies were program-specific but three dealt with

generic “system library” resources that were shared across most programs. For simplicity

we did not consider events like write in Figure 2.6 that do not change the state of the

resource.
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closed opened

new Socket

Socket.close

closed opened

new ServerSocket

ServerSocket.close

Figure 2.7: A manually-derived specification for Java Socket resources.

Figure 2.7 shows a safety specification for Java Socket objects. Sockets are used

in UDP and TCP network communication. Both Sockets and ServerSockets are based

on file handles and should be freed. In addition, all Sockets on the same machine (or

network interface) share the same limited port number address space. While all incoming

connections to an HTTP server may attempt to connect to a ServerSocket listening on

port 80, the operating system will assign every individual connection a port between 1024–

5000 or 49152–65535 to distinguish between connections from different clients. The Java

Tutorial explains that, “upon acceptance, the server gets a new socket bound to a different

port. It needs a new socket (and consequently a different port number) so that it can

continue to listen to the original socket for connection requests while tending to the needs

of the connected client.” [CWH00] For simplicity we choose not to model the accept method

which can create Sockets from a ServerSocket. An analysis using this specification to find

software errors may thus miss potential errors.

We formally represent a specification finite state machine using the standard five-
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closed opened

new InputStream

InputStream.close

Figure 2.8: A manually-derived specification schema for InputStream resources.

tuple 〈Σ, S, s0, δ, F 〉. [HMU00] The first specification in Figure 2.7 would be given as:

Σ = {new Socket, Socket.close}

S = {closed, opened}

s0 = closed

δ = {〈closed, new Socket〉 7→ opened, 〈opened, Socket.close〉 7→ closed}

F = {closed}

The set of events (or the input alphabet) is Σ, the set of states is S, the initial state is

s0, the set of final (or accepting) states is F . The transition function δ maps states and

events to new states and represents the “edges” of the state machine. The specifications

we consider are often equivalent up to state and event renaming. While it is possible to

consider more complicated specifications we initially chose to concentrate on important,

simple specifications for which violations are easy to understand, easy to fix and important

to fix.

Figure 2.8 shows a safety specification schema for objects that derive from and

extend the class java.io.InputStream. Java library classes such as PushbackInputStream

and ObjectInputStream as well as user-defined classes build upon the standard InputStream

interface. We instantiate an instance of this safety specification schema for every class that
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derives from java.io.InputStream in the program under consideration. Streams are typi-

cally based on file handles and “streams represent resources which you must always clean up

explicitly, by calling the close method.” [O’H05] We could construct a similar specification

schema for OutputStreams but do not do so for simplicity.

Figure 2.9 shows a safety specification for resources associated with the Java

Database Connection (JDBC) interface. Typically (as in Figure 2.2) a Connection is es-

tablished with an external SQL database. A SQL query is represented as a Statement or

PreparedStatement object. The result of executing the query on the remote database is

represented as the ResultSet. It is typically considered good practice to close all of these

objects: “Always close Statements, PreparedStatements, and connections: This practice in-

volves always closing JDBC objects in a finally block to avoid resource limitations found in

many databases.” [Ash04] The Oracle9i JDBC Developer’s Guide and Reference makes the

results of failing to do so explicit: “You must explicitly close the ResultSet and Statement

objects after you finish using them. This applies to all ResultSet and Statement objects

you create when using the Oracle JDBC drivers. The drivers do not have finalizer methods;

cleanup routines are performed by the close() method of the ResultSet and Statement

classes. If you do not explicitly close your ResultSet and Statement objects, serious mem-

ory leaks could occur. You could also run out of cursors in the database. Closing a result

set or statement releases the corresponding cursor in the database.” [PSWP02] Running out

of database cursors lowers transactional throughput not just for the ill-behaved client but

for all other clients sharing that database. Programmers are typically very concerned with

closing these objects as quickly as possible. The specification in Figure 2.9 covers multiple
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closed opened

new Statement
new PreparedStatement
Connection.createStatement
Connection.prepareStatement

Statement.close

closed opened

new Connection
DatabaseMetaData.getConnection
Driver.connect
Statement.getConnection

Connection.close

closed opened

new ResultSet
Statement.getResultSet
Statement.executeQuery
PreparedStatement.executeQuery
DatabaseMetaData.getColumns

ResultSet.close

Figure 2.9: A manually-derived specification for resources associated with JDBC database
connections.



26

types of objects, each of which can be obtained or allocated multiple ways.

The specifications in Figure 2.7, Figure 2.8 and Figure 2.9 were chosen in part

because programmers respect them. Our goal is to improve software quality by finding and

fixing bugs. If we find “bugs” with respect to a specification that is widely ignored or that

causes no harm if it is violated, it will not be worth the programmer’s time or effort to fix

those “bugs.” Network sockets, file handles and databases are widely regarded as important

by the Java programmers that make use of them. In particular, every program we found

that violated one of these specifications also contained at least one path (and in general

many paths) that adhered to the specification. These specifications represent interface usage

patterns and contracts that programmers are truly trying to handle correctly. We will use

the safety policies as well as the fault model discussed in the next section in order to find

bugs in programs.

2.6 Exceptional Situation Fault Model

From the perspective of software reliability and bug-finding, a fault model limits

the situations under which the program is expected to behave correctly. For example, if

the fault model allows an adversary to replace the original program with malicious code

before it executes it is very difficult to ensure that running the program will produce the de-

sired results. Fault models are typically somewhat related to the specification that is being

checked. For example, a security specification related to remote buffer-overrun vulnerabil-

ities may assume that an attacker has control over all packets that are received over the

network [WFBA00]. In reality an attacker may only control some of the incoming packets,
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but a program that is robust in the worst-case scenario is also robust under lighter attacks.

In the realm of security, worst-case fault models are the norm under the assumption that

any exploitable security hole will eventually be targeted. We are interested in studying

long-running program behavior in exceptional situations. We will similarly adopt a worst-

case fault model based on the assumption that many unlikely or uncommon scenarios will

eventually befall a program that is running for a long time.

We wish to observe program behavior in the presence of real-world exceptional

situations like network connectivity problems or database access errors. Typically, however,

we have access only to the program source code and cannot reliably mechanically simulate

such exceptional situations (e.g., by running the program for a time and then pulling a

plug). Thus we need a way to bridge the gap between real world events and software-level

artifacts like exception handles. Previous work by Candea et al. has found exactly that

connection: “We did not find literature that documents the extent to which different JVMs

actually translate such low-level faults into Java-visible exceptions. We performed a number

of ad hoc experiments [...] to determine whether Java exceptions were indeed a reasonable

way to simulate such faults. The results were satisfactory: using the Sun HotSpot JVM,

all faults we injected at the network level (e.g., severing the TCP connection), disk level

(e.g., deleting the file), memory (e.g., limiting the JVM’s heap size), and database (e.g.,

shutting DBMS down) resulted in one of the [checked] exceptions [being signaled at the

language-level.]” [CDCF03]

The Java programming language features two types of exceptions: checked (or de-

clared) and unchecked [GJS96]. Unchecked exceptions typically describe program bugs and
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are signaled when an array is accessed beyond its limits, when a null pointer is dereferenced

or when the program attempts to divide an integer by zero. We do not include unchcked

exceptions in our fault model, and thus do not report bugs related to them, for two reasons.

The primary reasons is that experience indicates that if we allow unchecked exceptions

in our fault model and report a bug that can only arise if the presence of an unchecked

exception, the programmer is less likely to believe the error report. Programs typically

have complicated and difficult-to-capture invariants to ensure that such exceptions do not

occur. For example, is undecidable to determine statically whether a particular division

statement will divide by zero. Even though many unchecked exceptions do occur in prac-

tice (e.g., the NullPointerException) they have a second-class status in the eyes of many

Java programmers. If we want the output of our tool to be trusted we must avoid reporting

bugs that programmers do not believe. The second reason we avoid unchecked exceptions

is that they typically have no associated handling behavior. Programs are not required to

(and thus rarely do) handle unchecked exceptions. A program that tries to read beyond

the end of an array is not typically expected to somehow recover (although there are cases

where such things happen). Instead, the unchecked exception typically kills the running

program and provides debugging information (e.g., a stack trace) so that the programmer

can fix the bug once and for all. If a program is going to terminate immediately anyway

there is no reason to explicitly close certain resources (e.g., operating system file handles

will be reclaimed by the operating system automatically when the process terminates).

Programmers should attempt to restore invariants even in the presence of

unchecked exceptions, but this fault model will not issue warnings when they fail to do so.
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From the perspective of our bug-finding analysis, if the programmer is willing to consider

additional error reports it is simple to extend the fault model with classes of unchecked

exceptions (e.g., by treating integer division as a “method” that either returns normally

or raises a divide-by-zero exception). Finally, the compensation stacks we will propose in

Chapter 4 help to guard resources and restore invariants in the presence of both checked

and unchecked exceptions.

Checked exceptions, on the other hand, capture our notion of exceptional sit-

uations that are beyond the program’s control but that must be dealt with. Among

other things, they signal network connectivity problems, security violations, disk errors

and database transaction failures. The Java Type System [GJS96] requires that program-

mers either catch and handle all checked exceptions that they might encounter or annotate

their code on a per method basis with a list of exceptions that might propagate to the

caller. For example, the declaration for the createNewFile method of the java.io.File

class looks like this (with some of the comment and all of the body elided):

/**

* This method creates a new file [...]

*

* @exception IOException If an I/O error occurs

*

* @exception SecurityException If the SecurityManager will not allow

* this operation to be performed.

*/

public boolean createNewFile() throws IOException, SecurityException {

[...]

}

Checked exceptions are thus part of the contract that a programmer programs against when

using a Java interface. The createNewFile method above can either return a boolean or

it can signal an IOException or it can signal a SecurityException.
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Our fault model is that any invoked method can either terminate normally or

signal any of its declared checked exceptions. For example, we expect the program to

adhere to the specifications for its important resources (e.g., Sockets, ResultSets) even

if the createNewFile method signals a SecurityException. We do not, however, expect

the program to adhere to its specifications in the presence of unchecked exceptions (i.e.,

programmer bugs) like DivisionByZero, since they typically do not involve exception han-

dling, can be dealt with by normal testing, and are not necessarily a visible part of an

interface.

As a corner case our fault model forgives all errors when the programmer explicitly

aborts the program. A call to java.lang.System.exit terminates the program and does

not flag any errors even if some of resources have not been properly handled (e.g., even if

a Stream object has not been returned to its accepting “closed” state). Explicit calls to

exit typically mean either that the program’s work is done and that the outside system

will clean up all resources or that the programmer is aware of the error. We are primarily

interested in finding errors in the exception handling of long-running programs and a call to

exit almost invariably means that the programmer has given up on salvaging the situation.

Finally, when we do not have the declared list of checked exceptions for a method

we adopt a conservative fault model that avoids reporting spurious warnings. We assume

that an unknown method can only signal an exception for which there is a lexically enclosing

catch clause. For example:

public int xzar() throws IOException {

int a = MysteryOne(); // unknown method

int b ;

try {

b = MysteryTwo(); // unknown method
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} catch (MysteryException e) {

b = 0;

}

return a + b;

}

If we do not have the declarations for MysteryOne and MysteryTwo in the above code we

will assume that MysteryOne always terminates normally and that MysteryTwo can either

terminate normally or signal a MysteryException. We conservatively do not assume that

either method can signal an IOException even though the enclosing method xzar declares

that it may propagate such exceptions. We conducted our experiments on open-source

programs for which the source code was publicly available, but many of those programs

relied on proprietary third-party libraries for which the source was not freely available.

This fault model may fail to expose real bugs (e.g., if MysteryOne really can signal an

IOException) but will avoid making hasty conclusions about the presence of errors in

the program. Our fault model is thus well-suited for bug-finding but ill-suited to proving

correctness or verifying the absence of bugs.

2.7 A Static Analysis For Exception-Handling Code

We now present a static dataflow analysis for finding bugs in a program with

respect to a given specification and a given fault model. The analysis is path-sensitive,

intraprocedural and context insensitive. It abstracts away data values and only keeps track

of the resources mentioned in the specification.
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2.7.1 Building the Control Flow Graph

The analysis begins by selecting a method from the target program and construct-

ing its control flow graph (CFG). Our CFG construction is standard [ASU86] except for

our handling of method invocations (including constructor calls, etc.) and for our handling

of finally. Method invocations are treated according to our fault model. A method in-

vocation node has an edge leading to the statement that comes after it as well as zero or

more edges representing possible exceptional situations. To determine these edges repre-

senting exceptional control flow we consider in turn each checked exception declared by

the method. For each such exception we inspect each lexically-enclosing catch clause and

determine if the type of the declared raised exception is a subtype of the exception the

catch-clause handles. If it is we add an exceptional control flow edge from the method to

the beginning of that catch clause. If it is not we consider the next catch clause. If there

are no more enclosing catch clauses then the exception can propagate out of the enclosing

method and we add an exceptional control flow edge to the end node of the CFG. Following

our fault model, if we do not have the source for the invoked method we assume that its

list of checked exceptions is exactly equal to the list of lexically-enclosing catch clauses.

Finally clauses are the second complication in our CFG construction. In essence,

we must remember how control reaches a finally block in order to determine where control

flows after that block. In a try-finally statement the finally clause is executed if the try

clause terminates normally or if the try clause signals an exception. If the try clause does

not singal an exception, control flows normally after the finally block. If the try clause

signals an exception, that exception is normally “re-signaled” after the finally clause
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public void A() throws SecurityException, IOException;

public void B() throws NetworkException;

public void C() throws SecurityException;

public void D(); // no exceptions

public void E(); // no exceptions

public void F(); // no exceptions

try {

try {

A();

} catch (IOException io) {

B();

} finally {

C();

// control can either transfer to the D() call two lines down

// or an exception can be raised here ...

}

D();

} catch (SecurityException sec) {

E();

} catch (Exception e) {

F();

}

Path Number A Exception B Exception C Exception Path Trace

1 none - none A CD

2 none - Security A C E

3 Security - none A C E

4 Security - Security A C E

5 IO none none ABCD

6 IO none Security ABC E

7 IO Network none AB F

8 IO Network Security ABC E

Figure 2.10: Example code involving exceptions and finally.
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is executed. However, if the body of the finally clause itself signals a new exception

or executes a continue, break or return statement, that new control flow overrides the

“pending” exception.

Consider the example code in Figure 2.10. There are a number of ways that control

can pass through that code fragment. We enumerate each possible path through the code in

Figure 2.10 in order to illustrate our combined handling of exceptions and finally. For this

example we assume that SecurityExceptions, IOExceptions and NetworkExceptions all

derive directly from a base class Exception. In Figure 2.10 the middle columns record which

exceptions were signaled by the methods A, B or C. A hyphen indicates that the method

invocation was not reached (and thus could not raise an exception) and none indicates that

the method terminated normally (i.e., without raising an exception).

Of the eight control flow paths through the code in Figure 2.10, only the first is

possible if there are no exceptions. Since neither A nor C signaled an exception, control passes

from the finally block to the next statement: D. In all of the other paths the situation is more

complicated. Path #2 demonstrates that a finally block can itself signal an exception.

Path #3 shows that if a try clause raises an exception the finally clause must re-raise that

exception. Path #4 illustrates a common information-masking complaint about exceptions:

without additional information it is not possible to tell at E whether the exception was raised

by A or C. In path #5 the exception signaled by A is caught and handled at B and is thus not

re-signaled after C. Path #6 shows that a finally clause can signal an exception even after

a catch clause has caught or handled one. In Path #7 the exception handler at B itself

signals an exception which is re-signaled after C. Since NetworkException is not a subtype
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A

B

CIO(

Security(

Network(

D

F

ESecurity(

Network)
end

Security)

Figure 2.11: A control flow graph for the example code involving exceptions and finally.

of SecurityException the catch-clause at E is not appropriate and control transfers to F.

Finally, in path #8 everything that can go wrong does and B’s NetworkException is masked

by C’s SecurityException, so control transfers to E instead of F. The notoriously-difficult-

to-verify JSR (jump to subroutine) Java Bytecode instruction was designed specifically in

order to implement this behavior [LY97]. While try-catch-finally is conceptually simple,

it has the most complicated execution description in the language specification [GJS96] and

requires four levels of nested “if”s in its official English description. In short, it contains a

large number of corner cases that programmers often overlook.

Our goal in constructing the control flow graph is to admit exactly those paths

and behaviors. Unfortunately, naively adding exceptional control flow edges to account for

all of the behaviors in Figure 2.10 introduces too many behaviors by failing to account for

context and execution history. Applying the CFG construction algorithm given above to the

code in Figure 2.10 yields a CFG similar to the one in Figure 2.11. Blank edges represent

normal control flow. Labeled edges represent exceptional control flow and are labeled with
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the associated exception (and possibly some context-free reachability information). If the

graph is interpreted directly it includes some infeasible paths. For example, A-C-F-end is

possible in the graph but is not possible in the original code because it involves the finally

block at C propagating a Network exception that was never signaled along that path. We

do not want our analysis to explore that infeasible path because any error reported on it

would necessarily be spurious.

One solution is to duplicate every finally block (and, typically, all of the code that

comes after it) once for each exception it could propagate. This is similar to the common

Java compilation technique of “inlining JSRs”. We chose not to adopt that solution because

we are interested in a scalable analysis and the required duplication is non-trivial.

A second solution is to use a variant of context-free language reachability [RHS95],

as shown in Figure 2.11. In this framework a path through the CFG is only valid if is

described by a certain context-free language. Context-free reachability is typically used with

a language of balanced parentheses in order to obtain a precise context-sensitive dataflow

analysis by correctly matching up method invocations (left parentheses) and returns (right

parentheses) [RHS95]. Here we use left parentheses to indicate “normal” or “originally-

signaled” exceptions and right parentheses to indicate exceptions that are re-signaled after

a finally block. The language is more complicated than the standard nested “{n}n” of

balanced parentheses because it allows both “{”, representing an exception that is not re-

signaled after a finally, and “{}}”, representing an exception that is re-signaled after

multiple finally blocks. In our implementation we compute our path-sensitive dataflow

analysis via model-checking and state-space exploration. As a result we effectively compute
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the CFL inclusion check by maintaining an explicit stack of pending exceptions to re-signal

and only re-signaling an exception along a path when appropriate.

In addition to exceptions, finally clauses also interfere with return, break and

continue statements in a similar manner. For example, if a return statement is executed

inside the try block of a try-finally statement the return value is remembered and the

finally block is executed. If the finally block terminates normally the pending return

is “re-signaled”. If the finally block signals an exception (or executes a return statement

of its own, etc.) it overrides the pending return. We achieve the desired behavior by

implementing return as a special kind of pseudo-exception that can only be “caught” by

the end of a method body. Break and continue statements are handled similarly except

that more types of control flow (e.g., while loops) can “catch” a break or continue pseudo-

exception. For example, we might model the following code:

while (predicate) {

X();

try {

if (this) break; // execute finally block ...

if (that) continue; // ... before leaving

} finally {

Y();

}

}

as equivalent to:

try {

while (predicate) {

try {

X();

try {

if (this) throw BreakPseudoException;

if (that) throw ContinuePseudoException;

} finally {

Y();
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}

} catch (ContinuePseudoException) { }

}

} catch (BreakPseudoException) { }

Thus we will correctly model Java’s behavior of executing the finally clause (and statement

Y) if the break or continue is executed. We use these techniques to build a CFG for each

method in the program.

2.7.2 Dataflow Analysis

Using the control flow graph constructed according to the fault model we now

present our dataflow analysis to find violations of the given specification. This analysis

yields paths through methods on which mistakes may occur and can be used to direct

changes to the source code to improve exception handling. The analysis may mistakenly

report correct code as buggy and may fail to report real errors. We have chosen to take a

fully static approach to avoid the problems of test case generation and the unavailability

of third-party libraries. Path coverage and test case generation are particularly thorny

problems in the context of run-time errors and exceptions, which are typically rare and

difficult to trigger.

Our analysis considers each method body in turn, symbolically executing all code

paths, abstracting away data values but paying special attention to control flow, exceptions

and the specification.

Given the control-flow graph, our flow-sensitive, intraprocedural dataflow analy-

sis [Kil73, DLS02, ECCH00] is designed to find paths along which programs violate the

specification (typically by forgetting to discharge obligations) in the presence of run-time
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visit(f, L) if meth /∈ Σ

visit(〈{s′} ∪ S, L′〉, L) else if f = 〈S ∪ {s}, L′〉 and δ(〈s, meth〉) = s′

visit(〈{s} ∪ S, L′〉, L) else if f = 〈S, L′〉 and δ(〈s0, meth〉) = s

∅ otherwise (indicates a policy violation)

fe =































visit(〈{s′} ∪ S, L′〉, L) if f = 〈S ∪ {s}, L′〉 and δ(〈s, meth〉) = s′

and s′ ∈ F

visit(f, L) otherwise

fother = visit(f, L)

fjoin =















visit(shorter(f, f ′), L) if f = 〈S, L〉 and f ′ = 〈S, L′〉

visit(f, L) ∪ visit(f ′, L) otherwise

visit(〈S, L′〉, L) = {〈S, L′ • L〉}

shorter(〈S, L〉, 〈S, L′〉) =















〈S, L〉 if |L| ≤ |L′|

〈S, L′〉 otherwise

Figure 2.12: Analysis flow functions.
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errors. We abstract away data values, and retain as symbolic dataflow facts a path through

the program and a multiset of outstanding resource safety policy states for that path. That

is, rather than keeping track of which variables hold important resources we merely keep

track of a set of acquired resource states. We begin the analysis of each method body with

an empty path and no obligations. If a dataflow fact at the end of method contains out-

standing obligations (i.e., a resource governed by the specification that is not in an accepting

state), we term it a violation and report it.

The analysis is parametric with respect to a single specification 〈Σ, S, s0, δ, F 〉 (see

Section 2.5). If a specification contains multiple state machines we assume that the program

is checked against each one independently. In practice is it trivial to extend the algorithm

presented here to handle multiple specifications simultaneously. Given such a safety policy

we must still determine what state information to propagate on the graph and give flow and

grouping functions. Much like the ESP [DLS02] and Metacompilation [ECCH00] projects,

we combine a degree of symbolic execution with dataflow and often keep state associated

with multiple distinct paths that pass through the same program point.

Each path-sensitive dataflow fact f is a pair 〈S, L〉. The first component S is

a multiset of specification states. So for each s ∈ S we have s ∈ S. We use a multiset

because it is possible to have multiple outstanding obligations with respect to a single type

of resource. For example, a program could have two open Sockets. The second component

L is a path or list of program points between the start of the method and the current CFG

edge. The path L is important for reporting potential violations. Consider the following

program using the Socket policy from Figure 2.7:

L1: new Socket
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L2: if (predicate) {

L3: Socket.close

}

The dataflow fact f just before program point L3 is the pair 〈{opened}, L2 • L1〉. The

interpretation is that if the program runs such that statements L1 and L2 are executed in

that order there will be one outstanding object governed by the Socket policy and it will be

in the opened state of that policy. We store the path in reverse order, similar to a backtrace

in a debugger, but the choice is arbitrary.

2.7.3 Flow Functions

The flow functions are determined by the safety policy and are given in Figure 2.12.

The four main types of control flow nodes are branches, method invocations, other state-

ments and join points. Because our analysis is path-sensitive and does not always fully

merge dataflow facts at join points each flow function technically takes a single incoming

dataflow fact and computes a set of outgoing dataflow facts. However, in all of the non-join

cases the outgoing set is a singleton set. When an edge does contain a non-trivial set of

dataflow facts the appropriate flow function is applied element-wise to that set.

We handle normal and conditional control flow by abstracting away data values:

control can flow from an if to both the then and the else branch (assuming that the

guard does not raise an exception, etc.) and our dataflow fact propagates directly from

the incoming edge to both outgoing edges. We write visit(f, L) to mean the singleton set

containing fact f with location L appended to its path.

A method invocation may terminate normally, represented by the fn edge in
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Figure 2.12. If the method is not one of the important events in our safety policy (i.e.,

meth /∈ Σ) then we propagate the symbolic state f directly. If the method is part of the

policy and the incoming dataflow fact f contains a state s that could transition on that

method we apply that transition and then append the label L. As a concrete example:

L1: new Socket

L2: Socket.close

The fact f coming in to L2 is 〈{opened}, L1〉. The state s that could transition on

Socket.close is opened. Since δ(opened, Socket.close) = closed, we obtain s′ = closed

and end up with the expected outgoing state 〈{closed}, L2 • L1〉. This is similar to the way

tracked resources are handled in the Vault type system [DF01].

The third possibility for a method involves creating a new important resource.

The first time new Socket occurs in a path we create a new instance of the specification

state machine to track the program’s use of that Socket object. This case and the previous

case could be ambiguous if a constructor function like new Socket has a separate meaning

somewhere else in the specification. We have never seen such a policy in practice and

technically require that any outgoing edge from the start state occur only at the start state

(e.g., ∀(s0, e) ∈ Dom(δ).∀(s′, e′) ∈ Dom(δ). e = e′ =⇒ s′ = s0).

The final case for a method invocation indicates a potential error in the program.

In this case we have an event that is important to the specification but for which there is

no appropriate object. For example, a method that begins with Socket.close does not

have a legal Socket to close. With our simple two-state, two-event safety policies these

violations almost always represent “double closes”. With more complicated policies they

can also represent invoking important methods at the wrong time (e.g., trying to write to a



43

closed File or trying to accept on an un-bound Socket). When we encounter such a path

we report it and stop processing it (i.e., the outgoing fact is the empty set) in order to avoid

cascading error reports.

A method invocation may also raise a declared exception, represented by the fe

edge in Figure 2.12. Note that unlike the successful invocation case and as per our fault

model, we do not typically update the specification state in the outgoing dataflow fact.

This is because the method did not actually terminate successfully and thus presumably

did not actually perform the operation to transform the resource’s state. However, as a

special case we allow an attempt to “discharge an obligation” or move a resource into an

accepting state to succeed even if the method invocation fails. Thus we do not require

that programs loop around close functions, invoking them until they succeed. Since no

programs we have observed do so, it would create unnecessary spurious error reports. The

check s′ ∈ F requires that the result of applying this method would put the object in an

accepting state.

The grouping (or join) function tracks separate paths through the same program

point provided that they have distinct multisets of specification states. Our join function

uses the property simulation approach [DLS02] to grouping sets of symbolic states. We

merge facts with identical obligations by retaining only the shorter path for error reporting

purposes (modeled here with the function shorter(s1, s2)). In general, however, we may end

up considering the same program point multiple times. For example:

if (predicate) {

new Socket

L1:

} else {

new Connection
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L2:

}

L3:

The join point at L3 has incoming edges from L1 and L2. Since an opened Socket and an

opened Connection are not the same, L3 (and all succeeding statements) will be considered

twice: once with the history from L1 and once with the history from L2.

To ensure termination we stop the analysis and flag an error when a program

point occurs twice in a single path with different obligation sets (e.g., if a program acquires

obligations inside a loop). For the safety policies we considered, that never occurred. We

did encounter multiple programs that allocated and freed resources inside loops, but the

(lack of) error handling was always such that an exception would escape the enclosing loop.

The analysis is exponential in the worst case (e.g., sequential if statements with every path

containing a different obligation list) but quite efficient in practice. For example, performing

this analysis on the 57,000-line hibernate program, including parsing, typechecking and

printing out the resulting error traces, took 104 seconds and 46 MB of memory on a 1.6

GHz machine.

The goal of the analysis is to find a path from the start of the method to the end

where a resource governed by the safety policy is not in an accepting state. That is, for

each f = 〈S, L〉 that goes in to the end node of the CFG, if ∃s ∈ S. s /∈ F the analysis

reports a candidate violation along path L. In addition, it is possible to report violations

earlier in the process (e.g., double closes).
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2.7.4 Error Report Filtering

Finally, we use heuristics as a post-processing step to filter candidate violations.

The analysis as presented is conservative in that it will find all violations of the policy with

respect to the fault model but it may also point out spurious warnings. A spurious error

report that refers to code that does not contain a mistake is called a false positive. Based

on a random sample of two of our benchmarks, 30% of the error reports produced by our

analysis are false positives. We believe that number to be unacceptably high because we

want the cost of using this analysis, including the cost of wading through screens of false

reports, to be low. Based on an exhaustive analysis of the false positives reported by this

analysis, we designed three simple filtering rules.

When a violation 〈S, L〉 is reported, we examine its path L. Every time the path

passes through a conditional of the form t = null we look for a state s ∈ S where s /∈ F

and s represents an object of type t. If we find such a state we remove it from S. This

addresses the very common case of checking for null resources:

if (sock != null) {

try {

sock.close();

} catch (Exception e) { }

}

Since we abstract away data values, we would report a false positive in such cases. Intu-

itively, the resource is not leaked along this path because the program has checked and

ensured that it was not allocated.

Second, we examine L for assignments of the form field = t. For each such

assignment we remove one non-accepting state of type t from S. When important resources
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are assigned to object fields, the object almost invariably contains a separate “cleanup”

method that is charged with releasing those resources. As we shall discuss in Section 4.2,

this cleanup method is almost never an actual finalizer.

Finally, if L contains a return t, we remove one non-accepting state of type t

from S. Methods with such return statements are effectively wrappers around the standard

library constructors and the obligation for handling the resource falls to the caller. We

did not observe wrappers for standard library close functions, so we do not similarly

remove obligations based on values passed as function arguments. If our analysis were

interprocedural we would not need this filtering rule.

If the set S has been depleted so as to contain only states s ∈ F the candidate

violation is not reported. Our first heuristic helps to reduce false positives introduced by

data abstraction. The second and third heuristics help to address false positives caused

by the intraprocedural nature of our analysis. These three simple filters eliminate all false

positives we encountered but could cause this analysis to miss real errors. Based on a

random sample of two of our benchmarks, applying these three filters causes our analysis

to miss 10 real bugs for every 100 real bugs it reports. We discuss the analysis results in

the next section.

2.7.5 Analysis Summary

Our fault model is specific to Java, and we use it to construct a control-flow

graph where method invocations can raise declared exceptions. We chose Java because

experiments show that exceptions and run-time errors are correlated and because method

signatures include exception information. Our dataflow analysis is language-independent.
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The analysis is path-sensitive because we want to consider control flow and because the

abstract state of a resource (e.g., “opened” or “closed”) can change from program point

to program point. The analysis is intraprocedural for efficiency since we track separate

execution paths. This leads to false positives, which we can eliminate easily in practice,

but our heuristics for doing so may also mask real errors. The analysis abstracts away data

values, keeping instead a set of outstanding resource states with respect to the specifica-

tion as per-path dataflow facts. This abstraction can also lead to false positives and false

negatives, but stylized usage patterns allow us to eliminate the false positives in practice.

At join points we keep dataflow facts separate if they have distinct sets of resources.1 We

report a violation when a path leaves a method (normally or exceptionally) with a resource

that is not in an accepting state.

2.8 Poor Handling Abounds

In this section we apply the analysis from Section 2.7.2 and the specifications from

Section 2.5 to show that many programs make mistakes in their handling of exceptional

situations. We consider a diverse body of twenty-seven Java programs totaling four million

lines of code. Each program is described briefly in Figure 2.13. Most of the programs

were taken from the Sourceforge open source program repository [Sou03]. The programs

include databases, business software, networking applications and software development

tools. Most of the programs are well-known real-world applications in their areas. For

example, compiere claims to be “the most popular open source business application with

1In the analysis presented, keeping two states will usually yield a violation later. We present the general
join so that if the analysis abstraction is made more precise (e.g., if it captures correlated conditionals) the
join will work unchanged.
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Program Description

javad Java class file disassembler
javacc parser generator for Java
jtar GNU tape archive utility ported to Java
jatlite infrastructure for building robustly communicating agents
toba translates Java class files into C source code
osage Java object relational persistence framework
jcc direct Java source to C translator
quartz job scheduling system that can be integrated with J2EE
infinity resource browser and editor for the Infinity game engine
ejbca J2EE-based certificate authority
ohioedge multi-functional customer relationship management software
jogg graphical mp3 player for ogg vorbis files
staf software testing automation framework
hibernate object / relational persistence and query service
jaxme compiles Java/XML binding schema to Java classes
axion relational database management system
hsqldb high-performance SQL relational database engine
cayenne object relational mapping framework and GUI modeling tools
sablecc framework for generating compilers and interpreters
jboss enterprise middleware system and application server
mckoi-sql SQL database system
portal web portal: personalization, web email, blogs,

document libraries, message boards, etc.
pcgen character generator for role-playing games
compiere enterprise resource planning, customer relationship

management, supply chain management and accounting
aspectj aspect-oriented extension to Java
ptolemy2 heterogeneous concurrent modeling and design
eclipse integrated development environment

Figure 2.13: Description of Java programs analyzed.
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800,000+ downloads”, ptolemy2 is a popular modeling program [BKL+04], jboss claims

to be the “#1 most widely used J2EE application server”, hibernate [Hib04] claims to be

the “#1 most widely used object/relation mapping solution for Java”, and Eclipse has won

dozens of awards for best development environment.

Figure 2.14 shows results from this analysis. The “Methods” column shows the

number of methods that violate at least one policy. The “Database” policy refers to the API

for linking Java programs to SQL databases given in Figure 2.9. Java programs consider

this policy to be particularly important: the vast majority of finally blocks tried to deal

with it. The Stream policy deals with any class (even a user-defined one) that inherits

from java.io.InputStream but not java.io.FileInputStream and is given in Figure 2.8.

The File policy covers acquiring and releasing java.io.FileInputStreams and is also

given in Figure 2.8. Although both “normal” Streams and FileStreams are important,

many developers consider FileStreams to be more important so we have separated out the

numbers that refer to them. We also applied the Socket policy from Figure 2.7. and found

14 paths with violations in 4 of the programs. Since the number of Socket violations is low

when compared to the other policies we will not discuss them directly.

In the larger programs, much of the application logic did not interact with our

safety policies. For example, in eclipse and ptolemy2 only 10% of the source files men-

tioned resources covered by these safety policies, and in aspectj only 16% of the files did,

making them behave like smaller programs.

Figure 2.14 includes every violation reported by the analysis that was not auto-

matically filtered out using the heuristic techniques presented in Section 3.4.1. All of the
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Lines Methods paths with errors
Program of with per safety policy

Code Errors Database File Stream

javad 2000 4k 1 0 0 1
javacc 3.0 13k 4 0 36 0
jtar 1.21 17k 5 0 7 4
jatlite 3.5.97 18k 6 0 4 0
toba 1.1c 19k 6 0 1 20
osage 1.0p10 20k 3 15 0 0
jcc 0.02 26k 0 0 0 0
quartz 1.0.6 27k 17 46 5 20
infinity 1.28 28k 14 0 165 1
ejbca 2.0b2 33k 31 0 39 117
ohioedge 1.3.1 40k 15 23 5 0
jogg 1.1.3 47k 7 0 11 2
staf 2.4.5 55k 12 0 76 0
hibernate 2.0b4 57k 13 34 6 19
jaxme 1.54 58k 6 1 12 0
axion 1.0m2 65k 15 1 61 5
hsqldb 1.7.1 71k 18 22 8 13
cayenne 1.0b4 86k 7 2 27 6
sablecc 2.17.4 99k 3 0 0 6
jboss 3.0.6 107k 40 134 5 53
mckoi-sql 1.0.2 118k 37 37 6 190
portal 1.8.0 162k 39 99 20 13
pcgen 4.3.5 178k 17 0 120 0
compiere 2.4.4 230k 322 715 10 9
aspectj 1.1 319k 27 0 50 48
ptolemy2 3.0.2 362k 27 0 504 46
eclipse 5.25.03 1.6M 126 0 181 252

total 3.9M 818 1129 1359 825

Figure 2.14: Error handling mistakes by program and policy.

The “Methods” column indicates the total number of distinct methods that contain viola-

tions. The “Database”, “File”, and “Stream” columns give the total number of acyclic

control-flow paths within those methods that violate the given policy.
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methods with errors were then manually inspected to verify that they contained at least

one error. This manual inspection assumed that a method could raise any of its declared

exceptions (i.e., it used the same fault model discussed in Section 2.6). The heuristics elim-

inate all false positives that the analysis would report on these programs. Thus from the

perspective of our fault model there are no false positives in Figure 2.14.

The heuristic filters reduced the number of reported methods by 20% (from 1034

to 818) and the number of reported paths by 15% (from 3922 to 3320). The applicability of

a heuristic depends on the coding practices of the program. For example, in ejbca, which

favors populating catch blocks with statements like if (c != null) c.close(), there

are 10 methods that are not reported because of the if filter and 4 that are not reported

because of a combination of the if and return filters. In mckoi-sql, which makes use

of wrappers and accessors like getInputStream(), 25 methods are elided by the return

filter, 2 are not reported because of the assignment filter, and 1 is suppressed because of a

combination of filters.

From our perspective, such false positives are worth mentioning because they rep-

resent places where code quality could be improved by other language-level mechanisms; if

an analysis cannot reason about the code, the programmer may not be able to either.

All paths in Figure 2.14 arose in the presence of exceptions the program did not

handle correctly. More than half of these paths featured some sort of exception handling

(i.e., the exception was caught), but the resource was still leaked. This result demonstrates

that existing exception handlers contain mistakes.

The most common problematic exception was the Java IOException: it occurred
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somewhere in 597 of the error paths and was the final, uncaught exception in 474 of them.

The SQLException was a close second, occurring in 877 traces and going uncaught in 114

of them. The SecurityException was third with 86 mentions and 68 uncaught instances.

The disparity between these two numbers is quite telling: it shows that programs have

some sort of error handling (SQLExceptions are caught) but that the handling code itself

is not always correct (resources are still leaked). Other common exceptions with poor error

handling included FileNotFound, ClassNotFound and UnsupportedEncoding.

A single path may violate multiple safety policies: for example, along an excep-

tional path the program might forget to close a Socket and a ResultSet, thus violating

both the Socket and the “Database” specification. For simplicity, such cases are categorized

in favor of the leftmost policy in Figure 2.14. To give one example, of the 59 possible error

paths reported in hibernate, 34 involved violating multiple policies along a single path

with up to 4 forgotten resources at once. Errors that cross safety policies argue strongly for

the need to have an error-handling mechanism that supports multiple resources in sequence.

Finally, some programs contain some methods that never close these resources at

all and others that close them carefully. For example, in ejbca’s HttpGetCert.sendHttpReq

method, a BufferedReader is created but not closed (although two other resources are

closed in that method). However, in the loadUserDB method of ejbca’s

RemoveVerifyServlet class, BufferedReader is given its own try-finally statement and

its close call is given its own exception handler within that finally block. We report

sendHttpReq as a method with an error-handling mistake, following Engler et al. [ECC01],

since the ejbca program takes care to handle BufferedReaders in some cases and is thus
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inconsistent with itself.

2.9 Analysis Conclusions

The analysis results in Section 2.8 show that common Java programs make a large

number of mistakes with respect to important resources in the presence of exceptional

situations. We found over 800 such mistakes in almost 4 million lines of code. Finding that

many methods with errors helps to justify our design decisions.

Our fault model was actually fairly conservative with respect to injecting ex-

ceptional situations: neither unchecked exceptions nor third-party code were considered.

Adding in other sources of exceptional situations might lead to discovering more bugs but

might also lead to less believable bug reports. We will return to the issue of the relative

importance of the bugs we find in Section 3.8.

Our analysis was intraprocedural, both because we were interested in scalability

and because a complete call graph is difficult to construct for dynamically-bound component-

based Java programs. Our analysis also abstracted away data values. Both of these choices

helped to introduce false positives. We were able to filter out all false positives in practice,

but our simple filtering rules led to a 10% false negative rate. We reported around 800

mistakes and could presumably have reported 80 more if we had been willing to pay the

price of wading through false positives or constructing a more precise analysis. However,

we feel it is more important to concentrate on fixing the 800 bugs we have already located

or to find new classes of bugs by using better specifications than to try to find a few more

similar mistakes.
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Our analysis was motivated by an examination of the difficulties in using language-

level exception handling (Section 2.1). We then looked at one restricted notion of what

programs should be doing in the presence of exceptions (Section 2.5). We also had to put

forth a fault model describing the interaction between legitimate real-world exceptional

situations and software (Section 2.6). Given all of those components we presented a static

dataflow analysis (Section 2.7).

We considered only a small number of simple specifications under the assumption

that they would be sufficient to find a large number of mistakes. That assumption was

borne out in practice. In the next chapter we will return to the issue of more complex

specifications.
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I don’t divide the world into the weak
and the strong, or the successes and
the failures, those who make it or those
who don’t. I divide the world into
learners and non-learners.

Benjamin Barber

Chapter 3

Mining Specifications To Find

Defects

In this chapter we present an algorithm for automatically inferring specifications

like those in Section 2.5. The algorithm is based on our previous observations about how

programs deal with exceptional situations from Chapter 2. We will compare our algorithm

to others and perform a qualitative and quantitative evaluation. Our goal is to present an

algorithm that is mostly automatic, works on large programs, and finds specifications that

can be used to find bugs and thus to improve software quality. The specification miner

proposed here was first discussed in earlier work [WN05].

3.1 Introduction

Analyses that attempt to find software bugs or verify programs need a formal

notion of what the program should be doing. Such a notion is often called a partial cor-



56

rectness specification or a safety policy. The qualifier “partial correctness” means that only

some aspects of the programs behavior will be regulated. A partial correctness specification

might cover the use of sockets or the handshaking in a network protocol but would not cover

everything it means to be a webserver. The qualifier “safety” refers to a policy where viola-

tions can be detected in a fixed amount of time by a monitor. Safety policies typically have

a “do not” flavor: do not attempt to acquire a lock you already have and do not attempt

to send data over a closed socket. In contrast, “liveness” policies often deal with things

that happen “eventually” in the future: the scheduler eventually services every request, the

program will perform this action infinitely often or every lock is eventually released. In

the case of specifications governing resources and APIs the line between safety and liveness

often blurs for the special case of releasing a resource. A policy requiring a resource to be

released eventually falls under the category of liveness, but can often be shoehorned into

the realm of safety by requiring the the resource be released within a finite time or by the

end of the method.

We are interested in finding bugs in programs before the programs are deployed.

Verification tools that find such bugs require specifications. Most commonly available tools

require or accept safety policies expressed as finite state machines (as in Section 2.5). For

example, the SLAM [BR01], MOPS [CDW04], ESP [DLS02], Vault [DF01], Metacompi-

lation [ECC01] and ESC [LN98] projects all make use of such specifications, as does the

analysis we presented in Chapter 2.
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Figure 3.1: Windows Device Driver IO Request Packet Specification

3.2 Specification Complexity

Creating correct specifications is difficult, time-consuming and error-prone. Veri-

fication tools can only point out disagreements between the program and the specification.

Even assuming a sound and complete tool, an imperfect specification can still yield false

positives, by pointing out non-bugs as bugs, and false negatives, by failing to point out

desired bugs. Crafting specifications typically requires program-specific knowledge.

Figure 3.1 shows an example of a complicated safety policy, a variant of which

is used in practice [BR01]. The policy governs asynchronous pending and completion by

device drivers in Microsoft Windows and was painstakingly formalized by Manuel Fähndrich

from driver documentation. One problem with such complicated specifications is that it is

difficult to tell if the specification itself is correct. When a specification is used to find
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bugs in a program, a potential bug is really just a disagreement between the specification

and the program. In many cases it is the specification that needs to be amended. Some

research projects explicitly address the task of debugging a faulty specification [AMBL03]

but it is typically an expensive manual process. Since we are interested in low-overhead

techniques that can be applied immediately we will consider simpler specifications (like

those in Section 2.5) whenever possible. Smaller specifications can typically be inspected

and verified rapidly (e.g., in under thirty seconds).

One way to reduce the cost of writing specifications is to use implicit language-

based specifications (e.g., null pointers should not be dereferenced) or to reuse standard

library specifications. More recently, however, a variety of attempts have been made to infer

program-specific temporal specifications and API usage rules [ACMN05, ABL02, ECC01,

WML02] automatically. These specification mining techniques take programs (and possibly

dynamic traces, or other hints) as input and produce candidate specifications as output. In

general, specifications could also be used for documenting, refactoring, testing, debugging,

maintaining, and optimizing a program.

We focus here on finding and evaluating specifications in a particular context:

given a program and a generic verification tool, what specification mining technique should

be used to find bugs in the program and thereby improve software quality? Thus we are

concerned both with the number of “real” and “false positive” specifications produced by

the miner and with the number of “real” and “false positive” bugs found using those “real”

specifications.
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enter class NormalizedEntityPersister’s lock() method
invoke hibernate.LockMode.greaterThan()
invoke hibernate.engine.SessionImplementor.getBatcher()
invoke java.util.Map.get()
invoke hibernate.engine.Batcher.prepareStatement()
invoke hibernate.persister.ClassPersister.getIdentifierType()
invoke hibernate.type.Type.nullSafeSet()
invoke hibernate.persister.ClassPersister.isVersioned()
invoke hibernate.persister.ClassPersister.getVersionType()
invoke hibernate.type.Type.nullSafeSet()
exception hibernate.Hibernate2Exception
invoke hibernate.engine.SessionImplementor.getBatcher()
invoke hibernate.engine.Batcher.closeStatement()

Figure 3.2: Static trace fragment from hibernate

3.3 General Specification Mining

A specification miner takes a program as input and produces one or more candidate

specifications with respect to a set of interesting program events. The program is typically

presented to the miner in the form of a set of static or dynamic traces, each of which

is a sequence of events and annotations (e.g., data values, records of raised exceptions).

Static traces are generated from the program source code. Dynamic traces are produced

by running an instrumented version of the program against a workload. In practice, events

are usually taken to be context-free function calls (i.e., just the name of the called function

rather than the entire call stack).

Figure 3.2 shows an example static trace fragment from the hibernate program.

The trace begins inside the lock method of a class. A number of method invocations occur in

sequence, an exception is raised, and then some additional methods are invoked (presumably

inside a catch or finally block). The full trace would include additional information like
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Session sess = sfac.openSession();

Transaction tx;

try {
tx = sess.beginTransaction();

// do some work

tx.commit();

} catch (Exception e) {
if (tx != null) tx.rollback();

throw e;

} finally {
sess.close();

}

Figure 3.3: Documented Session temporal safety policy for hibernate

line numbers, argument types and values, and control flow. A specification miner would be

given a large set of such traces from which to extract a candidate specifications.

Mined specifications (or policies) are typically finite state machines with events

as edges. Miners typically produce state-machine specifications in which the edge labels Σ

are a subset of the events from the traces. A run of the program adheres to the policy if

it generates a sequence of events accepted by the state machine. As in Section 3.3, such

policies commonly limit how an interface may be invoked (e.g., close cannot be called

before open and must be called after it). Many program verifiers can check such properties,

either per-object (as a form of typestate) or globally. Ammons et al. [ABL02] present a

more formal treatment of the mining problem.

As a concrete example, we consider a policy for the interfaces of the

SessionFactory, Session and Transaction classes in the hibernate program, a 57,000-

line framework that provides persistent Java objects [Hib04]. The Session class is the

central interface between hibernate and a client. The Session documentation includes
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explicit pseudocode and an injunction that clients should adhere to it. The code and five-

state state machine specification are shown in Figure 3.3. We denote SessionFactory by

SF, Session by S, and Transaction by T. A typical use of this interface would visit states

1 through 3, “do some work” there (involving events like S.flush and S.save that are

not part of the input alphabet of the FSM and thus do not affect it), and then visit 5 and

return to 1. In the next section we discuss our mining algorithm using this specification as

a concrete example.

3.4 Specification Mining Algorithm

Our work on specification mining was motivated by observations of run-time error

handling mistakes. Based on Chapter 2 we believe that client code frequently violates

simple API specifications in exceptional situations (i.e., in the presence of run-time errors).

We found such bugs using generic “library” specifications (i.e., the Socket, Stream and

Database rules from Section 2.5) but we believe that we will be able to have a greater

impact on software quality by looking for program-specific mistakes. Our mining algorithm

produces policies dealing with resource leaks or forgotten obligations. We have found that

programs repeatedly violate such policies, especially when run-time errors are involved.

Our technique is in the same family as that of Engler et al. [ECC01] but is based

on assumptions about run-time errors, chooses candidate event pairs differently, presents

significantly fewer candidate specifications and ranks presented candidates differently.

We attempt to learn pairs of events 〈a, b〉 corresponding to the two-state state

machine policy given by the regular expression (ab)∗. For example, from traces generated by



62

the state machine in Figure 3.3 we might learn 〈SF.openSession, S.close〉, because every

accepting sequence that transitions from state 1 to state 2 via SF.openSession must also

transition from state 5 to state 1 via S.close. We learn multiple candidate specifications

per program and present a ranked list to the user. For example, we might also learn the

candidate specification 〈SF.openSession, T.rollback〉. Unlike some mining algorithms

that produce detailed policies that must be manually debugged or modified, we produce

simple policies that are designed to be accepted or rejected. With this approach we will

not be able to learn the “complete” policies in Figure 3.3 (let alone Figure 3.1). However,

the full policy in Figure 3.3 is closely approximated by 〈SF.openSession, S.close〉 and

〈S.beginTransaction, T.commit〉.

In a normal execution, events a and b may be separated by other events and difficult

to discern as a pair. After an error has occurred, however, the cleanup code is usually

much less cluttered and contains only operations required for correctness. Intuitively, a

programmer who is aware of the specification will have included b in an exception handler,

finally block, or other piece of cleanup code, making it easier to pick up than in a normal

execution path. The pseudocode in Figure 3.3 demonstrates this sort of cleanup for the

T.rollback and S.close events. If S.close is the only legal way to discharge a Session

obligation, we expect to see S.close in well-written cleanup code.

We classify intraprocedural static traces as “error” traces if they involve excep-

tional control flow. These are the traces containing at least one method call that terminates

with the raising of an exception. As described in Section 2.6, a Java method invocation

can either complete successfully or signal a run-time error by raising one of its declared
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exceptions. For example, SF.openSession can either return a Session object or raise a

program-specific HibernateException. Traces in which an exception is raised by a method

invocation (i.e., traces in which an uncaught exception raised by a callee falls through and

is handled by a caller) are “error” traces. The trace fragment in Figure 3.2 is an error trace.

Such exceptions are assumed to signal run-time errors or unusual situations. Traces

in which no such exceptions are raised are “normal” traces. In Figure 3.3, a normal trace

of events would involve the state sequence 1–2–3–5–1. An error trace would visit 1–2–5–1

or 1–2–3–4–5–1.

3.4.1 Filtering Candidate Specifications

In a trace consisting of k distinct events there are k(k − 1)/2 possible candidate

two-state specifications supported by the trace (i.e., 〈event i, event j〉 for all 1 ≤ i < j <

k). Our set of static traces for hibernate alone includes 2028 unique events. Not all

of them occur in the same trace but the number of potential specifications is still quite

large. For example, the trace fragment in Figure 3.2 admits around fifty possible two-state

specifications. A specification miner must therefore filter out the vast majority of those

potential specifications in order to obtain a smaller list of true candidate specifications.

Let Nab be the number of normal traces that have a followed by b, and let Na be

the number of normal traces that have a but not b. We define Eab and Ea similarly for

error traces. Given a set of traces, we consider all event pairs 〈a, b〉 from those traces such

that all of the following occur:

Exceptional control flow (ex). Our novel filtering criterion is that event b must

occur at least once in some cleanup code (e.g., a catch or finally block): we require
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Eab > 0. We assume that if the policy is important to the programmer, language-level

error handling will be used at least once to enforce it. In hibernate, the SF.openSession

and S.beginTransaction events never occur in cleanup code, thus ruling them out as the

second event in a pair. The T.commit, T.rollback and S.close events all do occur in

cleanup code, however. Other miners limit events to those on a user-specified list. For

example, in Engler et al. [ECC01] the list includes functions whose names contain substring

like “lock”, “unlock”, or “acquire”. We prefer to automate the creation of this list because

of the cost of acquiring specific knowledge about each target program. However, if such

domain knowledge is available, it can be used instead of, or in addition to, the default

from cleanup code. The occurrence of the event in normal execution traces will be used in

Section 3.4.2 to rank candidate specifications.

One error (oe). There must at least one error trace with a but without b: we

require Ea > 0. We are here only interested in learning specifications that will lead to finding

program errors, and we assume that the programmer will make mistakes in the handling of

exceptional situations. In contract, normal traces with a but not b would suggest that 〈a,

b〉 is not a specification since we assume that the programmer adheres to the specification

on easier-to-understand non-exceptional paths. Note that a specification miner interested

in mining specifications for some task aside from bug-finding (e.g., program understanding

or refactoring) would not use this filtering rule.

Same package (sp). Events a and b must be declared in the same package. For

example, we assume that no temporal specification will be concerned with the relative order

of an invocation of an org.apache.xpath.Arg method and a net.sf.Hibernate.Session
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method from separate libraries. The user can specify wider or narrower related groups if

such information is available.

Dataflow (df). Every value and receiver object expression in b must also be in

a. When dealing with static traces we require that every non-primitive type in b also occur

in a. We thus assume that Session SessionFactory.openSession() may be followed by

void Session.close() but forbid the opposite ordering. Intuitively, this also corresponds

to finding edges that share the same node in policies like Figure 3.3. This notion is in

contrast to other miners where a more precise dataflow analysis rules out some unwanted

specifications. In our experiments this lightweight dataflow requirement has been sufficient

to capture our intuitive notion of correlated events.

Given a set of candidate specifications that meet those requirements, we then rank

them before presenting them to the user.

3.4.2 Ranking Candidate Specifications

In order to improve the usability of this technique, we present to the user a ranked

list of the candidate specifications that satisfy the criteria described above. Our heuristics

will assign higher ranks to candidates that are more likely to be real policies. We do not

rank policies based on the number of bugs the policy would find in the program. However,

as we will see in Section 2.8, ranking plays a much smaller role than eliminating extraneous

candidates.

We assume 〈a, b〉 is more likely to be a policy if the programmer intends to adhere

to it many times. We assume that normal traces represent the intent of the programmer

and that some error traces represent unforeseen circumstances likely to contain bugs; thus
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Event a Event b Real Na Nab Ea Eab Fail rank z-rnk z-rnk|N
SF.openSessi S.close Yes 3 100 1348 1040 0.971 -73.5 2.40
S.beginTrans S.close ? 2 56 1037 501 0.966 -73.3 1.66
S.beginTrans T.commit Yes 2 56 565 973 0.966 -33.9 1.66
S.flush S.close no 9 39 200 473 0.812 -17.0 -2.02

T.commit S.close ? 1 57 474 504 df 0.983 -38.5 2.10
S.beginTrans S.save no 4 54 37 1501 ex 0.931 9.90 0.788
SF.openSessi T.commit ? 47 56 1415 973 df 0.544 -81.0 -12.1
SF.openSessi println no 82 21 2121 267 sp 0.204 -130 -23.4

Figure 3.4: Static trace observations for Session events in hibernate.

we rank pairs according to the fraction of normal traces in which a is followed by b.

Our ranking for a candidate 〈a, b〉 is Nab/(Nab + Na). The best ranking is 1, and

a reported specification with rank 1 has a followed by b in all normal paths. This ranking

follows our earlier intuition that a pair for which Na is high is unlikely to be considered a

viable candidate.

Figure 3.4 shows observations for Session-related events on a set of static traces.

The “real” column indicates whether 〈a, b〉 is definitely (Yes), possibly (?) or definitely not

(no) a valid policy based on Figure 3.3. Na is the number traces with a but not b, Nab is the

number of normal traces with a followed by b. Ea and Eab measure the same figures for error

traces. The counts are based on our dataset of hibernate static traces. The “Fail” column

indicates which of our filtering requirements the pair fails to meet. Only the first four pairs

meet the requirements and would be reported as candidates by our algorithm. The “rank”

column reports Nab/(Na + Nab) and high values indicate more likely specifications. The

“z-rnk” column shows the z-statistic applied to all traces as in Engler et al. [ECC01], while

the “z-rnk|N” column shows the z-statistic restricted to normal traces.

All eight pairs could potentially be policies, but our requirements in Section 3.4.1
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filter out the last four. Since SF.openSession does not occur in any error-handling code,

we do not consider pairs like 〈S.close, SF.openSession〉. As desired, we rule out pairs

like 〈SF.openSession, T.commit〉 with our dataflow requirement (there is no Transaction

object available in event a). Our package requirement correctly rules out policies involving

printf-like logging methods. Although logging functions do occur in cleanup code and can

be connected by dataflow to other important events (e.g., if the object under consideration

is cast to a string before being passed to a logging function), they are rarely part of the

same package as important objects. Finally, while we cannot rule out pairs like 〈S.flush,

S.close〉 (where S.flush is one of the “do some work” options that would occur at state 3

of Figure 3.3), we rank it lower because a smaller fraction of normal paths have that pairing

(e.g., in Figure 3.4 that pair ranks 0.812 while the best pair involving S.close ranks 0.971).

The z-rank and z-rank|N columns of Figure 3.4 show the result of using the z-

statistic for proportions [FPP98], an alternative ranking scheme, to rank candidate speci-

fications, with the z-rank|N column being computed over normal traces only. The z-rank

was used by Engler et al. [ECC01]. The z-statistic increases with the total number of ob-

servations involving a and decreases with the number of observations involving a but not b.

Ignoring some constant factors, z-rank|N is equal to our ranking multiplied by
√

Na + Nab.

We provide an empirical comparison of these three rankings in Section 2.8.

3.5 Other Specification Mining Techniques

We now describe the main characteristics of several existing specification mining

approaches.
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Strauss. Ammons et al. [ABL02] present a miner in which events from dynamic

traces that are related by traditional dataflow dependencies form a scenario. The user pro-

vides a seed event and a maximum scenario size N . A scenario contains at most N ancestors

and at most N descendants of the seed event. The seed can be any interesting event that is

assumed to play a role in the specification. Such scenarios are fed to a probabilistic finite

state machine learner. The output of the learner, a single policy, is minimized and may

further be “cored” by removing infrequently traversed edges or “debugged” and simplified

with the user’s help [AMBL03].

WML-static. Whaley et al. [WML02] propose two methods for deriving interface

specifications for classes based on an explicit representation of typestate in member fields.

In the first, the user specifies a class in the program. Traces are generated stat-

ically by considering all pairs 〈a, b〉 of invocations for methods a and b of that class. If b

conditionally raises an exception when a field has a certain constant value and a always sets

that field to that value, 〈a, b〉 is considered a violation of the interface policy. For example,

the close method might set the field opened to false, and the read method might raise an

exception if opened is false. The single final specification consists of all other pairs 〈a, b〉,

represented as an NFA with one state per method. This miner explicitly looks for “a must

not be followed by b” requirements, and by considering all possible method pair interactions

it discovers what can follow a as well. In our experiments, we used an extended version of

the miner that considers multiple fields and inlines boolean methods.

JIST. The JIST tool of Alur et al. [ACMN05] refines the WML-static miner by

using predicate abstraction for a more precise dataflow analysis. The user specifies a class
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and an undesired exception, as well as providing a set of predicates and a specification of

size k. A boolean model of the class is constructed based on the predicate set, and a model

checker determines if invoking a sequence of methods raises the given exception. If it can,

that sequence is removed from the specification. The process finds the most permissive

policy of that size that is safe with respect to the predicates and the exception. As with

Strauss, the output of the analysis is minimized using an off-the-shelf FSM library. In

a WML-static policy, states represent the last invoked method. In JIST, states represent

predicate valuations, which in turn represent object state. For example, JIST could produce

a policy in which the sequence 〈a, b〉 is allowed but 〈a, a, b〉 is not. Thus, in JIST’s more

general policies, states do not correspond directly to the last method invocation.

WML-dynamic. Whaley et al. [WML02] also present a dynamic trace analysis

that learns a permissive policy for a given class. Such a permissive specification is the most

restrictive policy that accepts all of the training traces. Each field of the class is considered

separately. Only events representing client calls to methods of that class that read or write

that field are examined. If a is immediately followed by b in the trace, an edge from a to

b is added to the policy. The single output policy for the class is formed from the per-field

policies.

ECC. Engler et al. [ECC01] describe a technique for mining rules of the form “b

must follow a” as part of a larger work on may-must beliefs, bugs, and deviant behavior. If

b follows a in any trace, the event pair 〈a, b〉 is considered as a candidate specification.

A pair 〈a, b〉 is a candidate policy if the events a and b are related by dataflow

and if there are both traces in which a is followed by b and traces in which a is not followed
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by b. A series of dependency checks is employed: two events are related if they have either

the same first argument, or have no arguments, or if the return value from the first passed

as the sole argument to the second. The user may also restrict attention to a certain set of

methods.

ECC produces a large number of candidate policies. Engler et al. use the z-statistic

for proportions to hierarchically rank candidates:

z(n, e, p0) = (e/n − p0)/
√

p0(1 − p0)/n

where n is the number of traces that contain an a followed by a related b, and e is the number

of traces that contain an a without such a b. The z-statistic measures the difference between

the observed ratio and an expected ratio p0. Engler et al. use the ranking because it grows

with the frequency with which the pair is observed together and decreases with the number

of counter-examples observed. They take p0 = 0.9 based on the assumption that perfect

fits are uninteresting in bug-finding and that error cases are found near counter-examples.

In our experiments we have found that ECC’s assumptions tend to hold true for normal

traces but not for error traces (where the frequency counts are quite high if the traces are

static and often quite low if the traces are dynamic).

3.6 Qualitative Comparison of Mining Techniques

In this section we present experiments comparing these mining techniques. We

evaluate a miner in terms of the policy it produces and later in terms of the number of bugs

found by the that policy. When comparing miners we abbreviate our miner (defined in

Section 3.4) by WN. Specifications can have many other uses (e.g., refactoring, optimizing,
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proofs of correctness, test suite evaluation, program understanding, etc.), but such uses

tend to be even more difficult to compare and evaluate directly. We leave a comparative

study with different evaluations for future work.

The first experiment compares miner performance on policies governing

hibernate’s SessionFactory, Session and Transaction classes, as described in Sec-

tion 3.3. This example was chosen because one policy for it is clearly described in the

documentation, and also because that policy is complex enough that none of the miners

can expect to learn it perfectly (e.g., our technique is unable to find all of the pieces of the

full specification because of its assumptions about run-time errors). ECC and our technique

both find policies about these classes (and others) automatically. For the purposes of com-

parison, however, we restrict all miners to policies about these three classes. For Strauss,

WML and JIST we also provide all of the appropriate parameters (e.g., class names, pred-

icates). We present the mined specifications, describe them qualitatively, and then report

the number of bugs each specification finds.

For the purposes of the comparison we present the same raw trace data to each

algorithm that looks at client code. Different techniques ignore different trace aspects (e.g.,

ECC ignores package declarations, our technique ignores precise data values, Strauss ignores

exception annotations). In addition, some amount of human help was given to every miner.

For ECC and WN, two of the top seven candidate policies were manually selected. For

Strauss and WML-dynamic, a slice or core of the learned policy was selected. For JIST and

WML-static, all relevant predicates and fields were given.
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Figure 3.5: A slice of the Session policy learned by Strauss.

3.6.1 Mined hibernate Session specifications

Strauss, WML-dynamic, ECC, and our technique all learned policies similar to the

documentation-based policy shown in Figure 3.3.

The Strauss policy (Figure 3.5) captures the beginning and the end of the Fig-

ure 3.3 (e.g., start with openSession, end with close) closely but is less precise than

Figure 3.3 in the middle. Strauss’s use of frequency information means that common se-

quences of events like find and delete are included as part of the policy. Paths through

states 2–6 are all particular instantiations of the “do some work” state 3 in Figure 3.3.

Compared to Figure 3.3, a sequence of two flush events after an openSession is incor-

rectly rejected by the Strauss policy while a sequence that has beginTransaction but no

rollback or commit is incorrectly accepted. Figure 3.5 gives the “hot core” of the policy;

the full learned specification overfits the data and has 10 states and 45 transitions.

The WML-dynamic policy permissively accepts all of the input traces. A slice

is shown in Figure 3.6, the full policy has 27 states and 117 transitions. We abbreviate
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Figure 3.6: A slice of the Session policy learned by WML-dynamic.

# z-rank Event a Event b Real

1 9.896 S.beginTransaction S.save Yes

2 1.686 S.reconnect S.load no

3 1.634 S.getLockMode S.close no

4 0.609 SF.openConnection SF.closeConnection Yes

5 0.430 S.disconnect S.reconnect no

6 0.309 S.getLockMode S.load no

7 -0.430 S.disconnect S.load no

Figure 3.7: The top seven Session policies learned by ECC.

openSession by openS and so on for readability. The slice captures the highlights of Fig-

ure 3.3 (e.g., the openSession-beginTransaction-commit-close cycle in states 1–2–3–5–6)

but fails to reject observed illegal behavior (e.g., forgetting close) and rejects unobserved

legal behavior (e.g., reconnect followed by close). WML-dynamic makes a strong fre-

quency assumption: a transition is valid if and only if it is observed. By contrast, our

algorithm’s ex and oe filters rule out some observed illegal behavior. An ideal bug-finding

context for WML-dynamic would involve training data of known high quality and high

coverage and some form of cross-validation for error detection.
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# Rank Event a Event b Real ECC Rank

1 1.000 S.iterate S.close no 286

2 1.000 S.getIdentifier S.close no 28

3 0.971 SF.openSession S.close Yes 256

4 0.971 S.createQuery S.close no 269

5 0.969 S.find S.close no 290

6 0.966 S.beginTransaction T.commit Yes 175

7 0.966 S.beginTransaction S.close no 254

Figure 3.8: The top seven Session policies learned by our miner (WN).

Figure 3.7 shows the top seven policies for these classes learned by ECC. Each

policy requires an instance of “Event a” to be followed an instance of the corresponding

“Event b”. The “Real” The “z-rank” column gives the hierarchical z-rank for the policy.

The “Real” column column indicates whether the specification is decidedly a false positive

(no) or possibly valid (Yes). ECC learned 350 such candidate policies. The z-statistic favors

frequent pairs: the pair 〈beginTransaction, save〉 occurs on more than 1,500 traces, and

is thus a common practice, but is not strictly required.

The results from our algorithm are given in Figure 3.8. The “Rank” column gives

our rank for that candidate specification as defined in Section 3.4.2. The “ECC Rank”

column shows the ranked number (out of 350, low represents a likely specification) given

to that policy by the ECC algorithm. In general policies favored by our algorithm were

ranked unfavorably by ECC. Our approach learned 15 candidate policies, of which 2 are

real. Two of the three main aspects of the documented specification, 〈openSession, close〉

and 〈beginTransaction, commit〉, appear as #3 and #6 on the list. Since we explicitly

look only for pairs 〈a, b〉 that occur in almost all normal traces we will not find the rollback

policy (no normal traces include rollback events).
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3.6.2 Hibernate Session typestate specifications

The hibernate documentation mentions one notion of Session typestate. It says

that Session “instances of mapped entity classes ... may exist in one of two states: transient

... [or] persistent” and gives typestate transitions (e.g., “transient instances may be made

persistent by calling save”). The code does contain defensive programming checks using this

typestate that raise exceptions, (e.g., if the object passed to save was already persistent)

just as WML-static and JIST assume. Unfortunately, neither WML-static nor JIST are

able to learn this typestate because it is checked by verifying that an instance object is in

a Java Map, a dynamic data structure kept at run-time, as shown in this hibernate code

fragment:

if (object==null) throw new // WML-static and JIST handle this

NullPointerException("attempted to lock null");

object = ProxyHelper.unproxy(object, this);

EntityEntry e = getEntry(object); // but not this dynamic Map lookup

if (e==null) throw new TransientObjectException

("attempted to lock a transient instance");

In this domain typestate checks are used for defensive programming, but the type-

state depends on input values or complicated logic. In addition, no check raises an exception

if close, commit or rollback are forgotten, and in general inspecting library code will miss

policies about such methods, so WML-static and JIST cannot learn the full specification in

Figure 3.3.

WML-static (Figure 3.9) discovers five illegal sequences of Session methods. It

finds a useful undocumented Session typestate: the connection and connect variables

track the state of a Session as it connects to, disconnects from and reconnects to a database.

The S.write method checks these underlying typestate variables but does not set them.
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Figure 3.9: Session policy learned by WML-static.

Figure 3.10: Session policy learned by JIST.

For WML-static and JIST, all unlisted method invocations (e.g., S.close) are orthogonal

to the learned policy.

JIST (Figure 3.10) produces a more precise policy (e.g., it discovers that

connection cannot be followed by writeObject) because it does not require methods to

have a uniform impact on the object’s typestate. In Session there are two typestate pred-

icates that explicitly guard exceptions: connection and connect. Each state in the JIST

policy represents a distinct valuation of two variables. The writeObject method may only
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be called when both are false. The reconnect method always sets the connect to true,

so both techniques discover that it cannot be followed by writeObject. The connection

method, however, has a different effect on the state variables depending on their current

values, so WML-static cannot reason precisely about it. Any unlisted transition involv-

ing one of those four events violates the specification. All other method invocations (e.g.,

S.close) are orthogonal to the learned policy.

In our experiments the important difference between JIST and WML-static was

not JIST’s greater dataflow precision but JIST’s more accurate characterization of inter-

esting traces. All of the data manipulation was either too complicated for both methods to

model (e.g., in heap data structures) or simple enough to meet WML-static’s assumptions

(e.g., comparing fields and constant values). These observations support our algorithmic

design choice to use simple a dataflow requirement but to pay careful attention to charac-

terizing exceptional traces.

In the next section we provide a quantitative comparison of specification miner

bug-finding performance.

3.7 Specification Mining Experiments

We present experiments to compare the performance of our specification miner

and the four others mentioned. We compare all algorithms on the Session policy and

we compare our algorithm with ECC on one million lines of Java. We make quantitative

evaluations of miner performance in terms of the number of bugs found by the specifications

learned by the miner.
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Mining Technique False Positives Real Errors

Strauss-Full 27 0

Strauss-Cored 20 46

ECC #1 30 20

ECC #4 1 0

WN #3 4 46

WN #6 3 20

WML-static 9 0

JIST 1 0

Figure 3.11: Miner bug-finding power for hibernate Session policies.

3.7.1 Comparison with Other Specification Miners

Given a candidate policy we use the algorithm described in Section 2.7 to find

potential bugs by checking the policy against the source code. We could also use a number

of similar or more powerful static checkers to evaluate the specifications [BR01, DLS02,

ECC01, HJMS02]. Each potential bug is classified as a false positive or a real error by

manual inspection. For example, if an application fails to close a file but immediately shuts

down as a result of the error, the “leaked” file is classed as a false positive (see Section 2.6).

However, a leaked database lock between the JVM (held on behalf of the program) and an

external database is a bug if no finalizers close the connection when the program (but not

the JVM) shuts down (as in Section 2.5).

In Figure 3.11 we present the results of using the mined specifications to find bugs

in the hibernate program. Each “false positive” or “real error” represents a method where

a trace fails to adhere to the given policy. The WML-dynamic approach is not shown

because its specification accepts all of the traces by construction (thus it finds no bugs but

yields no false positives).
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Strauss-Full, the entire 10-state policy learned by Strauss, yields too many false

positives to be effective for bug-finding. Twenty-five of the false positives are from traces

along which S.close occurs after a sequence of “work” that the specification fails to accept.

However, since the specification also has many accepting states (in particular, the state after

SF.openSession accepts), errors involving forgetting S.close are not reported.

Strauss-Cored, the sliced policy shown in Figure 3.5, gives a reduced number of

false positives compared to Strauss-Full, but still suffers from the same problems. However,

Strauss-Cored is able to find 46 methods in which openSession is called but close is not

(and 4 false positives involving openSession).

ECC, using specification #1 (the policy with the highest z-rank, see Figure 3.7),

finds 20 methods that deal with beginTransaction improperly, 3 false positives involving

beginTransaction and 27 false positives involving save. ECC specification #4 turns out

not to be useful for bug finding. Its z-rank is high (28 of 30 traces that mention a also

mention b), but it only occurs at one point in the source code. Either the z-rank|N or our

ranking would rank it much lower (Na = 1,Nab = 1).

Our method using specification #3 finds all 46 of the Session leaks found by

Strauss-Cored (and the same four false positives). In fact, the Strauss-Cored report is a

superset of the WN #3 report. Using specification #6 we are able to find the 20 methods

with commit and rollback mistakes that are also found by ECC. Along 20 of the 23 error

paths we report in which beginTransaction occurs but commit does not, rollback does

not either. The ECC #1 report is a superset of the WN #6 report (but with additional

false positives).
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Neither the WML-static nor the JIST specification lead to the discovery of any

bugs in this example. No traces contain S.discon followed by S.discon, for example (or

indeed any other erroneous violations of this typestate specification). The JIST specification

yields fewer false positives because it more accurately represents the underlying Session

typestate.

We conclude from these experiments that (1) the various techniques produce dif-

ferent kinds of specifications, in accordance with their assumptions about how programmers

make mistakes and (2) not all of the assumptions underlying these miners were born out

by this example (such as the assumption that typestate would be explicitly and simply

represented or assumptions about event frequency). WML-static and JIST were both able

to find an undocumented typestate specification. Their low false positive count shows that

they were able to form specifications that were permissive enough to accept most client

behaviors. Strauss, ECC and our technique were all good at yielding specifications that

found bugs. Our technique found all bugs reported by other techniques and did so with the

fewest false positives.

3.7.2 Bug Finding and Candidate Specification Ranking

We conducted experiments to compare our technique and the ECC technique on

a subset of the benchmarks from Figure 2.13. The benchmarks were chosen for ease of

comparison with the hand-written specifications from Section 2.5, and may favor the “a

must be followed by b” specifications that both WN and ECC are designed to mine. We

explicitly compare the bugs found via specification mining to the bugs found via the generic

“library” specifications (i.e., Stream, File and “Database”) reported in Figure 2.14. We
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Lines WN (our miner) ECC Library
Program of Real Bugs Real Total Bugs Policy

Code Specs via Specs Specs Specs via Specs Bugs

infinity 28k 1 / 10 4 0 / 227 6468 0 14
hibernate 57k 9 / 51 93 3 / 424 9591 21 13
axion 65k 8 / 25 45 0 / 96 4159 0 15
hsqldb 71k 7 / 62 35 0 / 224 5032 0 18
cayenne 86k 5 / 35 18 3 / 311 8432 8 17
sablecc 99k 0 / 4 0 0 / 80 2506 0 3
jboss 107k 11 / 114 94 2 / 444 12852 4 40
mckoi-sql 118k 19 / 156 69 2 / 346 10860 5 37
ptolemy2 362k 9 / 192 72 3 / 656 23522 12 27

total 993k 69 / 649 430 13 / 2808 83422 50 172

Figure 3.12: Bugs found with specifications mined by ECC and our technique.

are unable to directly compare the other mining techniques because of the cost involved in

manually specifying classes, predicates, and other parameters they require in advance.

Figure 3.12 presents our experimental results. The “Real Specs” column counts

valid specifications (determined by manual inspection) against candidate specifications. For

WN, all candidate policies were inspected. For ECC, only candidates with non-negative z-

rank were inspected. Thus “3/424” means that 3 real specifications were found by manually

inspecting the 424 candidate specifications with a non-negative ranking. The “Total Specs”

column counts all policies reported by ECC. The “Bugs via Specs” column counts methods

that violate the “Real Specs”. Finally, the last column counts methods violating the generic

“library”-based policies from Section 2.5 (it is the same as number reported in Figure 2.14).

ECC is able to find 4 specifications missed by our algorithm. In one of these

examples, the b event never occurs in any error handling code (and thus does not meet our

ex requirement). The 〈IndexStore.create, IndexStore.init〉 pair from mckoi-sql is one
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such policy. The create documentation states that the user “must call the init method

after this is called.” However, the init method never occurs in any exception handling code.

Removing the ex requirement causes our algorithm to produce 1,114 candidate specifications

for hibernate alone. Given the paucity of real specifications that are mistakenly filtered

out by the requirement and the plethora of false positives that it avoids, we believe that

basing our algorithm on exceptional control flow paths was a good decision.

Of the 69 real specifications we found, 24 involved methods from separate classes,

arguing against class-based module requirements. Only one valid specification,

〈JDBCCommand.getConnection, java.sql.Connection.close〉 from jboss, involved meth-

ods from different libraries. On the other hand, for example, 30 of the first 100 false positive

specifications reported by ECC for axion could have been avoided with our sp package-level

module requirement. We believe these results argue strongly in favor of package-level re-

quirements.

A common false positive repoted by the ECC technique paired the family of meth-

ods ListIterator.hasNext and ListIterator.next. The vast majority of paths that

contain the former also contain the latter, and iterators occur frequently, causing the z-

rank (whether restricted to normal traces or not) for such pairs to be high (iterator

specifications occur as one of the top five candidates for ECC on six of our nine programs).

A common false positive for our technique paired read or write with close (in-

stead of pairing open with close). As the 〈flush, close〉 data in Figure 3.4 demonstrate,

“intermediate” work functions like read are almost invariably eventually followed by close

if they are present, but the more desirable open-based specification usually ranks higher.



83

Effect of Specification Ranking on Bugs Found

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1

Percent of Candidate Specifications Inspected

B
u
g
s
 F
o
u
n
d

WN Rank

z-rank|N

z-rank

Figure 3.13: Effect of rank order on bug finding.

Almost every valid specification our technique found was listed somewhere in

ECC’s voluminous output of candidate specifications. For example, our 59th candidate

jboss policy, which pairs BeanLockSupport’s sync and releaseSync methods, finds four

real errors and is #9522 on the ECC list (z-rank= −54, z-rank|N= −29).

Figure 3.13 shows the number of bugs found as a function of the ranking used

to sort candidate specifications produced by our algorithm. Compared to the z-rank, our

ranking (“WN Rank” is Nab/(Na + Nab)) only required 42% of the specifications to be

inspected (instead of 72%) in order to find two-thirds of the bugs. The z-rank restricted

to normal traces does better than the z-rank but worse than the WN rank. However, we

conclude that since various rankings work only moderately better than a random shuffle, it

is very important to produce a small number of extraneous candidates.
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Our results for ECC are consistent with, but slightly better than, previously pub-

lished figures in which 23 errors were found via specification mining on the Linux 2.4.1

kernel (about 840,000 lines of code) [ECC01]. ECC was designed to target C operating

systems code. It actually performs better (in errors found per line of code) in this domain

of Java programs than in their reported experiments, although there is no reason to believe

that the bug density should be the same.

3.8 The Importance of Detected Bugs

One additional consideration is the utility of the found bugs. Even if a bug is not

a false positive and represents an actual violation of the policy, it may not be worth the

development organization’s time to fix the bug. Commercial software ships with known

bugs [LAZJ03]. Bugs that are perceived as unlikely to affect real users often go unfixed at

many points in the development cycle because of the perceived dangers of code churn and

because there are enough “dangerous” bugs to fix to keep programmers occupied.

The issue of bug quality is particularly important in this work. Our analysis finds

bugs that show up in the presence of exceptional situations. We report resource leaks along

paths that contain one or more exceptions or run-time errors. We must thus demonstrate

that these bugs are a serious problem “in the real world” and are not just a theoretical

possibility. Unfortunately, a thorough evaluation the importance of a bug is beyond the

scope of this work and is typically situation-specific. Aspects such as the performance or

security impact of a bug or the cost of fixing it can be difficult to measure quantitatively.

We present some evidence to suggest that the bugs we report are important.
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Our mining technique favors resource leaks and forgotten obligations. One of the

authors of ptolemy2 was willing to rank bugs we found on his own five point scale. For

that program, 11% of the bugs we reported were in tutorials or third-party code, 44% of

them rated a 3 out of 5 for taking place in “little used, experimental code”, 19% of them

rated a 4 out of 5 and were “definitely a bug in code that is used more often”, and 26% of

them rated a 5 out of 5 and were “definitely a bug in code that is used often.” The 45%

of the bugs that rated a 4 or 5 were fixed immediately. The author claimed that for his

long-running servers resource leaks were a problem that forced them to reboot every day as

a last-ditch effort to reclaim resources. We cannot claim that this breakdown generalizes,

but it does provide one concrete example.

We also performed a so-called time travel experiment in order to determine whether

the bugs found by our analysis were important enough to fix. The direct experiment of

finding bugs, reporting them to developers and then counting how many are fixed is difficult

to perform, especially in the open-source community. For example, it is generally agreed

upon that social aspects like “having a champion for your tool inside the development

organization” [DLS02] and “not reporting too many bugs at once” [ECC01] play a large

role in determining whether reported bugs are fixed. Instead of comparing the present

against the future, we compare the past against the present.

We used archival copies and version control systems to obtain a snapshot of

eclipse 2.0.0 from July 2002 as well as a snapshot of eclipse 3.0.1 from September

2004. We then ran our analysis on eclipse 2.0.0 and noted the first 100 bugs reported.

Without reporting any of the bugs to eclipse programmers we then looked for each of those
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bugs in eclipse 3.0.1 to see if they had been fixed by the natural course of eclipse de-

velopment. In our case 43% of the bugs found by our tool in eclipse 2.0.0 had been

fixed by eclipse 3.0.1. Between those version eclipse underwent many refactorings so

manual inspection was necessary because the buggy code had often moved from one class

to another. Given our stated goal of improving software quality by finding and fixing bugs

before a product is released, this number is important and helps to validate our analysis,

our fault model and our specifications. Combined with our zero false positive rate it sug-

gests that using our analysis is worthwhile because almost half of the bugs it reports would

have to be fixed later (and presumably at least ten times more expensively, see Section 1.1)

anyway.

Figure 3.14 shows the eclipse 2.0.0 code for the parseInstalledPluginmethod

of the update.internal.core.SiteFileFactory class. The bug is that the

FileInputStream created on line 17 may not be freed. The bug is not trivial to fix because

the FileInputStream is anonymous. A new variable must be introduced to hold it and a

care must be taken to close that variable later. In Figure 3.15 a new local variable called

“in” has been introduced on line 11 to hold the FileInputStream. The call on line 17 of

Figure 3.14 corresponds to lines 22–23 of Figure 3.15. A finally clause has been added on

line 37 and “in” is closed (if it is not null, see Figure 2.5 for other examples of this idiom)

on line 38. The bug was fixed on March 2, 2004 when version 1.57 of that file was checked

in by user kkolosow with the comment “close InputStream” [Ecl03].

We speculate that the remainder of the reported bugs were not fixed because they

were difficult to track down. Trishul Chilimbi of Microsoft Research reports that only 10%
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01: private void parseInstalledPlugin(File dir) throws CoreException {

02: PluginIdentifier plugin = null;

03: File pluginFile = null;

04: try {

05: if (dir.exists() && dir.isDirectory()) {

06: File[] files = dir.listFiles();

07: DefaultPluginParser parser = new DefaultPluginParser();

08: for (int i = 0; i < files.length; i++) {

09: if (files[i].isDirectory()) {

10: if (!(pluginFile = new

11: File(files[i], "plugin.xml")).exists()) {

12: pluginFile = new File(files[i], "fragment.xml");

13: }

14: if (pluginFile != null && pluginFile.exists() &&

15: !pluginFile.isDirectory()) {

16: IPluginEntry entry = parser.parse(

17: new FileInputStream(pluginFile) );

18: VersionedIdentifier identifier =

19: entry.getVersionedIdentifier();

20: plugin = new PluginIdentifier(identifier, files[i],

21: entry.isFragment());

22: addParsedPlugin(plugin);

23: }

24: } // files[i] is a directory

25: }

26: } // path is a directory

27: } catch (IOException e) {

28: String pluginFileString = (pluginFile==null) ? null :

29: pluginFile.getAbsolutePath();

30: throw Utilities.newCoreException(

31: Policy.bind("SiteFileFactory.ErrorAccessing",

32: pluginFileString), e);

33: } catch (SAXException e) {

34: String pluginFileString = (pluginFile==null) ? null :

35: pluginFile.getAbsolutePath();

36: throw Utilities.newCoreException(

37: Policy.bind("SiteFileFactory.ErrorParsingFile",

38: pluginFileString), e);

39: }

40: }

Figure 3.14: eclipse 2.0.0 with SiteFileFactory bug (line 17)
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01: private void parseInstalledPlugins(File pluginsDir)

02: throws CoreException {

03: if (!pluginsDir.exists() || !pluginsDir.isDirectory())

04: return;

05: File[] dirs = pluginsDir.listFiles(new FileFilter() {

06: public boolean accept(File f) { return f.isDirectory(); }

07: });

08: DefaultPluginParser parser = new DefaultPluginParser();

09: for (int i = 0; i < dirs.length; i++) {

10: File pluginFile = new File(dirs[i], "META-INF/MANIFEST.MF");

11: InputStream in = null;

12: try {

13: BundleManifest bundleManifest = new BundleManifest(pluginFile);

14: if (bundleManifest.exists()) {

15: PluginEntry entry = bundleManifest.getPluginEntry();

16: addParsedPlugin(entry, dirs[i]);

17: } else {

18: if (!(pluginFile = new File(dirs[i], "plugin.xml")).exists())

19: pluginFile = new File(dirs[i], "fragment.xml");

20: if (pluginFile != null && pluginFile.exists()

21: && !pluginFile.isDirectory()) {

22: in = new FileInputStream(pluginFile);

23: PluginEntry entry = parser.parse(in);

24: addParsedPlugin(entry, dirs[i]);

25: }

26: }

27: } catch (IOException e) {

28: String pluginFileString = (pluginFile == null)

29: ? null : pluginFile.getAbsolutePath();

30: throw Utilities.newCoreException(Policy.bind(

31: "SiteFileFactory.ErrorAccessing", pluginFileString), e);

32: } catch (SAXException e) {

33: String pluginFileString = (pluginFile == null)

34: ? null : pluginFile.getAbsolutePath();

35: throw Utilities.newCoreException(Policy.bind(

36: "SiteFileFactory.ErrorParsingFile", pluginFileString), e);

37: } finally {

38: if (in != null) try { in.close(); } catch (IOException e) { }

39: }

40: }

41: }

Figure 3.15: eclipse 3.0.1 with SiteFileFactory bug fixed (line 38)
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of resource leaks (i.e., the sorts of bugs reported by this analysis) are always resolved and

that 90% of the leaks that are resolved take more than three days to resolve [HC04]. That

is, these bugs of this form are by nature difficult to track down and fix. This argues strongly

for static tools that can pinpoint such bugs automatically.

It is difficult to obtain numbers indicating what fraction of the bugs reported were

later fixed for various bug-finding research projects. Our two experiments suggest that 43%

of the bugs we report are considered real by developers. As one external datapoint, the

FindBugs project [HP04] produced 300 warnings when applied to a 350,000-lines-of-code

Java financial application and the development team considered 17% of them to be real

bugs.

3.9 Specification Mining Conclusions

Using our mining algorithm to find bugs was decidedly better than using generic

library policies. We found 430 bugs using mined policies compared to 172 using generic

ones. We found 380 more bugs and 56 more policies than ECC using 2000 fewer candidate

specifications. Our experiments highlighted the practical importance of our algorithmic

assumptions, in particular our use of exceptional control flow.

As automatic program verification tools become more prevalent, specifications be-

come the limiting factor in verification efforts, and specification mining for the purposes

of finding bugs becomes more important. Given a program, a specification miner emits

candidate policies that describe real or common program behavior. We proposed a novel

miner that uses information about exceptional paths. We compare the bug-finding power of
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various miners. In 1 million lines of Java code, we found 430 bugs using mined specifications

compared to 172 using generic “library”-based ones, and we found more bugs than compara-

ble mining algorithms. Our experiments highlighted the relative unimportance of candidate

ranking and the practical importance of our algorithmic assumptions, in particular our use

of exceptional control flow for specification mining.

Now that we have found a large number of bugs in programs the next chapter

deals with fixing those bugs.
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PL people try to show that things that
work in practice also work in theory.

Jim Ezick

Chapter 4

Language Features To Address

Defects

In this chapter we characterize the mistakes found by the analysis from Chapter 2.

Based on those mistakes we claim that existing language features for exception handling

(e.g., try-finally blocks) are ill-suited for handling certain classes of resources in the pres-

ence of run-time errors. We propose a new feature, the compensation stack, to address the

sorts of mistakes uncovered by our analysis. We provide two case studies to demonstrate the

benefits of our compensation stacks. Finally, we discuss other related attempts to address

similar problems. Some of the work presented in this chapter was previously described in

an earlier publication [WN04].
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4.1 Defect Characterization

In this section we characterize some of the mistakes found by our analysis, paying

special attention to the qualities an exception handling mechanism should have in order to

address these bugs more naturally. We use these observations to guide the design of our

new language feature.

In some cases, try-finally handling is skipped entirely, as in this example from

axion’s ObjectBTree class:

01: public void read() throws IOException, /* ... */ {

02: File idxFile = getFileById(getFileId());

03: // ...

04: FileInputStream fin = new FileInputStream(idxFile);

05: ObjectInputStream in = new ObjectInputStream(fin);

06: // ...

07: in.close();

08: fin.close();

09: }

This happens even though the annotation on line 1 and extant handling in other methods

from the same program show that the programmer is aware of the possibility of exceptional

situations. Such examples show that it would be useful to have an automatic mechanism

that does the right thing in common cases with no programmer intervention. That is, it

would be nice to provide minimal guarantees even in the case where the programmer is not

thinking about exception handling.

It is also common for try-finally statements to protect some, but not all, oper-

ations, as in this fragment from staf’s STAXMonitor class:

01: ObjectInputStream ois = null;

02: try {

03: ois = new ObjectInputStream(/* ... */);

04: // ...
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05: } catch (StreamCorruptedException ex) {

06: if (ois != null) { ois.close(); }

07: showErrorDialog(/* ... */);

08: return false;

09: }

10: Object obj = ois.readObject(); // no try

11: ois.close(); // no finally

Care is taken to deal with run-time errors that occur on lines 3–4 when ois is created and

used, but reading from ois on line 10 is done without an enclosing try-finally. These

examples show that it would be useful to have a mechanism that allows fine-grained control

for some error handling but automatic behavior for others.

In the rest of the discussion we will abstract away the resource names and the

unrelated application code for clarity. We assume that important resource x is acquired

with a call to open x and released with a call to close x. As with the safety policies in

Section 2.5 we assume that if open x is called then close x must be called and that close x

cannot be called unless open x has been called. We also assume that open x, close x and

work (representing application logic) can signal exceptions. Thus the previous example

would be rendered:

01: try {

02: open_1();

03: work();

04: } catch {

05: close_1();

06: return;

07: }

08: work();

09: close_1();

In osage multiple methods use this form:

01: try {

02: open_1();
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03: open_2();

04: } finally {

05: close_2();

06: close_1();

07: }

If an exception is raised on line 2, control will jump to line 5 and execute close 2 before

open 2. Typically this causes a null-pointer exception but it can have additional effects

depending on the resource in question. For example, multiple releases on poorly-written (or

efficiently-written) locks can lead to unprotected resources later. If an exception is raised

on line 3, control will jump to line 5 and execute close 2 before open 2 and in addition

close 1 will never be executed. Finally, if an exception is raised on line 5 then close 1 will

never be executed. A single project will often re-use an error-handling design pattern that

contains flaws. A cut-and-paste approach is particularly common in JDBC applications

(i.e., those that should adhere to the “Database” policy from Section 2.5).

Some programs, like compiere, treat multiple resources sequentially but still fail

to handle errors perfectly:

01: open_1();

02: work();

03: close_1();

04: open_2();

05: work();

06: close_2();

Here an exception raised on line 2 will cause close 1 to be skipped and an exception raised

on line 5 will cause close 2 to be missed. As with the axion example above, it would

be convenient to have a language feature that worked even if try and finally were not

present.

The quartz program contains a number of instances of:
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01: try {

02: open_1();

03: open_2();

04: work();

05: } finally {

06: close_1();

07: }

Such partial handling covers some of the resources, but not all. There is no corresponding

close 2 for the open 2.

The ohioedge program contains examples like:

01: for (iterator) {

02: open_1();

03: work();

04: close_1();

05: }

Such handling can be difficult to reason about statically, especially if the important resources

are not variables local to the loop body. Such code typically iterates over all of the elements

in a collection, for example by acquiring a lock on each element of a linked list before

mutating its contents. If an exception occurs on line 3 in the middle of the loop then the

lock is leaked for an element in the middle of the list, yielding a difficult-to-debug deadlock.

Various programs often use flags (and often use them correctly) to track resources

and free them early:

01: try {

02: open_1(); flag = 0;

03: work();

04: if (...) {

05: flag = 1; close_1();

06: }

07: work();

08: } finally {

09: if (!flag) { close_1(); }

10: }
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Here the variable flag keeps track of whether or not the resource needs to be freed. When

flag is 1 the resource has already been released. This coding practice is very common for

contentious resources like database locks. If the work on line 7 takes time to execute it is

worth releasing the resource early if possible.

In many cases, like the example in Section 2.1, error handling with multiple re-

sources contains an insufficient number of try statements to handle all paths. One common

approach to handling this problem is to introduce a flag variable (or check individual objects

against null), as the following examples (adapted from [BP03]) illustrate:

01: int flag = 0;

02: try {

03: open_1(); flag = 1;

04: work();

05: open_2(); flag = 2;

06: work();

07: open_3(); flag = 3;

08: work();

09: } finally {

10: switch (flag) {

11: case 3: try { close_3(); } catch (Exception e) {}

12: case 2: try { close_2(); } catch (Exception e) {}

13: case 1: try { close_1(); } catch (Exception e) {}

14: }

15: }

Here the variable flag tracks the program’s progress through the method. When flag is n,

resources 1–n have been acquired and must be released. Note that in the switch statement

on lines 10–14 control will “fall though” from case 3 to case 2 and from case 2 to case 1.

This “counting flag” approach has a number of software engineering disadvan-

tages. One is that the cleanup code is distant from the action code. Another is that

control-flow that determines the actions must be duplicated in reverse for the cleanup. Ev-

ery distinct path of normal control flow must have a corresponding path in the exceptional



97

error-handling control flow. The following code fragment demonstrates this complexity:

01: int flag = 0, did_two = 0;

02: try {

03: open_1(); flag = 1;

04: work();

05: if (...) { open_2(); flag = 2; did_two = 1; }

06: work();

07: open_3(); flag = 3;

08: work();

09: } finally {

10: switch (flag) {

11: case 3: try { close_3(); } catch (Exception e) {}

12: case 2: if (did_two) { try { close_2(); } catch (Exception e) {} }

13: case 1: try { close_1(); } catch (Exception e) {}

14: }

15: }

Here the second resource is only acquired in some cases and additional variables (did two)

and run-time checks (line 12) must be added. Adding a for loop instead of an if statement

on line 5 would require bookkeeping to determine exactly how far through the loop the code

had advanced. We would prefer to automate such bookkeeping whenever possible.

Standard attempts to deal with resources in the presence of exceptional situations

introduce additional logic into the program that must be maintained (and reproduced at

every resource use). If the control-flow is non-trivial (e.g., a while loop or a visitor that

performs actions on btree elements) it might not even be desirable to reproduce the control

flow (e.g., in the btree case it would involve jumping to the middle of the tree and then

traversing it in reverse). In such general cases it makes more sense to record which actions

were taken at run-time and then clean up exactly what is required. A mechanism that

does not require the programmer to reproduce control flow or introduce extra bookkeeping

is desired here. In the next section we will examine destructors and finalizers, which are

modern programming language features that could be used to address such concerns, and
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argue that they are not sufficient.

4.2 Destructors and Finalizers

Destructors and finalizers are existing programming language features that can

help programs deal with resources in the presence of run-time errors.

A destructor is a special method associated with a class. Destructors are typ-

ically used with the language C++ [Str91] but are also present in other languages like

C# [HWG03]. When a stack-allocated instance of that class goes out of scope, either be-

cause of normal control flow or because an exception was raised, the destructor is invoked

automatically. Destructors are tied to the dynamic call static of a program in the same

way that local variables are. Destructors thus provide guaranteed cleanup actions for stack-

allocated objects even in the presence of exceptions. However, for heap-allocated objects the

programmer must still remember to explicitly delete the object along all paths. We would

like to generalize the notion of destructors: rather than one implicit stack tied to the call

stack, programmers should be allowed to manipulate first-class collections of obligations.

In addition, we believe that programmers should have guarantees about managing

objects and actions that do not have their lifetimes bound to the call stack (such objects are

common in practice — see e.g., Gay and Aiken [GA98]). In many domains, multiple stacks

are a more natural fit with the application. For example, a web server might store one such

stack for each concurrent request. If the normal request encounters an error and must abort

and release its resources, there is generally no reason that another request cannot continue.

Destructors can be invoked early, but would typically have to include a flag to ensure that
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actions are not duplicated when it is called again. We believe such bookkeeping should

be automatic. Destructors are tied to objects and there are many cases where a program

would want to change the state of the object, rather than destroying it. We shall return to

that consideration in Section 4.4.

A finalizer is another special method associated with a class. Finalizers are typi-

cally used with Java [GJS96] but are also present in other languages like C# [HWG03]. A

finalizer is invoked on an instance of a class when that instance is about to be reclaimed by

the garbage collector. The garbage collector is not guaranteed to find any particular piece of

garbage and is not guaranteed to find garbage in a certain order or time-frame. Compared

to pure finalizers, most programmer-specified error handling must be more immediate and

more deterministic. Finalizers are arguably well-suited to resources like file descriptors that

must be collected but need not be collected right away. However, even that apparently-

innocuous use of finalizers is often discouraged because programs have a limited number of

file descriptors and can easily “race” with the garbage collector to exhaust them [O’H05].

In contrast, the elements of the “Database” policy from Section 2.5 should be released as

quickly as possible, making finalizers an awkward fit for performance reasons. For example,

the Oracle9i documentation specifically states that finalizers are not used and that cleanup

must be done explicitly. We want a mechanism that is well-suited to being invoked early,

and while finalizers can be called in advance they suffer from the same disadvantages as

destructors in that regard. Like destructors, finalizers can be invoked early but doing so

typically requires additional bookkeeping.

More importantly, finalizers in Java come with no order guarantees [GJS96]. For
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example, a Stream built on (and referencing) a Socket might be finalized after that Socket

if they are both found unreachable in the same garbage collection pass. If the arbitrary

cleanup actions above were to be handled by finalizers on dependent objects, the natural

“trick” of adding an extra pointer field to the child object pointing to the parent object in

order to ensure that the child action is called before the parent action would not be sound.

Thus we desire an error handling mechanism that can strictly enforce such dependencies

and provide a more intuitive ordering for cleanup actions. In addition, finalizers must be

asynchronous (and may be even in single-threaded programs), which complicates how they

must be written. While such dependencies could be encoded in a finalizer system, we did

not observe such a system in any of the programs we examined in Section 2.8.

Finally, it is worth noting that Java programmers do not make even a sparing

use of finalizers to address these problems. Some Java implementations do not implement

finalizers correctly [Boe03], finalizers are often viewed as unpredictable or dangerous, and

the delay between finishing with the resource and having the finalizer called may be too

great. In all of the code surveyed in Section 2.8, there were only 13 user-defined finalizers

(hibernate had 4; osage had 3; jboss and eclipse had 2; javad and aspectj had 1). In

our experience, Java programmers basically do not use finalizers. One might also hope that

standard libraries would make use of finalizers, but this is not always the case. The GNU

Classpath 0.05 implementation of the Java Standard Library does not use finalizers for any

of the resources governed by the safety policies in Section 2.8. Sun’s JDK 1.3.1 07 does

use them, but only in some situations (e.g., for database connections but not for sockets).

While other or newer Standard Libraries may well use finalizers for all such important
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resources, one cannot currently portably count on the Library to do so. We would like to

make something like finalizers more useful to Java programmers by making them easier to

use and giving them destructor-like properties.

The results in Section 2.8 argue that language support is necessary: merely making

a better Socket library will not help if Sockets, databases, and user-defined resources

must be dealt with together. Using exception handling to deal with important resources is

difficult. In the next section, we will describe a language mechanism that makes it easy to

do the right thing: all of the mistakes presented here could have been avoided using our

proposed language extension. In addition, the analysis presented in Section 2.7 could easily

verify that programs using our mechanism are handling these resources correctly.

4.3 Compensation Stacks

Based on our characterization of existing mistakes and coding practices in Sec-

tion 4.1 and existing programming language techniques in Section 4.2, we propose a lan-

guage extension where program actions and interfaces are annotated with compensations,

which are closures containing arbitrary code. At run-time, these compensations are stored

in first-class stacks. Compensation stacks can be thought of as generalized destructors, but

we emphasize that they can be used to execute arbitrary code and not just call functions

upon object destruction.

Our compensation stacks are an adaptation of the database notions of compen-

sating transactions and linear sagas [GMS87]. A compensating transaction semantically

undoes the effect of another transaction after that transaction has committed. A saga is
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a long-lived transaction seen as a sequence of atomic actions a1...an with compensating

transactions c1...cn. This system guarantees that either a1...an executes or a1...akck...c1

executes. Note that the compensations are applied in reverse order. We have found this

model to be a good fit for this sort of run-time error handling. Many conceptually simple

program actions actually require that multiple resources be handled in sequence.

Our system allows programmers to link actions with compensations, and guar-

antees that if an action is taken, the program cannot terminate without executing the

associated compensation. Compensation stacks are first-class objects that store closures.

They may be passed to methods or stored in object fields. The Java language syntax is

extended to allow arbitrary closures to be pushed onto compensation stacks. These closures

are later executed in a last-in, first-out order. Closures may be run “early” by the program-

mer, but they are usually run automatically when a stack-allocated compensation stack

goes out of scope or when a heap-allocated compensation stack is finalized. If a compen-

sating action raises an exception while executing, the exception is logged but compensation

execution continues.1 When a compensation terminates (either normally or exceptionally),

it is removed from the compensation stack.

Compensation stacks normally behave like generalized destructors, deallocating

resources based on lexical scoping, but they are also first-class collections that can be put

in the heap and that make use of finalizers to ensure that their contents are eventually

1Neither Java finalizers nor POSIX cleanup handlers propagate such exceptions. Lisp’s unwind-protect

may not execute all cleanup actions if one raises an exception. In analogous situations, C++ aborts the
program. Since our goal is to keep the program running and restore invariants, we choose to log such
exceptions. Ideally, error-prone compensations would contain their own internal compensation stacks for
error handling. A second option would be to have the type system statically verify that a compensation
cannot raise an exception. In the particular example of Java, this solution is not desirable. First, it would
require checking unchecked exceptions, which is non-intuitive to most Java programmers. Second, most
compensations can, in fact, raise exceptions (e.g., close can raise an IOException).
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executed. The ability to execute some compensations early is important and allows the

common programming idiom where critical shared resources are freed as early as possible

along each path. In addition, the program can explicitly discharge an obligation without

executing its code (presumably based on outside knowledge not directly encoded in the

safety policy). This flexibility allows compensations that truly undo effects to be avoided

on successful executions, and it requires that the programmer annotate a small number of

success paths rather than every possible error path. Additional compensation stacks may

be declared to create a “nested transaction” effect. Finally, the analysis in Section 2.7 can

be easily modified to show that programs that make use of compensation stacks do not

forget obligations.

4.4 Compensation Stack Implementation

We implemented compensation stacks using a source-level transformation for Java

programs. This entails defining a CompensationStack class, adding support for closures (as

in Odersky and Wadler [OW97]), and adding convenient syntactic sugar for lexically-scoped

compensation stacks.

In our system, the client code from Figure 2.2 looks like this:

01: Connection cn;

02: PreparedStatement ps;

03: ResultSet rs;

04: cn = ConnectionFactory.getConnection(/* ... */);

05: StringBuffer qry = ...; // do some work

06: ps = cn.prepareStatement(qry.toString());

07: rs = ps.executeQuery();

08: ... // do I/O-related work with rs

All of the release actions are handled automatically, even in the presence of run-time errors.
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An implicit CompensationStack based on the method scope is being used and the resource-

acquiring methods have been annotated to use such stacks. We will now elaborate those

details and develop our system to the point where such code behaves correctly along all

paths.

The first step in such an approach is to annotate the interface of methods that ac-

quire important resources. For example, we would associate with the action getConnection

the compensation close at the interface level so that all uses of Connections can be affected.

Consider this code:

public Connection getConnection() throws SQLException {

/* ... do work ... */

}

We would change it so that a CompensationStack argument is required. The syntax

compensate { a } with { c } using (S) corresponds to executing the action a and then

pushing the compensation code c on the stack S if a completed normally. The modified

definition follows:

public Connection getConnection(CompensationStack S)

throws SQLException {

compensate {

/* ... do work ... */

} with {

this.close();

} using (S);

}

As we mentioned in Section 4.2, this mechanism has the advantages of early release and

proper ordering over just using finalizers. Not all actions and compensations must be

associated at the function-call level; arbitrary code can be placed in compensations. After

annotating the database interface with compensation information, the client code might
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look like this:

01: Connection cn;

02: PreparedStatement ps;

03: ResultSet rs;

04: CompensationStack S = new CompensationStack();

05: try {

06: cn = ConnectionFactory.getConnection(S, /* ... */);

07: StringBuffer qry = ...; // do some work

08: ps = cn.prepareStatement(S, qry.toString());

09: rs = ps.executeQuery(S);

10: ... // do I/O-related work with rs

11: } finally {

12: S.run();

13: }

As the program executes, closures containing compensation code are pushed onto the

CompensationStack S. Compensations are recorded at run-time, so resources can be ac-

quired in loops or other procedures. Before a stack becomes inaccessible, all of the associated

compensations must be executed. A particularly common use involves lexically scoped com-

pensation stacks that essentially mimic the behavior of destructors. We add syntactic sugar

allowing a keyword (e.g., methodScopedStack) to stand for a compensation stack that is

allocated at the beginning of the enclosing scope and finally executed at the end of it. In

addition, we optionally allow that special stack to be used for omitted compensation stack

parameters. We thus arrive at the six-line version at the beginning of this section for the

common case.

Compensations can contain arbitrary code, not just method calls. For example,

consider this code fragment adapted from [BP03]:

01: try {

02: StartDate = new Date();

03: try {

04: StartLSN = log.getLastLSN();

05: ... // do work 1



106

06: try {

07: DB.getWriteLock();

08: ... // do work 2

09: } finally {

10: DB.releaseWriteLock();

11: ... // do work 3

12: }

13: } finally {

14: StartLSN = -1;

15: }

16: } finally {

17: StartDate = null;

18: }

We might rewrite it as follows, using explicit CompensationStacks:

01: CompensationStack S = new CompensationStack();

02: try {

03: compensate { StartDate = new Date(); }

04: with { StartDate = null; } using (S);

05: compensate { StartLSN = log.getLastLSN(); }

06: with { StartLSN = -1; } using (S);

07: ... // do work 1

08: compensate { DB.getWriteLock(); }

09: with { DB.releaseWriteLock();

10: ... /* do work 3 */ }

11: ... // do work 2

12: } finally {

13: S.run();

14: }

Resource finalization and state changes are thus handled by the same mechanism and benefit

from the same ordering. The assignments to StartLSN and StartDate as well as “work 3”

are examples of state changes that are not simply method invocations.

Traditional destructors are tied to objects, and there are many cases where a

program would want to change the state of the object rather than destroying it. Destructors

could be used here by creating “artificial objects” that are stack-allocated and perform the

appropriate state changes on the enclosing object. However, such a solution would not be
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natural. For example, the program from which the last example was taken had 17 unique

compensations (i.e., error-handling code that was site-specific and never duplicated) with

an average length of 8 lines and a maximum length of 34 lines. Creating a new artificial

object for each unique bit of error-handling logic would be burdensome, especially since

many of the compensations had more than one free variable (which would generally have to

be passed as extra arguments to the helper constructor). Nested try-finally blocks could

also be used but are error-prone (see Section 2.4 and Section 2.8).

Previous approaches to similar problems can be vast and restrictive departures

from standard semantics (e.g., linear types or transactions) or lack support for common

idioms (e.g., running or discharging obligations early). We designed this mechanism to

integrate easily with new and existing programs, and we needed all of its features for our

case studies. With this feature, we found it easy to avoid the mistakes that were reported

hundreds of times in Section 2.8. In the common case of a lexically-scoped linear saga of

resources, the error handling logic needs to be written only once with an interface, rather

than every time a resource is acquired. In more complicated cases (e.g., storing compen-

sations in heap variables and associating them with long-lived objects) extra flexibility is

available when it is needed.

4.5 Case Studies

We hand-annotated two programs to show that it is easy to modify existing pro-

grams to use compensation stacks (and by implication that it would not be difficult to write

a new program from scratch using them) and to demonstrate that the run-time overhead
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is low. Guided by the dataflow analysis in Section 2.7, the programs were modified so that

their existing error-handling made use of compensation stacks; no truly new error handling

was added (even when inspection revealed it to be missing) and the behavior was otherwise

unchanged. In the common case this amounted to removing an existing close call (and

possibly its guarding finally) and using a CompensationStack instead (possibly with a

method that had been annotated to take a compensation stack parameter). Maintaining

the stacks and the closures takes time, but that overhead was dwarfed by the I/O latency in

our case studies. As a micro-benchmark example, a simple program that creates hundreds

of Sockets and connects each to a website is 0.7% slower if a compensation stack is used to

hold the obligation to close the Socket.

The first case study, Aaron Brown’s undo-able email store [BP03], can be viewed

as an SMTP and IMAP proxy that uses database-like logging. The original version was

35,412 lines of Java code. Annotating the program took about four hours and involved

updating 128 sites with code to use compensations as well as annotating the interfaces

for some standard library methods (e.g., sockets and databases). The resulting program

was 225 lines shorter (about 1%) because redundant error-handling code and control-flow

were removed. The program contains non-trivial error handling, including one five-step

saga of actions and compensations and one three-step saga. Single compensating actions

ranged from simple close calls to 34-line code blocks with internal exception handling and

synchronization. Using fifty micro-benchmarks and one example workload (all provided

by the original author), the annotated program’s performance was almost identical to the

original. Performance was measured to be within one standard deviation of the original, and
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was generally within one half of a standard deviation; the run-time overhead associated with

keeping track of obligations at run-time was dwarfed by I/O and other processing times.

Compensations were used to handle every request answered by the program. Finally, by

changing a method invocation in some insufficiently-guarded cleanup code to always raise

one of its declared run-time errors in both versions of the program, we were able to cause

the unmodified version of the program to drop all SMTP requests. The version using

compensations handled that cleanup failure correctly and proceeded normally. While this

sort of targeted fault injection is hardly representative, it does show that the errors we are

addressing with compensations can have an impact on reliability.

The second case study, Sun’s Pet Store 1.3.2 [Sun01], is a web-based, database-

backed retailing program. The original version was 34,608 lines of Java code. Annotations

to 123 sites took about two hours. The resulting program was 168 lines smaller (about

0.5%). Most error handling annotations centered around database Connections. Using an

independent workload [CKF+02, CDCF03], the original version raises 150 exceptions from

the PurchaseOrderHelper’s processInvoice method over the course of 3,900 requests.

The exceptions signal run-time errors related to RelationSets being held too long (e.g.,

because they are not cleared along with their connections on some paths) and are caught by

a middleware layer which restarts the application.2 The annotated version of the program

raises no such exceptions: compensation stacks ensure that the database objects are handled

correctly. The average response times for the original program (over multiple runs) is 52.06

milliseconds (ms), with a standard deviation of 100 ms. The average response time for

2While updating a purchase order to reflect items shipped, the processInvoice method creates an
Iterator from a RelationSet Collection that deals with persistent data in a database. Unfortunately, the
transaction associated with the RelationSet has already been completed.
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the annotated program is 43.44 ms with a standard deviation of 77 ms. The annotated

program is both 17% faster and also more consistent because less middleware intervention

was necessary.

Together, these case studies suggest that stacks of compensations are a natural

and efficient model for this sort of run-time error handling. The decrease in code size

argues that common idioms are captured nicely by this formalism and that there is a

software engineering benefit to associating error handling with interfaces. The unchanging

or improved performance indicates that leaving some checks to run time is quite reasonable.

Finally, the checks ensure that cleanup code is invoked correctly along all paths through

the program.

4.6 Related Work

Related work falls into six broad categories: approaches to cleaning up resources,

type systems, regions, exception schemes, ideas on error handling, and transactional models.

4.6.1 Cleaning Up Resources

Beyond destructors and finalizers there are a number of existing approaches that

are similar in spirit to our compensation stacks.

Common Lisp’s “unwind-protect body cleanup” syntax behaves like try-finally

and ensures that cleanup will be executed no matter how control leaves body. To han-

dle a common case, the macro “with-open-file stream body” opens and closes stream

automatically as appropriate. Since Lisp comes with first-class functions and macros,



111

unwind-protect can be used more conveniently than Java’s try-finally with respect

to duplicate and unique error handling. However, it still suffers from many of the same

limitations (e.g., no easy way to discharge obligations early, one nesting level per resource,

one global stack). In Scheme “dynamic-wind before work after” and call-with-open-file

serve similar purposes, although dynamic-wind is complicated by the presence of continu-

ations (e.g., the dynamic extent of work may not be a single time period).

The POSIX thread library (IEEE 1003.1c-1995) provides a per-thread cancellation

cleanup stack (pthread cleanup push and pop). The cleanup routines are executed when

the thread exits or is canceled. However, the cleanup stack is not a first-class object, so

cleanup code must be associated with the thread and not with an object. In addition,

only the most recently-added cleanup code can be executed early or removed from the

stack. Also, those two actions may only be taken inside the same lexical scope as their

corresponding push. The stack uses C-style function pointers, so general error-handling

(like that of undo in Section 4.5) requires the creation of separate functions. Finally, the

mechanism can only be used safely in “deferred cancellation mode” because performing

the action and pushing the cleanup code are not done atomically with respect to thread

cancellation. Our compensate-with expression handles this issue in Java, where thread

cancellation is signaled via exceptions.

The Cleanup Stack programming convention is used by C++ programs that run

on the Symbian embedded OS. The Symbian OS is typically used for cell phones and other

environments where memory is a particularly scarce resource and every effort is made to

keep track of and release it. A Symbian Cleanup Stack keeps track of local pointers to
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memory and frees them automatically if some intermediate computation terminates with an

exception [vdW02]. There is a single global Cleanup Stack and only one type of resource

(i.e., explicitly-managed memory) is supported. In addition there is no support for freeing

memory early along some paths.

The GNU Debugger gdb uses cleanups as “a structured way to deal with things

that need to be done later.” [SPS02] Cleanups are executed when gdb commands are fin-

ished, when an error occurs, or on explicit request. A cleanup is a chain of function pointers

and arguments. In this example:

struct cleanup *old = make_cleanup (null_cleanup, 0);

data = xmalloc (sizeof blah); // acquire resource

make_cleanup (xfree, data); // promise to free resource later

/* do dangerous work */

do_cleanups (old); // free resource now

A cleanup chain is used to ensure that the allocated memory returned by xmalloc is

eventually freed by passing it to xfree. Cleanup chains do not support arbitrary closures

and can be awkward when more than one local variable must be referenced by the postponed

action. In addition, their default execution behavior is somewhat tied to gdb’s top-level

command loop.

4.6.2 Type Systems

Flow-sensitive type systems check many of the same safety properties that our

system enforces. The key difference is that a strong type system will reject a program

that cannot be statically shown to adhere to the safety policy, whereas our system will use

run-time instrumentation to ensure compliance.

DeLine and Fähndrich [DF01] propose the Vault language and static linear type
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system for enforcing high-level software protocols. Vault represents a different point in the

design space, with more powerful properties but a more difficult programming model. It

can verify that operations are performed on resources in a certain order (e.g., that open is

called before read), while we cannot. It can also ensure that an operation is in a thread’s

computational future (e.g., that an opened resource is closed by the end of the method).

Vault’s keys represent the right to perform certain operations on objects. Keys can be in

various states (e.g., open or closed). Vault’s variant keys (e.g., special objects that are either

empty or contain a key) can be used to free an object early on one path and free it later

on another. These variants require the programmer to make an explicit run-time check to

determine if the key has already been freed. Our system handles this aspect slightly more

naturally by performing that check automatically. On the other hand, our system lacks

stateful keys. Vault does not support arbitrary polymorphic lists of keys, and placing a

resource in a list makes it anonymous. We can place arbitrary compensations relating to

different resources in the same compensation stack.

Perhaps the greatest drawback of Vault is that it requires much of the program to

adhere to a linear type system. Linear type systems are generally considered to be difficult

to work with, and structuring a program to fit a linear type system is often a herculean

task. Later work [FD02] extends the Vault type system with additional features that ease

the burden of programming with linear types, but aliasing can still be difficult. However,

our basic approach cannot be modeled in a standard linear type system since we want the

explicit aliasing of storing a reference to the resource in the compensation stack and allowing

the program to continue to manipulate it.
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4.6.3 Regions

Region-based memory management aims for both the predictability and efficiency

of stack-based allocation and the safety of automatic memory management. Care must be

taken to avoid freeing a region too early lest the program follow a dangling reference.

Gay and Aiken [GA98] propose a system for memory management using explicit

first-class regions [TT97]. Their regions are conceptually similar to our compensation stacks.

In their system, reference counts keep programs from deleting regions too early. In our

system, stacks keep programs from forgetting to perform compensations. Regions allow

one to express data locality, whereas Putting compensations in the same stack allows the

programmer to express the conceptual locality of a compound transaction. Later, Gay and

Aiken [GA01] discuss a system with support for subregions. In it a region may only be

freed if it has no remaining subregions.

Tofte and Talpin [TT97] describe the general theory of region-based memory man-

agement and present a region inference algorithm for garbage-collected programs. Re-

gion inference provides automatic memory management, broadly decides object lifetimes at

compile-time and specializes memory management to the given program. In their system,

the store is organized as a stack of regions with nested lifetimes.

Hallenberg et al. [HET02] give a system for combining garbage collection and such

region-based memory management. They report that region inference works “most of the

time” and that garbage collection (i.e., run-time checking) holds the promise of eliminating

the need to hand-tune programs to work well with regions. A type-and-effect system is used

to statically ensure that objects are allocated in regions such that no dangling references
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are ever followed.

4.6.4 Exceptions

Most modern programming languages feature exceptions that behave according

to the replacement model [Goo75, YB85] (see also [Lev77, DHL90, MT97, HA98, RM99]).

Alonso et al. [AHA+00] believe that poor support for exception handling is a major obstacle

for large-scale and mission-critical systems. Hagen et al. [HA00] claim that exception han-

dling must be separated from normal code if processes are to be reused like libraries. This

separation is similar to our goal of annotating interfaces with compensation information.

Dony [Don01] describes an object-oriented exception handling system where all

exception handlers have a dynamic call-stack scope. Dony’s form of unwind-protect is

similar to our approach, although it offers no support for discharging obligations early or

for a first-class handling of the current set of pending obligations.

Cargill [Car94] argues that without extraordinary care exceptions actually dimin-

ish the overall reliability of software. The hard part of exception handling is not raising

exceptions but writing the support code so that errors are handled correctly. Our technique

is particularly well-suited to handling the matched acquire-free behavior in his presentation.

4.6.5 Error handling

Quite a bit of attention from a number of research communities has been devoted

to issues of error handling in long-running processes and general software systems. Broadly

speaking, expressive systems for signaling and handling run-time errors are considered in-

tegral to the reliability of large-scale software systems.
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Valetto and Kaiser [VK02] note that adaptation to errors usually involves several

conditional or dependent activities that may fail; the linear saga model we support is rich

enough to capture many dependent activities.

Cardelli and Davies [CD99] present a language for writing programs with an ex-

plicit notion of failure. We have a less holistic notion of run-time errors but have an easier

time integrating with existing code.

Demsky and Rinard [DR03] allow defects in key data structures to be repaired

at run-time based on specifications. Their technique works at the level of data structures

and not at the level of program actions, and it may be viewed as addressing an orthogonal

problem. For example, their approach does not lend itself naturally to I/O-based repairs

and ours does not handle logical errors in compensation code.

The VINO operating system [SESS96] uses software fault isolation and lightweight

transactions to address problems like resource hoarding in user-defined kernel extensions.

This form is similar to our approach in that an interface has been annotated with com-

pensations that are called if a fatal error occurs. However, in VINO there is only one

compensation stack per extension, and it is not a first-class object. In addition, there is no

support for nested transactions without defining additional extensions.

4.6.6 Transactions

Database transactions provide a strong and well-founded approach to error han-

dling [Gra81]. However, many find the consistency and durability of transactions to be

too heavyweight for most programming purposes (e.g., [AHA+00, LS83, DHL90]). For

example, Java programs that want transactional support for certain pieces of data (e.g.,
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e-commerce applications looking updating inventory tables) often make explicit calls an

external database (as in the “Database” policy of Section 2.5). For variables internal to the

program, however, other measures are more appropriate.

Restructuring a program to make use of transactions can be a large, invasive

change. Borg et al. [BBG+89] describe a checkpointing system that allows unmodified pro-

grams to survive hardware failures. Essentially, every system call is intercepted and logged.

Others [SW91, LC98, SSF99] provide similar services. Our compensation annotations are

a much less drastic change to the program semantics than the incorporation of full-fledged

transactions.

In addition, these transaction techniques address an orthogonal error handling

issue. In Borg et al.’s system, a buggy process that acquires a lock twice and deadlocks on

initialization will continue to deadlock no matter how many times it is recovered. Lowell et

al. [LCC00] formalize this point by noting that the desire to log all events actually conflicts

with the ability to recover from all errors. Such systems are very good at masking hardware

failures and quite poor at masking software failures; Lowell et al. suggest that 85–95%

of application bugs cause crashes that would not be prevented by a failure-transparent

operating system. Our technique hopes to address those sorts of bugs, although it is less

automatic.

Many researchers have found that advanced transactional concepts fit closely with

language-level error handling. [DDN+98, LOLZ01] One such concept, the compensating

transaction, semantically undoes the effects of another transaction after that transaction

has been committed [KLS90]. Designing a full compensating transaction that completely
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undoes the effects of a previous action is often difficult. Our system relaxes this requirement.

Alonso et al. [AKA+94] consider the notion of linear sagas [GMS87] in a similar context.

Our system is slightly more general than a pure linear saga [KLS90] and more closely

resembles a form of nested or interleaved linear sagas.

4.7 Language Feature Conclusions

We examined the mistakes found by our bug-finding analysis qualitatively and

discussed the strengths and weaknesses of exceptions, destructors and finalizers for run-

time error handling. Based on our observations we have proposed a programming language

feature based on the notions of compensating transactions and linear sagas. Stacks of

compensations are first-class objects that can be manipulated by the program and used to

store compensating actions. They behave much like destructors but provide a more general

stack structure, guarantees on heap objects, and easy early execution and bookkeeping.

Compensations themselves are recorded and executed at run time. Case studies show that

such a feature can be used to achieve improved reliability with minimal overhead. Since

error handling is a large and important part of programs, suggesting features that would

help to prevent them is an important step toward making more robust programs.
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I can only conclude that I’m paying off
karma at a vastly accelerated rate.

Susan Ivanova, “Points of Departure”

Chapter 5

Conclusion

Software reliability remains an important and expensive issue. This work presents

a three-point approach for addressing a certain class of software reliability problems. We

focus on exceptional situations, a previously-underinvestigated aspect of software reliability.

First, we presented a static dataflow analysis for finding bugs in how programs

deal with important resources in the presence of exceptional situations. In order to find

bugs in programs we formalized some initial specifications of what the programming should

be doing. In order to find bugs in exceptional situations we defined a particular fault model

to describe what exceptional situations could crop up. The analysis itself was designed

to scale well to large programs. We introduced three simple filtering rules in in order to

make the analysis easier to use by eliminating false positives. The analysis found over 800

methods with mistakes in almost 4 million lines of Java code.

Second, we returned to the problem of specifying what the program should be

doing. We presented an algorithm for automatically mining program-specific partial cor-
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rectness specifications. The specifications took the form of event pairs that should be called

in sequence. Our specification miner was based on our observations of how programs be-

have in exceptional situations. In a series of qualitative and quantitative experiments our

miner was able to find more real specifications that could be used to find more real bugs

than other comparable existing miners. Our mined specifications found 430 bugs in one

million lines of code compared to 172 bugs from our hand-written policies and 50 bugs from

another miner. Our miner also produced an order of magnitude fewer false positives than a

comparable approach. In addition, we presented evidence to suggest that 43% of the bugs

found by our analysis would be fixed by developers.

Third, given over 1,200 resource-handling bugs in exceptional situation we designed

a language feature to make it easier to fix such mistakes. We characterized the errors

found by our analysis and determined that existing language features were insufficient.

We proposed that programmers keep track of important obligations at run-time in special

compensation stacks. In two case studies we showed that it is easy to apply compensation

stacks to existing Java programs and that they can be used to make programs slightly

simpler and, in some cases, slightly more reliable.

We believe this work was a successful step toward making software more reliable

in the presence of exceptional situations. Given a Java program we can automatically infer

specifications local to that program. Using those specifications and some hand-crafted ones

we can analyze the program to find mistakes. Once mistakes have been located we can

provide the programmer with an easy-to-use tool for addressing them. All of this can be

done cheaply, before the program is deployed. We hope that this approach, or techniques
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like it, will be more frequently adopted in the future.
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[dLF02] Rogério de Lemos and José Luiz Fiadeiro. An architectural support for self-

adaptive software for treating faults. In Proceedings of the First ACM SIGSOFT

Workshop on Self-Healing Systems (WOSS ’02), pages 39–42. Charleston,

South Carolina, November 2002.

[DLS02] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: path-sensitive program

verification in polynomial time. SIGPLAN Notices, 37(5):57–68, 2002.



126

[Don01] Christophe Dony. A fully object-oriented exception handling system. In Ad-

vances in Exception Handling Techniques, volume 2022 of Lecture Notes in

Computer Science, pages 18–38, 2001.

[DR02] Brian Demsky and Martin Rinard. Automatic detection and repair of errors in

data structures. Technical Report MIT-LCS-TR-875, MIT, December 2002.

[DR03] Brian Demsky and Martin C. Rinard. Automatic data structure repair for

self-healing systems. In ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications. 2003.

[ECC01] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as inconsistent

behavior: A general approach to inferring errors in systems code. In Symposium

on Operating Systems Principles, pages 57–72, 2001.

[ECCH00] Dawson Engler, Ben Chelf, Andy Chou, and Seth Hallem. Checking system

rules using system-specific, programmer-written compiler extensions. In Sym-

posium on Operating Systems Design and Implementation, 2000.

[Ecl03] Eclipse.org. Eclipse platform technical overview. http://eclipse.org. Technical

report, 2003.

[ELLR90] A. K. Elmagarmid, Y. Leu, W. Litwin, and M. E. Rusinkiewicz. A multi-

database transaction model for Interbase. In The 16th Annual International

Conference on Very Large Data Bases, August 1990.

[Els03] Martin Elsman. Garbage collection safety for region-based memory manage-



127

ment. In Proceedings of ACM SIGPLAN Workshop on Types in Language

Design and Implementation (TLDI’03). ACM Press, January 2003.

[FD02] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear

types for imperative programming. In ACM Conference on Programming Lan-

guage Design and Implementation, June 2002.

[FPP98] David Freedman, Robert Pisani, and Roger Purves. Statistics. W. W. Norton,

1998.

[FRMW04] C. Fu, B. Ryder, A. Milanova, and D. Wannacott. Testing of java web services

for robustness. In Proceedings of the International Symposium on Software

Testing and Analysis (ISSTA), 2004.

[GA98] David Gay and Alexander Aiken. Memory management with explicit regions.

In Programming Language Design and Implementation, pages 313–323, 1998.

[GA01] David Gay and Alexander Aiken. Language support for regions. In SIGPLAN

Conference on Programming Language Design and Implementation, pages 70–

80, 2001.

[GJS96] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification.

The Java Series. Addison-Wesley, Reading, MA, USA, 1996.

[GMS87] Hector Garcia-Molina and K. Salem. Sagas. In ACM Conference on Manage-

ment of Data, pages 249–259, 1987.



128

[Goo75] John B. Goodenough. Exception handling: issues and a proposed notation.

Communications of the ACM, 18(12):683–696, 1975.

[Gra81] Jim Gray. The transaction concept: virtues and limitations. In International

Conference on Very Large Data Bases, pages 144–154. Cannes, France, Septem-

ber 1981.
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