
1556-6056 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2017.2780105, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 1

MNCaRT: An Open-Source, Multi-Architecture
Automata-Processing Research and Execution Ecosystem

Kevin Angstadt, Jack Wadden, Vinh Dang, Ted Xie, Dan Kramp, Westley Weimer, Mircea Stan, Fellow, IEEE
Kevin Skadron, Fellow, IEEE

Abstract—We present MNCaRT, a comprehensive software ecosystem for the study and use of automata processing across
hardware platforms. Tool support includes manipulation of automata, execution of complex machines, high-speed processing of NFAs
and DFAs, and compilation of regular expressions. We provide engines to execute automata on CPUs (with VASim and Intel
Hyperscan), GPUs (with custom DFA and NFA engines), and FPGAs (with an HDL translator). We also introduce MNRL, an
open-source, general-purpose and extensible state machine representation language developed to support MNCaRT. The
representation is flexible enough to support traditional finite automata (NFAs, DFAs) while also supporting more complex machines,
such as those which propagate multi-bit signals between processing elements. We hope that our ecosystem and representation
language stimulates new efforts to develop efficient and specialized automata processing applications.

F

1 INTRODUCTION

Y EARS of research and development have resulted in high-
throughput automata processing architectures and software

engines [1]–[3]. This has lead to the discovery of new use-cases
and application domains for finite automata, such as natural
language processing, network security, graph analytics, high-
energy physics, bioinformatics, pseudo-random number gener-
ation and simulation, data-mining, and machine learning [4].

Unfortunately, the software frameworks for the construc-
tion, manipulation, and translation of automata are frustrat-
ingly fractured (e.g. have inconsistent serialization formats)
and restrictively licensed (e.g., Micron licenses a comprehensive
SDK, but it is closed-source and specifically targets their D480
Automata Processor, or AP [2]). While these tools are useful
for developing applications for the AP, the tools do not allow
researchers to easily evaluate designs across hardware plat-
forms, such as CPUs, GPUs, and FPGAs. The tools also cannot
be easily extended to support new architectures and automata
paradigms. Instead, a general and extensible framework is
needed to enable the development of platform-independent
applications and to support experimental automata designs.

Therefore, we have developed a suite of tools for creating,
manipulating, and executing finite automata, which we refer to
as MNCaRT (the MNRL Network Computation and Research
Testbed, pronounced “minecart”).1 MNCaRT collects a diverse
set of automata processing tools and algorithms into a central
location and will grow as new tools are developed. We currently
provide support for compiling state machines from Perl com-
patible regular expressions (PCRE) to automata, high-speed
execution of NFAs and DFAs using Intel Hyperscan [3], and
optimization and simulation of experimental automata designs

• K. Angstadt and W. Weimer are with the Computer Science and Engineer-
ing Division, Department of Electrical Engineering and Computer Sci-
ence, University of Michigan, Ann Arbor, MI 48109. E-mail: {angstadt,
weimerw}@umich.edu.

• J. Wadden, V. Dang, T. Xie, D. Kramp, M. Stan, and K. Skadron
are with the Department of Computer Science, University of Virginia,
Charlottesville, VA 22904. E-mail: {wadden, vqd8a, ted.xie, dankramp,
mircea, skadron}@virginia.edu.

Manuscript submitted: 04-Oct-2017. Manuscript accepted: 30-Oct-2017.
1. https://github.com/kevinaangstadt/mncart

with the Virtual Automata Simulator (VASim) [5]. Further, we
provide back-ends for executing on GPUs [6], FPGAs [7], and
the AP [2]. Finally, we allow users to explore routing constraints
for experimental spatial architectures via the Automata-to-
Routing (ATR) tool [8].

To support our ecosystem, we have created MNRL, the
MNRL Network Representation Language (pronounced “min-
eral”), a JSON-based, open-source language to support the de-
velopment of, and experimentation with, new automata-based
applications and architectures. MNRL allows a user to define
a network (or collection) of MNRL nodes, which represent the
states within automata. Each node stores configuration infor-
mation (such as node type, name, etc.) and connections to other
nodes within the network. The language specification is gen-
eral, allowing state machines other than finite automata to be
represented. We provide initial definitions for traditional finite
automata states, homogeneous states, up-counters, and Boolean
logic in the MNRL specification; additional node types may be
defined by the user for specific applications. Both MNRL and
the tools in MNCaRT are publicly available (typically under
BSD licenses), allowing both academics and industry experts to
contribute to, and use, the ecosystem.

This work makes the following technical contributions:

• MNCaRT, an comprehensive repository of compatible
tools for developing and experimenting with automata
processing on CPUs, GPUs, and FPGAs.

• MNRL, an extensible, open-source JSON specification
for representing state machines.

• Python and C++ APIs for reading, creating, manipulat-
ing, and writing MNRL files.

• Extensions to Intel’s Hyperscan PCRE engine, support-
ing compilation to and execution of MNRL files.

• An extended version of VASim, which supports reading
and writing of MNRL files.

2 BACKGROUND AND RELATED WORK

A finite automaton includes of a set of states and a set of
transitions defining how the states become active based on sym-
bols observed in an input stream. In a non-deterministic finite
automaton (NFA), it is possible to transition to multiple states
on the same input symbol. Automata are often represented as

https://github.com/kevinaangstadt/mncart


1556-6056 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2017.2780105, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 2

a graph, defining the topological layout of the computation.
Computation is therefore decoupled from the definition of the
state machine, allowing for a common execution engine, which
defines the execution model, to process arbitrary automata,
improving code reuse and reducing sources for bugs.

In the remainder of this section, we briefly highlight some
existing automata processing engines and discuss limitations of
current automata representation languages.

Automata Processing Engines. Micron’s D480 AP [2] is a
custom hardware accelerator which directly executes homo-
geneous finite automata.2 Becchi et al. have developed a set
of tools and algorithms for efficient CPU-based automata pro-
cessing [9]. Other CPU engines include Intel’s Hyperscan [3].
Automata processing engines have also been developed for
GPUsand FPGAs (e.g., [10], [11], and [12]). Unfortunately, ex-
isting engines do not share a common automata representation,
making cross-architecture, comparison and development of
automata-based algorithms challenging and time-consuming.

Limitations of Automata Representation Languages. The
Automata Network Markup Language (ANML) is a propri-
etary description language developed for the Micron D480 AP.
Licensing restrictions make the language challenging to use for
prototyping new automata elements, and additional annota-
tions cannot be added to elements in ANML while maintaining
support for current tools. Therefore it is not a good choice for
unifying automata processing engines.

Becchi et al.’s tools use a simple NFA representation based
on the theoretic definition of NFAs and cannot be easily ex-
tended to support more complex state machines. The language
is custom, and there is no support in general-purpose program-
ming languages for reading and manipulating these files.

Regular expressions are commonly used to generate au-
tomata, but are difficult to develop and maintain. Many appli-
cations (e.g., particle tracking, motif searchers, and rule mining)
would be represented by non-intuitive regular expressions that
are often exhaustive enumerations of all possible matches.
Additionally, programming of regular expressions can be ex-
tremely error-prone due to variations in regular expression
syntax, which leads to high rates of runtime exceptions [13].

While other automata representation languages exist (e.g.,
Dot and JFLAP), these present similar licensing, generalizabil-
ity, and maintainability challenges.

3 MNRL: A NEW AUTOMATA LANGUAGE

We have developed MNRL, an extensible, open-source au-
tomata representation language, which allows for the topo-
logical specification of a collection of finite state machines
using JSON syntax. While JSON is supported by most common
general-purpose programming languages, we provide C++ and
Python bindings to support additional validation checks.

It is important to note that the MNRL format specifies the
layout of a machine but does not specify how elements behave,
allowing many types of state machines to be represented,
including traditional NFAs [14] and homogeneous NFAs [15].3

Behavior is left for the execution engine to specify and imple-
ment (allowing MNRL to be an extremely flexible file format).
Therefore, MNRL is similar in intent to the Unified Modeling
Language (UML), in which developers describe and design
software systems while eliding implementation details [16].

2. In a homogeneous NFA, all incoming transitions to any given state
must occur on the same input character.

3. MNRL is general enough to represent more powerful machines
(e.g. push-down automata, cellular automata, and Turing machines).

3.1 MNRL Format

A MNRL file contains a single MNRL network—a collection of
one or more state machines that are executed in parallel using
the same input. The file contains an array of MNRL nodes,
which define each element in the network. A node consists of:

• A unique identifier
• A node type (state, homogeneous state, up counter,

boolean, etc.)
• How the node is enabled
• Whether the node reports (generates an output signal)

when activated
• An array of input ports, each with a unique ID and

specified width (number of wires)
• An array of output ports, each with a unique ID, speci-

fied width, and list of connected nodes
• Custom attributes, specific to each element type

A developer can encode the topological layout of the state
machines within the network and to specify the sort of behavior
the underlying execution engine should assign to each node.
The implementation of behavior is not defined in the MNRL file;
instead, the computation engine that processes a MNRL net-
work is responsible for specifying the semantics for each node
type. Therefore, node types and execution engines are typically
co-designed. If an engine needs information (e.g. symbol sets
for matching against an input stream) to process a node, this
configuration can be embedded in a MNRL node’s attributes.
For the standard node types, we have specified additional
attributes to support their respective expected behaviors.4

3.2 Extending the MNRL Schema

MNRL is designed to be extensible, enabling research on
new, custom automata functionality and allows researchers to
quickly define custom attributes for new node types. Because
custom node types become part of the JSON schema, prototype
extensions to the MNRL format can still be statically checked
with minimal effort from the developer.The MNRL file format
could easily be extended to support additional node types
such as non-deterministic counters [17], and stacks (to support
push-down automata). Because MNRL supports variable-width
ports, it is also possible to represent elements that share more
than a single bit of data with elements downstream.

4 THE MNCART ECOSYSTEM

Our goal with the MNRL language is to enable the develop-
ment of a rich, vibrant ecosystem of compatible tools for manip-
ulating and executing automata. We are collecting these tools in
an umbrella repository, the MNRL Network Computation and
Research Testbed (or MNCaRT). By keeping tools catalogued in
a single location, we hope to maintain the interoperability of
tools and reduce fracturing in the ecosystem. We also provide
a Linux container configured to use all of the MNCaRT tools.5

Figure 1 describes the interaction between tools provided
with MNCaRT. Our ecosystem supports workflows beginning
with high-level languages, such as PCRE, and ending with
execution on CPUs, GPUs, and FPGAs. We also support execu-
tion on Micron’s Automata Processor via conversion to ANML.
Additionally, we provide compatible benchmarks for testing
experimenting with tools in MNCaRT. In this section, we briefly
describe to tools that make up the initial release of MNCaRT.

4. For additional details, please see Angstadt et al. [4].
5. https://hub.docker.com/r/kevinaangstadt/mncart

https://hub.docker.com/r/kevinaangstadt/mncart


1556-6056 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2017.2780105, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 3

MNCaRT Ecosystem

PCRE RAPID
High-Level
Languages ANMLZoo

Benchmarks

MNRL ANML*
State Machine

Representations

hscompile REAPR VASim Automata
Lab ATR

Analysis
Compilation

Transformation

Hyperscan
CPU

Engine

FPGA
Engine

VASim
CPU

Engine

DFAGE
iNFAnt2
(GPU)

Execution
Engines

*While ANML is not officially part of MNCaRT, we indicate where this
alternate representation falls within the ecosystem using dashed lines.

Fig. 1. Tools supplied as part of MNCaRT. These fall into four cat-
egories: front-end representations (both high-level and representation
languages), benchmarks, transformation and compilation tools, and
hardware and software execution engines.

4.1 High-Level Languages
Our framework supports programming models that represent
pattern searches at a higher level of abstraction.

We compile PCRE to MNRL files using Intel Hyperscan’s
parsing and compilation routines [3]. Hyperscan is an open-
source, high-performance regular expression processing library
supported by Intel. The tool returns a graph representation of
the compiled state machine, which we traverse to generate
a MNRL file. Our regular expression compiler (pcre2mnrl)
reads a file of regular expressions and compiles the given set
of patterns to a single MNRL file. The line number of each
given PCRE pattern is used as the report ID to allow for easy
identification of matched patterns in processing output.

RAPID is a high-level programming language for execution
of sequential pattern-matching applications [18]. This C-like
language is extended with three keywords to support parallel
matching of patterns against a single data stream as well as
sliding window pattern recognition. We have extended the
RAPID compiler to emit MNRL files, allowing for high-level
programming within the MNCaRT ecosystem.

4.2 Benchmarks
The ANMLZoo benchmark suite contains a diverse set of
automata applications and associated input stimuli [6]. Appli-
cations range from configurable, synthetic benchmarks to algo-
rithms not easily represented by regular expressions and can
therefore demonstrate vastly different execution characteristics.
We have generated MNRL for all benchmarks in the suite.

4.3 Analysis, Transformation, and Compilation
Hyperscan Compilation. We provide an extension to Hyper-
scan (hscompile) that parses MNRL files and compiles the
finite automata to a serialized Hyperscan pattern database,
allowing offline compilation. Additionally, our tool serializes a
mapping from MNRL node IDs and report IDs to Hyperscan’s
internal naming for each state machine element. This mapping

enables human-readable output when processing input data
using Hyperscan.

VASim. We have extended VASim [5] to support parsing of
MNRL files. VASim is a general-purpose framework for au-
tomata simulation, optimization, transformation, and perfor-
mance modeling. The tool enables prototyping, debugging,
simulation, and analysis of automata-based applications and
architectures. Additionally, VASim can parse Micron ANML
files, allowing for conversion with MNRL.

VASim also provides a common codebase for applying
state-of-the-art optimizations, transformations, and static and
dynamic analyses to finite automata. This platform allows
researchers to easily and quickly share new algorithms, and
perform fair apples-to-apples comparisons to prior work, ac-
celerating automata processing research. We provide several
optimizations in the core of VASim, including common prefix
merging [19] and a literal matching engine [3].

Automata Lab. Automata Lab is a web-based graphical en-
vironment for visualizing, editing, and simulating finite au-
tomata [20]. The tool uses VASim to manipulate automata, and
the resulting state machines are displayed graphically, allowing
for user interaction. Users may upload MNRL files or choose
from applications in the ANMLZoo benchmark suite.

REAPR. We adapt REAPR [7], a tool for generating highly-
efficient FPGA automata accelerator kernels, to support MNRL.
The tool generalizes prior work [2], [11], [12] to be applicable
for automata processing applications other than just regular
expressions. Hardware automata accelerator engines such as
REAPR take advantage of the one-to-one mapping between the
spatial distribution of automaton states and hardware resources
such as lookup tables (LUTs), block RAM (BRAM), and wires.

In REAPR, there are two main types of RTL elements to
consider: 1) the state transition element (STE), which contains
state activation information and transition logic; and 2) the
wiring between all of the STEs in the automaton. Von Neumann
automata engines iterate over every active STE and check
whether the current input symbol will activate outgoing tran-
sition(s). If so, the next cycle’s activation state is updated with
the list of STEs that the current state affects. In an FPGA circuit
generated by REAPR, STEs that affect each other are physically
connected with wires, and if a single STE has multiple incoming
transitions, they are combined in an OR gate so that any
incoming transition can change the activation state of an STE.

Automata-to-Routing. We extend the Automata-to-Routing
(ATR) [8] tool to support placement and routing of MNRL state
machines. ATR utilizes the Versatile Place and Route (VPR)
tool to model spatial automata-processing architectures [21]. We
use VASim to emit VPR-readable circuits of MNRL networks
and provide guidance to construct custom, parameterizable,
spatial architecture description files to accept these custom state
machine circuits. ATR is thus capable of modeling spatial archi-
tectures that are purpose-built to accept MNRL state machines.

4.4 Execution Engines
Hyperscan CPU Engine. We provide a tool (hsrun) for pro-
cessing MNRL files against an input stream using the Hy-
perscan execution core. This tool deserializes the Hyperscan
pattern database and node mapping produced by hscompile.
The tool then scans the given input file against the database and
prints out human-readable reporting information (e.g. MNRL
ID and input stream offset). If multiple compiled MNRL files
and/or input files are passed to hsrun, the tool will execute all
pairings of the files using a supplied number of threads.



1556-6056 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2017.2780105, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 4

VASim CPU Engine. In addition to support for transformation
and analysis of finite automata, VASim supports simulation
of a diverse set of finite automata models. While Hyperscan
achieves higher throughput, VASim’s modular design allows
for quick prototyping to test new automata elements and de-
signs, such as those including custom compute units.

FPGA Engine. In addition to generating hardware NFA ker-
nels, REAPR can also generate a full platform execution envi-
ronment for certain automata applications. The REAPR plat-
form has been demonstrated to offer up to 183× speedup
over best-effort CPU implementations [7]. We are also actively
developing a general-purpose reporting architecture to support
execution environments for all automata kernels.

GPU Engines (DFAGE and iNFAnt2). MNCaRT contains both
a GPU-based DFA engine (DFAGE) and NFA engine (iNFAnt2).
The NFA engine was described previously by Wadden et al. [6];
we therefore focus on describing DFAGE in this article. Use of
DFAGE first requires compilation to one or more DFAs using
VASim. Note that the compilation process is performed offline
by the CPU. Often, compiling to a single DFA is inefficient.
Therefore, users may partition rulesets into several DFAs, and
each DFA consists of a state transition table and an acceptance
vector. State transition tables corresponding to different DFAs
are stored consecutively in the GPU’s global memory. The same
layout is applied for acceptance vectors. It should be noted that
each transition table is represented by a 2-D array containing
the next state identifiers for every pair of current state identifier
and input symbol. Similar to previous implementations, our
DFA matching engine supports multi-packets processing to
take advantage of the extreme parallelism of GPU architectures.
Input packets also reside in the GPU’s global memory.

Workloads are mapped to a 2-D grid of threads. Similar
to Yu et al. [10], different packets are mapped to different
blocks on the x-dimension of grid. Each thread within the block
processes a different DFA for the assigned packet. However,
for large datasets in our benchmark suite where the number
of DFAs can exceed the block size, different blocks on the y-
dimension of the grid will also be used.

5 CONCLUSIONS

MNRL is a general and extensible format for representing state
machines. The language specification and associated tools are
released with open-source licenses to promote collaboration
and usage within both academia and industry. MNRL is sup-
ported by general-purpose programming languages because it
is based off of the JSON format. Further, we provide MNRL-
specific APIs for Python and C++ to perform more direct
manipulation and validation of networks.

MNRL is a component of MNCaRT, a suite of tools for
analyzing, executing, and transforming automata processing
applications. We support execution of MNRL networks on
CPUs, GPUs, and FPGAs, and we provide a workflow for exe-
cution on Micron’s AP. Support for high-level pattern-matching
languages, such as PCRE and RAPID is also provided as part
of MNCaRT. Finally, we allow for design space exploration
through analysis functionality in the VASim and ATR tools.

ACKNOWLEDGMENT
This work was supported in part by grants from the NSF (CCF-
1116673, CCF-1629450, CCF-1619123, CNS-1619098), AFRL (FA8750-
15-2-0075), Jefferson Scholars Foundation, Achievement Rewards for
College Scientists (ARCS) Foundation, a grant from Xilinx, and support
from C-FAR, one of six centers of STARnet, a Semiconductor Research

Corporation program sponsored by MARCO and DARPA. Any opin-
ions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of AFRL.

REFERENCES

[1] Titan IC Systems, “Helios RXPF soft IP for FPGA security analytics
acceleration,” http://titan-ic.com/products/helios-rxpf, 2017.

[2] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and
H. Noyes, “An efficient and scalable semiconductor architecture
for parallel automata processing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 12, pp. 3088–3098, 2014.

[3] Intel, “Hyperscan,” https://01.org/hyperscan, 2017.
[4] K. Angstadt, J. Wadden, W. Weimer, and K. Skadron, “MNRL

and MNCaRT: An open-source, multi-architecture state machine
research and execution ecosystem,” University of Virginia, Tech.
Rep. CS2017-01, 2017.

[5] J. Wadden and K. Skadron, “VASim: An open virtual automata
simulator for automata processing application and architecture
research,” University of Virginia, Tech. Rep. CS2016-03, 2016.

[6] J. Wadden, V. Dang, N. Brunelle, T. T. II, D. Guo, E. Sadredini,
K. Wang, C. Bo, G. Robins, M. Stan, and K. Skadron, “ANMLZoo: a
benchmark suite for exploring bottlenecks in automata processing
engines and architectures,” in 2016 IEEE International Symposium
on Workload Characterization (IISWC), Sept 2016, pp. 1–12.

[7] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. R. Stan, “REAPR:
Reconfigurable engine for automata processing,” in Proceedings of
the International Conference on Field-Programmable Logic and Applica-
tions, 2017.

[8] J. Wadden, S. Khan, and K. Skadron, “Automata-to-Routing: An
open source toolchain for design-space exploration of spatial
automata processing architectures,” in Proceedings of the IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2017.

[9] M. Becchi, “Regular expression processor,” http://regex.wustl.
edu, 2011.

[10] X. Yu and M. Becchi, “GPU acceleration of regular expression
matching for large datasets: Exploring the implementation space,”
in Proceedings of the ACM International Conference on Computing
Frontiers, ser. CF ’13. New York, NY, USA: ACM, 2013, pp. 18:1–
18:10.

[11] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching
Using FPGAs,” in Proceedings of the the 9th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM).
Washington, DC, USA: IEEE Computer Society, 2001, pp. 227–238.

[12] Y. H. Yang and V. Prasanna, “High-performance and compact
architecture for regular expression matching on FPGA,” IEEE
Transactions on Computers, vol. 61, no. 7, pp. 1013–1025, July 2012.

[13] E. Spishak, W. Dietl, and M. D. Ernst, “A type system for regular
expressions,” in Proceedings of the 14th Workshop on Formal Tech-
niques for Java-like Programs, ser. FTfJP ’12, 2012, pp. 20–26.

[14] M. Sipser, Introduction to the Theory of Computation. Thomson
Course Technology, 2006, vol. 2.

[15] P. Caron and D. Ziadi, “Characterization of Glushkov automata,”
Theoretical Computer Science, vol. 233, no. 1, pp. 75–90, 2000.

[16] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Mod-
eling Language, ser. Object Technology Series. Addison-Wesley,
2004.

[17] M. Becchi and P. Crowley, “Extending finite automata to efficiently
match perl-compatible regular expressions,” in Proceedings of the
ACM International Conference on emerging Networking EXperiments
and Technologies, ser. CoNEXT ’08, 2008, pp. 25:1–25:12.

[18] K. Angstadt, W. Weimer, and K. Skadron, “RAPID programming
of pattern-recognition processors,” in Proceedings of the 21st Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’16, 2016, pp. 593–605.

[19] M. Becchi and P. Crowley, “Efficient regular expression evaluation:
Theory to practice,” in Proceedings of Architectures for Networking
and Communications Systems, ser. ANCS ’08, 2008, pp. 50–59.

[20] D. Kramp, J. Wadden, and K. Skadron, “Automata Lab: An
open-source automata visualization, simulation, and manipula-
tion tool,” University of Virginia, Tech. Rep. CS2017-03, 2017.

[21] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in Proceedings of the International Workshop
on Field Programmable Logic and Applications. Springer, 1997, pp.
213–222.

http://titan-ic.com/products/helios-rxpf
https://01.org/hyperscan
http://regex.wustl.edu
http://regex.wustl.edu

