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Abstract—Many applications process some form of tree-
structured or recursively-nested data, such as parsing XML or
JSON web content as well as various data mining tasks. Typical
CPU processing solutions are hindered by branch misprediction
penalties while attempting to reconstruct nested structures and
also by irregular memory access patterns. Recent work has
demonstrated improved performance for many data process-
ing applications through memory-centric automata processing
engines. Unfortunately, these architectures do not support a
computational model rich enough for tasks such as XML parsing.

In this paper, we present ASPEN, a general-purpose, scalable,
and reconfigurable memory-centric architecture for processing
of tree-like data. We take inspiration from previous automata
processing architectures, but support the richer deterministic
pushdown automata computational model. We propose a custom
datapath capable of performing the state matching, stack manip-
ulation, and transition routing operations of pushdown automata,
all efficiently stored and computed in memory arrays. Further, we
present compilation algorithms for transforming large classes of
existing grammars to pushdown automata executable on ASPEN,
and demonstrate their effectiveness on four different languages:
Cool (object oriented programming), DOT (graph visualization),
JSON, and XML.

Finally, we present an empirical evaluation of two application
scenarios for ASPEN: XML parsing, and frequent subtree
mining. The proposed architecture achieves an average 704.5 ns
per KB parsing XML compared to 9983 ns per KB in a state-of-
the-art XML parser across 23 benchmarks. We also demonstrate
a 37.2x and 6x better end-to-end speedup over CPU and GPU
implementations of subtree mining.

Index Terms—pushdown automata, emerging technologies
(memory and computing), accelerators

I. INTRODUCTION

Processing of tree-structured or recursively-nested data is
intrinsic to many computational applications. Data serializa-
tion formats such as XML and JSON are inherently nested
(with opening and closing tags or braces, respectively), and
structures in programming languages, such as arithmetic ex-
pressions, form trees of operations. Further, the grammatical
structure of English text is tree-like in nature [1]. Reconstruct-
ing and validating tree-like data is often referred to as parsing.

Studies on data processing and analytics in industry demon-
strate both increased rates of data collection and also increased
demand for real-time analyses [2], [3]. Therefore, scalable and
high-performance techniques for parsing and processing data
are needed to keep up with industrial demand. Unfortunately,
parsing is an extremely challenging task to accelerate and

falls within the “thirteenth dwarf” in the Berkeley parallel
computation taxonomy [4]. Software parsing solutions often
exhibit irregular data access patterns and branch mispredic-
tions, resulting in poor performance. Custom accelerators exist
for particular parsing applications (e.g., for parsing XML [5]),
but do not generalize to multiple important problems.

We observe that deterministic pushdown automata (DPDA)
provide a general-purpose computational model for processing
tree-structured data. Pushdown automata extend basic finite
automata with a stack. State transitions are determined by
both the next input symbol and also the top of stack value.
Determinism precludes stack divergence (i.e., simultaneous
transitions never result in different stack values) and admits
efficient hardware implementation. While somewhat restric-
tive, we demonstrate that DPDAs are powerful enough to parse
most programming languages and serialization formats as well
as mine for frequent subtrees within a dataset.

In this paper, we present ASPEN, the Accelerated in-SRAM
Pushdown ENgine, a realization of deterministic pushdown au-
tomata in Last Level Cache (LLC). Our design is based on the
insight that much of the DPDA processing can be architected
as LLC SRAM array lookups without involving the CPU.
By performing DPDA computation in-cache, ASPEN avoids
conventional CPU overheads such as random memory accesses
and branch mispredictions. Execution of a DPDA with ASPEN
is divided into five stages: (1) input symbol match, (2) stack
symbol match, (3) state transition, (4) stack action lookup, and
(5) stack update, with each stage making use of SRAM arrays
to encode matching and transition operations.

To scale to large DPDAs with thousands of states, ASPEN
adopts a hierarchical architecture while still processing one in-
put symbol in one cycle. Further, ASPEN supports processing
of hundreds of different DPDAs in parallel as any number of
LLC SRAM arrays can be re-purposed for DPDA processing.
This feature is critical for applications such as frequent subtree
mining which require parsing several trees in parallel.

To support direct adaptation of a large class of legacy
parsing applications, we implement a compiler for converting
existing grammars for common parser generators to DPDAs
executable by ASPEN. We propose two key optimizations
for improving the runtime of parsers on ASPEN. First, the
architecture supports popping a reconfigurable number of
values from the stack in a single cycle, a feature we call



multipop. Second, our compiler implements a state merging
algorithm that reduces chains containing ε-transitions. Both of
these optimizations reduce stalls in input symbol processing.

To summarize, this work makes the following contributions:
• We propose ASPEN, a scalable execution engine which

re-purposes LLC slices for DPDA acceleration.
• We develop a custom data path for DPDA processing

using SRAM array lookups. ASPEN implements state
matches, state transition, stack updates, includes efficient
multipop support, and can parse one token per cycle.

• We develop an optimizing compiler for transforming
existing language grammars into DPDAs. Our compiler
optimizations reduce the number of stalled cycles dur-
ing execution. We demonstrate this compilation on four
different languages: Cool (object oriented programming),
DOT (graph visualization), JSON, and XML.

• We empirically evaluate ASPEN on two application
scenarios: a tightly coupled XML tokenizer and parser
pipeline and also a highly parallelized subtree miner.
First, results demonstrate an average of 704.5 ns per KB
parsing XML compared to 9983 ns per KB in a state-of-
the-art XML parser across 23 XML benchmarks. Second,
we demonstrate 37.2× and 6× better end-to-end speedup
over CPU and GPU implementations of subtree mining.

II. BACKGROUND AND MOTIVATION

In this section, we review automata theory relevant to
ASPEN. We then introduce two real-world applications that
motivate accelerated pushdown automata execution.

A. Automata Primer

A non-deterministic finite automaton (NFA) is a state ma-
chine represented by a 5-tuple, (Q,Σ, δ, S, F ), where Q is a
finite set of states, Σ is a finite set of symbols, δ is a transition
function, S ⊆ Q are initial states, and F ⊆ Q is a set of final or
accepting states. The transition function determines the next
states using the current active states and the next input symbol.
If the automaton enters into an accept state, the current input
position is reported. In a homogeneous NFA, all transitions
entering a state must occur on the same input symbol [6].
Homogeneous NFAs (and traditional NFAs) are equivalent in
representative power to regular expressions [7], [8].

Pushdown automata (PDAs) extend basic finite automata by
including a stack memory structure. A PDA is represented by
a 6-tuple, (Q,Σ,Γ, δ, S, F ), where Γ is the finite alphabet of
the stack, which need not be the same as the input symbol
alphabet. The transition function, δ, is extended to consider
stack operations. The transition function for a PDA considers
the current state, the input symbol, and the top of the stack and
returns a new state along with a stack operation (one of: push
a specified symbol, pop the top of the stack, or no operation).

B. Deterministic Pushdown Automata

In this paper, we restrict attention to deterministic pushdown
automata (DPDAs), which limit the transition function to only
allow a single transition for any valid configuration of the

DPDA and an input symbol. This restriction prevents stack
divergence, a property we leverage for efficient implementa-
tion in hardware. Some transitions perform stack operations
without considering the next input symbol, and we refer to
these transitions as epsilon- or ε-transitions. To maintain the
determinism, all ε-transitions take place before transitions
considering the next input symbol.

Unlike basic finite automata, where non-deterministic and
deterministic machines have the same representative power
(any NFA has an equivalent DFA and vice versa), DPDAs
are strictly weaker than PDAs [7]. DPDAs, however, are still
powerful enough to parse most programming languages and
serialization formats as well as mine for frequent subtrees
within a dataset. We leave the exploration of hardware im-
plementations of PDAs for future work.

For hardware efficiency, we extend the definition of homo-
geneous finite automata to DPDA. In a homogeneous DPDA
(hDPDA), all transitions to a state occur on the same input
character, stack comparison, and stack operation. Concretely,
for any q, q

′
, p, p

′
∈ Q, σ, σ′ ∈ Σ, γ, γ ′ ∈ Γ, and op, op

′

that are operations on the stack, if δ(q, σ, γ) = (p, op) and
δ(q′, σ′, γ ′) = (p′, op′), then

p = p
′
⇒ σ = σ

′
∧ γ = γ

′
∧ op = op

′
.

This restriction on the transitions function does not limit
computational power, but may increase the number of states
needed to represent a particular computation.

Claim 1. Given any DPDA A = (Q,Σ,Γ, δ, S, F ), the number
of states in an equivalent hDPDA is bounded by O(∣Σ∣∣Q∣2).
Proof. We consider the worst case: A is fully-connected with
∣Σ∣⋅∣Q∣ incident edges to each state and each of these incoming
edges performs a different set of input/stack matches and stack
operations. Therefore, we must duplicate each node ∣Σ∣(∣Q∣−
1) times to ensure the homogeneity property. For any node
q ∈ Q, we add ∣Σ∣ ⋅ ∣Q∣ copies of q to the equivalent hDPDA,
one node for each of the different input/stack operations on
incident edges. Therefore, there are at most ∣Σ∣ ⋅ ∣Q∣ ⋅ ∣Q∣ =
∣Σ∣∣Q∣2 vertices in the equivalent hDPDA.

In practice, DPDAs tend not to be fully-connected and have
a fixed alphabet, resulting in less than quadratic growth. Even
in the worst case, hDPDAs do not significantly increase the
number of states (cf. the exponential NFA to DFA transforma-
tion). Figure 1 provides an example DPDA and hDPDA for
odd-length palindromes with a known middle character.

C. Parsing of XML Files

A common data processing task that makes use of PDAs
is parsing. Parsing, or syntactic analysis, is the process of
validating and reconstructing tree (nested) data structures from
a sequence of input tokens. In natural language, this process
relates to validating that a sequence of words forms a valid
sentence structure, and for a programming language, a parser
will verify that a statement has the correct form (e.g., a
conditional in C contains the correct keywords, expressions,
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Fig. 1: Equivalent DPDA (a) and hDPDA (b) for recognizing odd-length palindromes with a given center character. For
simplicity, we consider strings formed from Σ = {0, 1} with center character c. Transition rules for the DPDA (a) are written
as a, b/c, where a is the matched input symbol, b is the matched stack symbol, and c is the top of the stack after a push or
ε for a pop. Note that ⊥ is a special symbol to represent the bottom of the stack. The hDPDA (b) lists (in order) the input
symbol match (ε for no match), stack symbol match (∗ is a wildcard match), number of symbols to pop, and symbol to push.
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Fig. 2: Conventional parser performance. (a) CPU cycles per
byte. (b) Branch instructions per byte

and statements in the correct order). In this paper, we focus
on the task of parsing XML files, which is common to
many applications. Parsing XML produces a special tree data
structure called the Document Object Model (DOM).

Parsers are typically implemented as the second stage of a
larger pipeline. In the first stage, a lexer, tokenizer, or scanner
reads raw data and produces a list of tokens (i.e., a lexer
converts a stream of characters into a stream of words), which
are passed to the parser. The parser produces a tree from these
input tokens, which can be further validated and processed
by later pipeline stages. For example, an XML parser will
validate that tags are properly nested, but a later stage in the
pipeline performs semantic checks, such as verifying that text
in opening and closing tags match.

Parsing performance on CPUs: Conventional software-
based parsers exhibit complex input-dependent data and con-
trol flow patterns resulting in poor performance when executed
on CPUs. Figure 2 (b) shows two state-of-the-art open-source
XML parsers, Expat [9] and Xerces [10], which can require
∼6–25 branch instructions to process a single byte-of-input
depending on the markup density of the input XML file (i.e.,
ratio of syntactic markup to document size). These overheads
result from nested switch-case statements that determine the
next parsing state. Furthermore, as the parser alternates be-
tween markup processing and processing of variable-length
content, there is little data reuse, leading to high cache miss
rates (∼100 L1 caches misses per kB for Xerces). As a result of

Fig. 3: An example of subtrees (I = Induced, E = Embedded,
O = Ordered, U = Unordered)

both high branch misprediction and cache miss rates, software
parsers take ∼12–45 CPU cycles to parse a single input byte
(see Figure 2 (a)). In contrast, ASPEN, by virtue of performing
DPDA computation in-cache, does not incur these overheads.

D. Frequent Subtree Mining

Another application that may make use of the DPDA com-
putational model is frequent subtree mining. This analysis is
used in natural language processing, recommendation systems,
improving network packet routing, and querying text databases
[11], [12]. The core kernel of this task is subtree inclusion,
which we consider next.

Subtree inclusion problem: Assume S and T are two
rooted, labeled, and ordered trees. Define t1, t2, ..., tn to be
the nodes in T and s1, s2, ..., sm be the nodes in S. Then, S
is an embedded subtree of T if there are matching labels of
the nodes ti1 , ti2 , ..., tim such that (1) label(sk) = label(tik )
for all k = 1, 2, ...,m; and (2) for every branch (sj , sk) in S,
tij should be an ancestor of tik in T . The latter condition
preserves the structure of S in T . We also consider induced
subtrees, which occur when restricting the ancestor-descendant
relationship to parent-child relationships in T for the second
condition. Figure 3 shows examples of subtrees. Sadredini et
al. [13] proposed an approximate subtree inclusion checking
kernel for an NFA hardware accelerator that can lead to false
positives. We focus on exact subtree inclusion checking, which
can use a deterministic pushdown automaton to count the
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Fig. 4: An example CFG (a) and parse tree (b). The grammar
represents a subset of arithmetic expressions. We use ⊣ to
signify the endmarker for a given token stream, which is
needed for transformation to a DPDA. The parse tree given in
(b) is for the expression 3∗ (4+ 5). Note that integer numbers
are transformed to int tokens prior to deriving the parse tree.

length of a possible branch when searching for a subtree in
the input tree.

III. COMPILING GRAMMARS TO PUSHDOWN AUTOMATA

In this section, we describe context-free grammars, our
algorithms to compile such grammars to pushdown automata,
and our prototype implementation.

A. Context-Free Grammars

While DPDAs provide a functional definition of computa-
tion, it can often be helpful to use a higher-level represen-
tation that generates the underlying machine. Just as regular
expressions can be used to generate finite automata, context-
free grammars (CFGs) can be used to generate pushdown
automata. We briefly review relevant properties of these gram-
mars (the interested reader is referred to references such as [7],
[14]–[16] for additional details).

CFGs allow for the definition of recursive, tree-like struc-
tures using a collection of substitution rules or productions. A
production defines how a symbol in the input may be legally
rewritten as another sequence of symbols (i.e., the right-hand
side of a production may be substituted for the symbol given in
the left-hand side). Symbols that appear on the left-hand side
of productions are referred to as non-terminals while symbols
that do not are referred to as terminals. The language of a CFG
is the set of all strings produced by recursively applying the
productions to a starting symbol until only terminal symbols
remain. The sequential application of these productions to an
input produces a derivation or parse tree, where all internal
nodes are non-terminals and all leaf nodes are terminals.

An example CFG for a subset of arithmetic operations is
given in Figure 4 (a). This particular grammar demonstrates
recursive nesting (balanced parentheses), operator precedence
(multiplication is more tightly bound than addition), and

associativity (multiplication and addition are left-associative
in this grammar). Figure 4 (b) depicts the parse tree given by
the grammar for the equation 3 ∗ (4 + 5).

B. Compiling Grammars to DPDAs

Next, we consider the process of compiling an input CFG
to a DPDA. As noted in Section II-A, PDAs and DPDAs
do not have equal representative power. Therefore, there are
CFGs that cannot be recognized by a DPDA. We focus on
support for a strict subset of CFGs known as LR(1) grammars,
which are of practical importance and supported by DPDAs.
Most programming language grammars have a deterministic
representation [7], and many common parser generator tools
focus on supporting LR(1) grammars [17]–[19]. By targeting
this class of grammars, we can therefore support parsing
common languages such as XML, JSON, and ANSI C.

Existing parser generators (e.g., YACC or PLY) are unsuit-
able for compiling to ASPEN because these tools do not pro-
duce hDPDAs (or even DPDAs!). Instead, they generate source
code that makes use of the richer set of operations supported
by CPUs. We do, however, demonstrate how existing tools
may be leveraged for a portion of our compilation process.

This transformation from grammar to hDPDA is broken
down into three stages: (1) parsing automaton generation, (2)
hDPDA generation, and (3) optimization.

Parsing Automaton Generation: Parsing of input accord-
ing to an LR(1) grammar makes use of a DFA known as
a parsing automaton,1 a state machine that processes input
symbols and determines the next production to apply. This
machine encodes shift and reduce operations. Shifts occur
when another input token is needed to determine the next
production and are encoded as transitions between states in the
parsing automaton. Reduce operations (the reverse applications
of productions) occur when the machine has seen enough input
to determine which substitution rule in the grammar to apply
and are encoded as accepting states in the DFA. Each accepting
state represents a different production. Determining the correct
shift or reduce operation may require inspecting the current
input symbol and also a subsequent lookahead symbol.

We leverage off-the-shelf tools to generate parsing au-
tomata. Concretely, we support parsing automata generated
by the GNU Bison2 and PLY3 parser generator tools. These
two tools produce CPU-based parsers and generate parsing
automata as an intermediate output.

Conceptually, parsing proceeds by processing input symbols
using the parsing automaton and pushing symbols to the stack
until an accepting state is reached. The input string is rewritten
by popping symbols from the stack. The most recently-pushed
symbols are replaced by the left-hand-side of the discovered
substitution rule. Processing is then restarted from the begin-
ning of the rewritten input, repeating until only the starting
non-terminal symbol remains. With this classical approach,

1Also referred to as DK in the literature after its creator, Donald Knuth [7].
2https://www.gnu.org/software/bison/
3http://www.dabeaz.com/ply/

https://www.gnu.org/software/bison/
http://www.dabeaz.com/ply/


parsing requires multiple iterations over (and transformations
to) the input symbols.

hDPDA Generation: To improve the efficiency of parsing,
we simulate the execution of the parsing automaton using a
DPDA [7, Lemmas 2.58, 2.67] to process input tokens in a
single pass with no transformations to the input. With this
approach, input symbols are not pushed to the stack. Instead,
the stack of the hDPDA is used to track the sequence of states
visited in the parsing automaton. Shift operations push the
destination parsing automaton state to the stack (shifts are
transitions to other states in the parsing automaton). When a
reduce operation rewriting n symbols to a single non-terminal
symbol is performed by the parsing automaton, the hDPDA
pops n symbols off the stack. The symbol at the top of
the hDPDA stack is the state of the parsing automaton that
immediately preceded the shift of the first token from the
reduced rule. In other words, popping the stack for a reduction
“runs the parsing automaton in reverse” to undo shifting the
symbols from the matched rule. The hDPDA then continues
simulation of the parsing automaton from this restored state.

Our prototype compiler generates an hDPDA by first read-
ing in the textual description of the parsing automaton gen-
erated by Bison or PLY. Next, for each state in the parsing
automaton, we generate hDPDA states for each terminal and
non-terminal in the grammar. A separate state is needed for
each terminal and non-terminal symbol because the homo-
geneity property only supports a single pushdown automata
operation per state (see Section II-A):

• For each terminal symbol, we generate two states: one
state matches the lookahead symbol (i.e., lookahead sym-
bols are stored in “positional” memory) and one state
encodes the relevant shift or reduce operation. A shift
operation pushes parsing automaton states on the stack,
while a reduce operation pops a symbol from the stack
and generates an output signal.

• For each non-terminal symbol, only one state is gener-
ated: the state performing the shift/reduce operation. In
addition, this state must also match the top of the stack
to validate undoing shift operations.

Then, we add additional states to perform stack pop op-
erations for the reduce operations, one pop for each symbol
reduced from the right-hand side of a production. Finally, we
connect the states with transitions according to transition rules
from the parsing automaton.

The final hDPDA is emitted in the MNRL file format.
MNRL is an open-source JSON-based state machine seri-
alization format that is used within the MNCaRT automata
processing and research ecosystem [20]. We extend the MNRL
schema to support hDPDA states, encoding the stack opera-
tions with each state. Using MNRL admits the reuse of many
analyses from MNCaRT with minimal modification.

Optimization: While our algorithm to transform the parsing
automaton to a DPDA is direct, the resulting DPDA contains
a large number of ε-transitions and extraneous states. First,
we remove all unreachable states (states with no incoming
transitions). Then, we perform optimizations to reduce the
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Fig. 5: Two compiler optimizations for reducing the number
stalls incurred by ε-transitions. Epsilon merging (a) attempts
to combine states to perform non-overlapping operations.
Multipop (b) allows for the stack pointer to be moved a
configurable distance in one operation.

total number of ε-transitions within the hDPDA. Recall that
ε-transitions occur when stack operations take place without
reading additional input (e.g., when popping the stack during
a reduce operation and transitioning to another state). We
make two observations about the hDPDA produced by our
compilation algorithm.

First, the algorithm produces separate states to “read in”
input symbols and to perform stack operations. In many
cases, these states may be combined, or merged, to match
the input and perform stack operations simultaneously. After
producing the initial hDPDA, we perform a post-order depth-
first traversal of the machine and merge such connected states
when possible. We call this optimization epsilon merging and
apply it conservatively: only states that occur on a linear chain
are merged. Figure 5 (a) shows an example in which a state
performing input matching on capital letters and a state (with
no input comparison) performing a pop and a push are merged.

Second, our basic algorithm assumes a computational model
that only supports popping one symbol at a time. On reduction
operations for productions containing several symbols on the
right-hand side, this results in long-duration stalls. Note, how-
ever, that no comparisons are made with these intermediate
stack symbols. If our architecture can support moving the
stack pointer by a variable amount, then a reduction may
be performed in one step. We refer to this as multipop.
Figure 5 (b) demonstrates a reduction of four states to one
state with multipop.

C. Compilation Summary

We presented an overview of CFGs, a high-level language
representation that may be used to generate pushdown au-
tomata. Then, we described an algorithm for compiling an
important subset of CFGs (LR(1) grammars) to hDPDAs.
We leverage existing tools to produce an intermediate parser
representation (the parsing automaton), which we then encode
in an hDPDA for execution with ASPEN. We also introduce



two optimizations, epsilon merging and multipop, to reduce
stalls while processing input. Our approach supports and
accelerates existing parser specifications without modification.
This means that parsers do not have to be redesigned to take
advantage of ASPEN’s increased parsing performance.

IV. ARCHITECTURAL DESIGN

In this section, we describe the ASPEN architecture that
augments LLC slices with support for DPDA processing. We
also discuss the design of a DPDA processing pipeline based
on ASPEN and the tradeoffs involved.

A. Cache Slice Design

The proposed ASPEN architecture augments the last level
cache slices of a general purpose processor to support in-situ
DPDA processing. Figure 6 (a) shows an 8-core enterprise
Xeon-E5 processor with LLC slices connected using a ring
interconnect (not shown in figure). Typically, the Intel Xeon
family includes 8-16 such slices [21]–[23]. Each last-level
cache slice macro is 2.5 MB and consists of a centralized
cache control box (CBOX). A slice is organized into 20 ways,
with each way further organized as five 32 kB banks, four
of which constitute data arrays, while the fifth one is used
to store the tag, valid and LRU state (Figure 6 (b)). All the
ways of the cache are interconnected using a hierarchical bus
supporting a bandwidth of 32 bytes per cycle. Internally, each
bank consists of four 8 kB SRAM arrays (256 × 256).

A bank can accommodate up to 256 states and a DPDA
can span several banks. We repurpose two of the four arrays in
each bank to perform the different stages of DPDA processing.
The remaining two arrays (addressed by the PA[16] bit)
can be used to store regular cache data. State-transitions
are encoded in a hierarchical memory-based interconnect,
consisting of local and global crossbar switches (L-switch, G-
switch). A 256-bit register is used to track the active states in
each cycle (Active State Vector in Figure 6 (c)). We provision
input buffers in the C-BOX to broadcast input symbols or
tokens to different banks. Output buffers are also provided to
track the report events generated every processing cycle.

B. Operation

This subsection provides the details of DPDA processing.
Recall that, in a DPDA, only a single state is active in every
processing cycle, and initially, only the start state is active.
Each input symbol from the DPDA input buffer is processed
in five phases. In the input match and stack match phases,
we identify the active DPDA state which has the same label
as that of the input symbol and the top of stack (TOS)
symbol respectively. In the stack action lookup phase, the stack
action defined for that state is determined (i.e., push symbol
or number of symbols to pop from the stack). The stack is
updated in the following phase (stack update). Finally, in the
state-transition phase, a hierarchical transition interconnect
matrix determines the next active state.

Cycles in which states with an ε-transition are active require
special handling. These states do not consume an input symbol

but perform a stack action in that cycle (i.e., push or pop). A
256-bit ε-mask register tracks the ε-states in each bank. A
logical AND of the ε-mask register and Active State Vector is
used to determine if an ε-state is active in the next processing
cycle. If an ε-state is active, a 1-bit ε-stall signal is sent to the
C-BOX to stall the input for the next processing cycle.

While a single stack action per cycle is sufficient to support
DPDA functionality, reducing stalls to the input stream can
significantly improve performance. The multipop optimization,
discussed in Section III-B, reduces stalls due to ε-transitions
and is supported in hardware by manipulating the stack pointer
and encoding the number of popped symbols in the stack
action lookup phase. We now proceed to discuss the different
stages involved in DPDA processing.
(1) Input-Match (IM): We adapt the state-match design of
memory-centric automata processing models [24], [25] for the
input-match phase. Each state is mapped to a column of an
SRAM array as shown in Figure 6 (c). A state is given a
256-bit input symbol label which is the one-hot encoding of
the ASCII symbol that it matches against. The homogeneous
representation of DPDA states ensures that each state matches
a single input symbol and each state can be represented using
a single SRAM column. The input symbol is broadcast as the
row address to the SRAM arrays using 8-bits of global wires.
By reading out the contents of the row into the Input Match
Vector, the set of states with the same label as the input symbol
can be determined in parallel.
(2) Stack-Match (SM): In contrast to NFAs, where all active
states that match the input symbol are candidates for state-
transition, DPDA states have valid transitions defined only
for those states that match both the input symbol and the
symbol on the top of the stack (8-bit TOS in Figure 6). We
re-purpose an SRAM array in each bank to determine the set
of DPDA states that match the top of stack (TOS) symbol.
Similar to Input-Match, we provision 8 bits of global wires
to broadcast the TOS symbol as the row address to SRAM
arrays. By reading out the contents of the row into the TOS
Match Vector and performing a logical AND with the Input
Match Vector and the Active State Vector, the candidate states
for state-transition are determined. We refer to these candidate
states simply as active states.

We leverage sense-amplifier cycling techniques [25] to
accelerate the IM and SM stages.
(3) Stack Action Lookup (AL): Each DPDA state is also
associated with a corresponding stack action. The supported
stack actions are push, pop and multipop. The stack action
is encoded with 16 bits. Each push action uses 8 bits to
indicate the symbol to be pushed onto the stack. The remaining
8 bits are used by the pop action to indicate the number of
symbols to be popped from the stack (> 1 for multipop).

The stack action corresponding to each state is packed along
with the IM SRAM array in each bank. However, in the AL
stage, we lookup this SRAM array using the 256-bit result
vector obtained after logical AND in the previous step (see
Figure 6). This removes the decoding overhead from the array
access time. We reserve 16 bits of global wires to communicate
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the stack action results from each bank to the stack control
logic in the C-BOX.

(4) State Transition (ST): The state-transition phase
determines the set of states to be activated in the next cycle.
We observe that the state transition function can be compactly
encoded using a hierarchy of local and global memory-based
crossbar switches. The state transition interconnect is designed
to be flexible and scales to several thousand states. The L-
switches provide dense connectivity between states mapped to
the same bank while the G-switch provides sparse connectivity
between states mapped to multiple banks. A graph partitioning
based algorithm [26] is used to satisfy the local and global
connectivity constraints while maximizing space utilization.

The crossbar switches consisting of N input and output
ports and N×N cross-points are implemented using regular
6-T SRAM arrays (e.g., L-switch in Figure 6 (c)). The 6-
T bitcell holds the state of each cross-point. A flip-flop or
register can also be used for this purpose but these are typically
implemented using 24 transistors making them area inefficient.
A ‘1’ is stored in bitcell (i, j) if there is a valid transition
defined from state i to state j. All the cross-points are
programmed once during initialization and used for processing
several MBs to GBs of input symbols. The set of active states
from the previous phase serve as inputs to the crossbar switch.
For DPDAs, only a single state can be active every cycle and
we can use 6-T SRAM arrays for state transition, since only
a single row is activated.
(5) Stack Update (SU): To allow for parallel processing

of small DPDAs, (e.g., in subtree mining), we provide a local
stack in each bank. We repurpose 8 columns of the SM array
to accommodate the local stack. Larger DPDAs (e.g., in XML
parsing) make use of a global stack to keep track of parsing
state. The global stack is implemented in the C-BOX using a
256×8 register file and is shared by all the DPDAs mapped to
two adjacent ways. Providing a stack depth of 256 is sufficient
for our parsing applications (see Section VI). Note that only
one sort of stack (local or global) is enabled at configuration
time based on the DPDA size. The stack pointer is stored in
an 8-bit register and is used to address the stack. We also store
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Fig. 7: DPDA processing on ASPEN. (a) Dependency graph
between stages. (b) Serial processing of input symbols.

the symbols at stack positions TOS and TOS+1 in separate 8-
bit registers. This optimization saves a write and read access
to the larger stack register file and ensures early availability
of the top-of-stack symbol for the next processing cycle. The
push operation writes the stack symbol to TOS+1. A lazy
mechanism is used to update the stack with the contents of
TOS. Similarly, the pop operation copies TOS to TOS+1,
while lazily reading the stack register file to update TOS.

C. Critical Path

ASPEN’s performance depends on two critical factors: (1)
the time taken to process each symbol in the input stream
(i.e., clock period) and (2) the time spent stalling due to ε-
transitions. The multipop optimization reduces stalls due to
ε-transitions. We now consider the clock period.

In a naı̈ve approach, each input symbol would be processed
sequentially in five phases, leading to a significant increase in
the clock period. However, not all phases are dependent on
each other and need to be performed sequentially. Figure 7
(a) shows the dependency graph for the DPDA processing
stages. The intra-symbol dependencies are shown in black,
while the inter-symbol dependencies are marked in red. Using
the dependency graph, each of the five stages can be scheduled
as shown in Figure 7 (b), where the propagation through
the interconnect (wire and switches) for state-transition is
overlapped with stack action lookup and stack update. Since
the top of stack cannot be determined until the stack has been
updated based on the previous input symbol, DPDA processing
is serial. We contrast this to NFA processing, which has two



independent stages (input-match and state-transition) which
can be overlapped to design a two-stage pipeline [25]. We
find that the critical path delay (clock period) of ASPEN is the
time spent for input/stack-match and the time taken for stack
action lookup and update. The time spent in state-transition
is fully overlapped with stack related operations. Section V-B
discusses the pipeline stage delays and operating frequency.

D. Support for Lexical Analysis

Two critical steps in parsing are lexical analysis, which
partitions the input character stream to generate a token stream,
and parsing, where different grammar rules are applied to ver-
ify the well-formedness of the input tokens (see Section II-C).
ASPEN can accelerate both these phases. We leverage the
NFA-computing capabilities of the Cache Automaton architec-
ture [25] for lexical analysis. To identify the longest matching
token, we run each NFA until there are no active states. When
the Active State Vector is zero, a state exhaustion signal is sent
to the lexer control logic in the C-BOX. The symbol cycle and
reporting state ID of the most recent report are tracked in a
64-bit report register in the C-BOX. A 256-bit reporting mask
register is used to mask out certain reports based on lexer state.
On receiving the state exhaustion signal from all banks, the
lexer control logic resets the reporting mask, reloads the NFA
input buffer for the next token and generates a token stream to
be written into the DPDA input buffer (using a lookup table
to convert report codes to tokens).

E. System Integration

ASPEN shares the last level cache with other CPU pro-
cesses. By restricting DPDA computation to only 8 ways of
an LLC slice, we allow for regular operation in other ways.
Furthermore, the cache ways dedicated to ASPEN may be
used as regular cache ways for non-parsing workloads. Cache
access latency is unaffected since DPDA-related routing logic
uses additional wires in the global metal layers.

DPDAs are (1) placed and routed for ASPENs hardware
resources, and (2) stored as a bitmap containing states and
stack actions. At runtime, the driver loads these binaries into
cache arrays and memory mapped switches using standard
load instructions and Intel Cache Allocation Technology [27].
The input/output buffers for ASPEN are also memory-mapped
to facilitate input streaming and output reporting, and ISA
extensions are used to start/stop DPDA functions. We disable
LLC slice hashing at configuration time. The configuration
overheads are small, especially when processing MBs or
GBs of input, but are included in our reported results. To
support automata-based applications that require counting, we
provision four 16-bit counters per way of the LLC.

Post-processing of output reports takes place on the CPU.
For XML parsing pipelines, a DOM tree representation (see
Section II-C) can be constructed by performing a linear pass
over the DPDA reports. Richer analyses (such as verifying
opening and closing tags match for XML parsing supporting
arbitrary tags) may be implemented as part of tree construc-

TABLE I: Subtree Mining Datasets

Dataset #Trees Ave Node #Items Max Depth #Subtrees

T1M 1M 5.5 500 13 9825
T2M 2M 2.95 100 13 3711
TREEBANK 52581 68.03 1387266 38 5280

Ave Node = Average number of nodes per tree
#Items = Frequent label set size
Max Depth = Maximum tree depth in the dataset

tion. Although the CPU-ASPEN pipeline can support this, we
leave evaluation of DOM tree construction for future work.

V. EXPERIMENTAL METHODOLOGY

A. Experimental Setup

We describe our XML parsing workload, followed by fre-
quent subtree mining. All CPU-based evaluations use a 2.6
GHz dual-socket Intel Xeon E5-2697-v3 with 28 cores in total,
GPU-based evaluations use NVIDIAs’s TITAN Xp. We used
PAPI [28] and Intel’s RAPL tool [29] to obtain performance
and power measurements and NVIDIA’s nvprof utility [30]
to profile the GPU. We utilize the METIS graph partitioning
framework [26] to map DPDA states to cache arrays.

XML Parsing: We evaluate ASPEN against the widely-
used open-source XML tools Expat (v.2.0.1) [9], a non-
validating parser, and Xerces-C (v.3.1.1) [10], a validating
parser and part of the Apache project. The validation applica-
tion used is SAXCount, which verifies the syntactic correctness
of the input XML document and returns a count of the number
of elements, attributes and content bytes. We restrict our analy-
sis to the SAX interface and WFXML scanner of Xerces-C and
filter out all non-ASCII characters in the input document. We
do not include DOM tree generation in our evaluation. This
is consistent with prior work and evaluations (e.g., Parabix,
Xerces SAX, and Expat). We assume that input data is already
loaded into main memory. Our XML benchmark dataset is
derived from Parabix [31], Ximpleware [32] and the UW
XML repository [33]. We only evaluate XML files larger
than 512 kB in size, as we were unable to obtain reliable
energy estimations when baseline benchmark execution time
was under 1 ms. To evaluate the lexing-parsing pipeline,
we extend the open-source, cycle-accurate virtual automata
simulator, VASim [34], to support DPDA computation and
derive per-cycle statistics. The tight integration of the lexer
and parser in the LLC enables ASPEN to largely overlap the
parsing time. Each lexing report can be processed and used to
generate the token stream for the DPDA in 2 cycles.

Frequent Subtree Mining: We compare ASPEN against
TreeMatcher [35], a single-threaded CPU implementation,
and GPUTreeMiner [13], a GPU implementation. Both em-
ploy a breadth-first iterative search to find frequent subtrees.
We evaluate using three different datasets, one real-world
(TREEBANK4), and two synthetically generated by the tree
generation program provided by Zaki5 (T1M and T2M). Table
I shows the details of the datasets. TREEBANK is widely used

4http:// www.cs.washington.edu/research/xmldatasets/
5http://www.cs.rpi.edu/˜zaki/software/



TABLE II: Stage Delays and Operating Frequencies

Design IM/SM ST AL SU Max Freq. Freq Oper.

ASPEN 438 ps 573 ps 349 ps 349 ps 880 MHz 850 MHz
CA 250 ps 250 ps - - 4 GHz 3.4 GHz

in computational linguistics and consists of XML documents.
It provides a syntactic structure for English text and uses part-
of-speech tags to represent the hierarchical structure of the
sentences. T1M and T2M are generated based on a mother
tree with a maximal depth and fan-out of 10. The total
number of nodes in T1M and T2M are 1,000,000 and 100,000,
respectively. The datasets are then generated by creating
subtrees of the mother tree. First, the database is converted
to a preorder traversal labelled sequence representation. Then,
for each subtree node, depending on its label and position, a
set of predefined rules determines the corresponding DPDA.
Detailed information on these rules can be found in Iváncsy
and Vajk [36]. The total number of subtrees summed over all
the iterations of the frequent subtree mining problem is given
in the #Subtrees column.

B. ASPEN parameters

Each 256 × 256 6-T SRAM array in the Xeon LLC can
operate at 4 GHz [22], [23]. In the absence of publicly-
available data on array area and energy, we use the standard
foundry memory compiler at 0.9 V in the 28nm technology
node to estimate the power and area of a 256×256 6-T SRAM
array. The energy to read out all 256 bits was calculated
as 22 pJ. Since ASPEN is based on a Xeon-E5 processor
modeled at 22nm, we scale down the energy per access to
13.6 pJ. The area of each array and 6-T crossbar switch were
estimated to be 0.015 mm2 and 0.017 mm2 respectively. Each
LLC slice contains 32 L-switches and 4 G-switches to support
DPDA computation in up to 8 ways. These switches can
leverage standard 6-T SRAM push-rules to achieve a compact
layout and have low area overhead (∼6.4% of LLC slice area).
Being 6-T SRAM based, these switches can also be used to
store regular data when not performing DPDA computation.
Similar to the Cache Automaton [25], we use global wires to
broadcast input/stack symbols and propagate state transition
signals. These global wires with repeaters have a 66ps/mm
delay and an energy consumption of 0.07pJ/mm/bit.

Table II shows the stage delays for DPDA processing
on ASPEN. The IM/TM phases leverage sense-amplifier cy-
cling [25] and take 438 ps. The ST stage requires 573 ps,
composed of 198 ps wire delay and 375 ps due to local
and global switch traversal. AL and SU each take 349 ps,
composed of 99 ps wire delay and 250 ps for array access.

VI. EVALUATION

In this section, we evaluate ASPEN on real-world ap-
plications with indicative workloads. First we evaluate the
generality of ASPEN and our proposed optimizations by com-
piling several parsers for the architecture. Second, we evaluate
runtime and energy for our two motivating applications.

TABLE III: Description of Grammars

Token Grammar Parsing Aut.
Language Description Types Productions States

Cool Programming language 42 61 147
DOT Graph visualization 22 53 81
JSON Data interchange 13 19 29
XML Data interchange 13 31 64

TABLE IV: Compilation Results. Our optimizations reduce
the number of epsilon states by an average of 65%.

hDPDA Epsilon Average Compilation
Language Optimizations States States Time (sec)

Cool None 3505 2733 0.88
Mutlipop + Eps 1666 894 2.75

DOT None 1690 1494 0.34
Mutlipop + Eps 1062 866 0.98

JSON None 764 619 0.16
Mutlipop + Eps 461 316 0.5

XML None 2068 1653 0.36
Mutlipop + Eps 865 450 0.88

A. Parsing Generality

We first demonstrate compilation of four different lan-
guages: Cool, an object oriented programming language6;
DOT, the language used by the GraphViz graph visualization
tool [37]; JSON; and XML. We selected these benchmarks
because grammar specifications (for either PLY or Bison)
were readily available. Importantly, no modification to exist-
ing legacy grammars was necessary to support compilation
to ASPEN. The architecture is general-purpose enough to
support these diverse applications, and our prototype compiler
supports a large class of existing parsers. Details for each of
these languages, including number of token types, number of
grammar rules, and the size of the parsing automaton, are
provided in Table III. Higher numbers of parsing automata
states (see Section III) indicate more complex computation
for determining which grammar production rule to apply. This
complexity is related both to the number of token types as well
as the total number of productions in the grammar.

In Table IV, we present compilation statistics using our
prototype compiler. We report the average time across ten
runs of our compiler and optimizations. Compilation of all
grammars, including optimization, is well below 5 seconds,
meaning that compilation of grammars is not a significant
bottleneck with ASPEN. With both our multipop and epsilon
reduction optimizations enabled, we observe a 47%, on aver-
age, decrease in the number of states. The number of epsilon
states is reduced by 65% on average. As noted in Section III,
reducing epsilon states reduces input stalls. Note that the
numbers reported here are prior to placement and routing of
the design for ASPEN. The final hDPDA may contain more
states to reduce fan-in or fan-out complexity; however, the
length of epsilon chains will neither increase nor decrease.

Next, we evaluate the performance of XML parsing using
our compiled XML grammar. While we expect performance

6https://en.wikipedia.org/wiki/Cool (programming language)

https://en.wikipedia.org/wiki/Cool_(programming_language)


results to generalize, for space considerations, we do not
evaluate the other parsers in detail.

B. XML Parsing

Using the graph partitioning framework METIS, we find
that the XML parser hDPDA (with optimizations) maps to 8
cache arrays and results in an LLC cache occupancy of 128KB.

Figure 8 compares ASPEN’s performance and energy
against Expat and Xerces on the SAXCount application (lower
is better). We evaluate two DPDA configurations: (1) ASPEN-
MP has both multipop and epsilon merging optimizations
enabled and (2) ASPEN, which only enables epsilon merging.
We group our XML datasets based on markup density which
is an indirect measure of XML document complexity. Perfor-
mance of Expat and Xerces drops as the markup density of the
input XML document increases, because complex documents
tend to produce a large number of tokens for verification.
ASPEN also sees a slight increase in runtime with increase in
markup density, but the dependence is less pronounced. There
is a noticeable trend in performance and energy benefits of
ASPEN-MP over ASPEN as markup density increases. As the
density increases, tokens are generated more frequently, and ε-
transition stalls are less likely to be masked by the tokenization
stage of the pipeline. ASPEN-MP reduces the number of
stalling cycles during parsing, thus improving performance
with high markup density. ASPEN-MP achieves 30% improve-
ment in both performance and energy over ASPEN.

Overall, averaged across the datasets evaluated, ASPEN-MP
takes 704.5 ns/kB and consumes 20.9 µJ/kB energy. When
compared with Expat, a 14.1× speedup and 13.7× energy
saving is achieved. ASPEN-MP also achieves 18.5× speedup
and consumes 16.9× lower energy than Xerces for SAXCount.
Even after considering the idle power of the CPU core, XML
parsing on ASPEN takes 20.15 W, which is well within the
TDP of the Xeon-E5 processor core (160 W). The low power
consumed can be attributed to: (1) removal of data movement
and instruction processing overheads present in a conventional
core, and (2) only a single bank of the cache being active in
any processing cycle, due to the deterministic nature of the
automaton, resulting in energy savings.

C. Subtree Inclusion

To evaluate the benefits of DPDA hardware acceleration
for the subtree inclusion kernel, we consider the frequent
subtree mining (FTM) problem, where the major computation
is subtree inclusion checking. FTM is composed of two
steps. In the first step, the subtree candidates of size k + 1
((k+1)-candidates) are generated from the frequent candidates
of size k (k-frequent-candidates), where k is the number of
nodes in a subtree. Candidate-generation details and a proof of
correctness are provided by Zaki [35]. In the second stage, for
each candidate subtree, we count the number of occurrences
(inclusions) of that subtree in the dataset. If the count exceeds
a specified support threshold, we report the candidate as
frequent and use it as a seed in the next generation step.

TABLE V: Architectural Parameters for Subtree Inclusion

Dataset Automata Alphabets Stack Alphabets Stack-Size

T1M 16 17 29
T2M 38 39 49
TREEBANK 100 101 110

Table V lists the architectural parameters for the FTM ap-
plication on different datasets. This application is compatible
with the hardware restrictions, including maximum stack depth
and supported alphabet size. In contrast to XML parsing, there
are no ε-transitions in the subtree inclusion DPDAs, which
means that runtime is linear in the length of the input data.
The homogeneous DPDAs designed for FTM have an average
node fan-out of 2.2 (maximum of 4).

Figure 9 shows the kernel and total speedup of ASPEN over
CPU and GPU baselines. For ASPEN, we include timing for
pre-processing, intermediate processing (between iterations)
on the CPU, loading time (transferring data from DRAM
to LLC), and reporting time (moving report vectors back to
DRAM), in addition to the kernel time.

ASPEN shows 67.2× and 6× end-to-end performance im-
provement over CPU and GPU (Figure 9). TREEBANK
consists of larger trees with higher average node out-degree,
which makes its processing difficult on the CPU and GPU.
In particular, TREEBANK has an uneven distribution of
trees with different sizes in the database, which causes the
synchronization overhead between the threads in a warp to
increase. In addition, larger trees also increase the thread
divergence in a warp, because the possibility of checking a
subtree node against different labels in the input tree of the
same warp increases. Therefore, GPUs are not an attractive
solution for larger trees. On the other hand, GPUs show 2×
speedup over ASPEN on T1M. This is because the T1M
dataset consists of small and evenly sized trees. Unlike CPUs
or GPUs, the complexity of subtree inclusion checking in
ASPEN is independent of the input dataset.

Figure 10 shows the total energy for ASPEN, CPU, and
GPU implementations. The trends in energy are similar to
that of performance. The unevenly-sized large trees in TREE-
BANK increase the runtime of CPU and GPU, leading to an
increase in total energy. On average, ASPEN achieves 3070×
and 6279× improvements in total energy when compared to
CPU- and GPU-based implementations, respectively.

VII. RELATED WORK

To the best of our knowledge, this is the first work that
demonstrates and evaluates pushdown automata processing
implemented in last-level cache. We position our work in
context with respect to related efforts and approaches.

Finite Automata Accelerators: A recent body of work
studies the acceleration of finite automata (NFA and DFA)
processing across multiple architectures. Becchi et al. have
developed a set of tools and algorithms for efficient CPU-
based automata processing [38]. Several regular-expression-
matching and DFA-processing ASIC designs have also been
proposed [39]–[42]. Some (e.g., [43]) incorporate regular ex-
pression matching into an extract-transform-load pipeline, sup-



0

2500

5000

7500

10000

12500

15000

17500

20000

de
w

ja
w

ar
w

bl
og

pa
rt

su
pp

na
sa

or
de

rs
ro

ad
s-

2
uw

m
bi

oi
nf

o-
bi

g
ad

dr
es

s
cu

st
om

er
pa

rt cd
Sw

iss
Pr

ot
w

su
m

on
di

al
-3

.0
po

1m po
lin

ei
te

m
so

ap
SU

AS
O

RT
CA

Av
er

ag
e

Pe
rfo

rm
an

ce
  (

ns
/k

B)

Xerces Expat ASPEN ASPEN-MP
Low

Markup
Density
< 30 %

Medium
Markup 
Density
30-70 %

High
Markup 
Density
> 70%

0

100

200

300

400

500

600

700

800

900

de
w

ja
w

ar
w

bl
og

pa
rt

su
pp

na
sa

or
de

rs
ro

ad
s-

2
uw

m
bi

oi
nf

o-
bi

g
ad

dr
es

s
cu

st
om

er
pa

rt cd
Sw

is
sP

ro
t

w
su

m
on

di
al

-3
.0

po
1m po

lin
ei

te
m

so
ap

SU
AS

O
RT

CA

Av
er

ag
e

En
er

gy
  (

µJ
/k

B)

Xerces Expat ASPEN ASPEN-MP

Low
Markup 
Density
<30 %

Medium
Markup 
Density
30-70%

High
Markup 
Density
> 70%
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porting a richer set of applications. Most closely-related to AS-
PEN are memory-centric architectures for automata process-
ing, such as Micron’s D480 Automata Processor (AP) [24],
Parallel Automata Processor (PAP) [44], Subramaniyan et al.’s
Cache Automaton (CA) [25], and Xie et al.’s REAPR [45].
While the performance of these finite automata processing
accelerators is quite promising, the underlying computational
model is not rich enough to support the parsing or mining
applications discussed in this paper. Finite automata processors
can perform regular expression processing, but lack the stack
memory needed for nested data structures.

Software Parser Generators: CPU algorithms for parsing
input data according to a grammar have remained largely
unchanged over the years. These algorithms generate a parsing
automaton (as described in Section III), which is encoded
as a lookup table. Early optimization efforts focused on
compression algorithms to allow the lookup tables to fit in
the limited memory of period systems [46]–[48]. There have
also been efforts to support different classes of grammars, such
as Generalized LR, and LL(k) [49], [50]. These parser gen-
erators, however, typically require grammars to be rewritten
and redesigned, precluding legacy support.

XML-Parsing Acceleration: Our evaluation demonstrates
that ASPEN is competitive with custom XML accelerators [5],
[51], [52] which achieve at best 4096 ns/KB. Moreover,

ASPEN supports more applications than just XML parsing,
which we demonstrate in this paper by compiling parsers
for several languages and also evaluating subtree inclusion.
Generality is preferable in a datacenter setting, where compute
resources are rented to clients and more than one parsing
application is likely to be performed. ASPEN is derived by
re-purposing cache arrays and can be used as additional cache
capacity for applications that do not use pushdown automata.
Parabix [31] is a programming framework that also supports
acceleration of XML parsing and achieves 1063 ns/KB (with
2.6 GHz CPU), while ASPEN achieves 709.5 ns/KB. Parabix
also often requires a redesign of grammar specifications for
use with parsing. Orthogonal to the proposed work, Ogden et
al. [53] propose an enumerative parallelization approach for
XML stream processing that can also benefit ASPEN.

Subtree Inclusion: Recently, Sadredini et al. [13] proposed
an approximate subtree inclusion checking kernel on the AP.
The authors convert the tree structure to a set of simpler
sequence representations and use the AP to prune the huge
candidate search space. This approach may introduce a small
percentage of false positives. ASPEN performs exact subtree
mining and therefore produces no false positives.

VIII. CONCLUSION

We present ASPEN, a general-purpose, scalable, and re-
configurable memory-centric architecture that supports rich
push-down automata processing for tree-like data. We design
a custom datapath that performs state matching, stack update,
and transition routing using memory arrays. We also develop
a compiler for transforming large classes of existing grammars
to pushdown automata executable on ASPEN.

Our evaluation against state-of-the-art CPU and GPU tools
shows that our approach is general (supporting multiple lan-
guages and kernel tasks), highly performant (up to 18.5× faster
for parsing and 37.2× faster for subtree inclusion), and energy
efficient (up to 16.9× lower for parsing and 3070× lower for
subtree inclusion). By providing hardware support for DPDA,
ASPEN brings the efficiency of recent automata acceleration
approaches to a new class of applications.
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