
ZU064-05-FPR main 18 March 2018 11:23

Under consideration for publication in J. Functional Programming 1

Dynamic Witnesses for Static Type Errors∗
(or, Ill-Typed Programs Usually Go Wrong)

ERIC L. SEIDEL, RANJIT JHALA
University of California, San Diego, USA

WESTLEY WEIMER
University of Virginia, USA

(e-mail: eseidel@cs.ucsd.edu, jhala@cs.ucsd.edu, weimer@virginia.edu)

Abstract

Static type errors are a common stumbling block for newcomers to typed functional languages.
We present a dynamic approach to explaining type errors by generating counterexample witness
inputs that illustrate how an ill-typed program goes wrong. First, given an ill-typed function, we
symbolically execute the body to synthesize witness values that make the program go wrong. We
prove that our procedure synthesizes general witnesses in that if a witness is found, then for all
inhabited input types, there exist values that can make the function go wrong. Second, we show
how to extend this procedure to produce a reduction graph that can be used to interactively visualize
and debug witness executions. Third, we evaluate the coverage of our approach on two data sets
comprising over 4,500 ill-typed student programs. Our technique is able to generate witnesses for
around 85% of the programs, our reduction graph yields small counterexamples for over 80% of the
witnesses, and a simple heuristic allows us to use witnesses to locate the source of type errors with
around 70% accuracy. Finally, we evaluate whether our witnesses help students understand and fix
type errors, and find that students presented with our witnesses show a greater understanding of type
errors than those presented with a standard error message.

1 Introduction

Type errors are a common stumbling block for students trying to learn typed functional
languages like OCAML and HASKELL. Consider the ill-typed fac function on the left
in Figure 1. The function returns true in the base case (instead of 1), and so OCAML

responds with the error message:

This expression has type

bool

but an expression was expected of type

int.

This message makes perfect sense to an expert who is familiar with the language and has
a good mental model of how the type system works. However, it may perplex a novice

∗ This work was supported by NSF grants CCF-1422471, CCF-1223850, CCF-1218344, CCF-
1116289, CCF-0954024, Air Force grant FA8750-15-2-0075, and a gift from Microsoft Research.

ZU064-05-FPR main 18 March 2018 11:23

2 E. L. Seidel, R. Jhala, and W. Weimer

1 let rec fac n =

2 if n <= 0 then

3 true

4 else

5 n * fac (n-1)

Fig. 1. (top-left) An ill-typed fac function highlighting the error location reported by OCAML.
(bottom-left) Dynamically witnessing the type error in fac, showing only function call-return pairs.
(right) The same trace, fully expanded to show each small-step reduction in the computation.

who has yet to develop such a mental model. To make matters worse, unification-based
type inference algorithms often report errors far removed from their source. This further
increases the novice’s confusion and can actively mislead them to focus their investigation
on an irrelevant piece of code. Much recent work has focused on analyzing unification
constraints to properly localize a type error (Lerner et al., 2007; Chen & Erwig, 2014;
Zhang & Myers, 2014; Pavlinovic et al., 2014), but an accurate source location does not
explain why the program is wrong.

In this paper we propose a new approach that explains static type errors by dynamically
witnessing how an ill-typed program goes wrong. We have developed NANOMALY, an
interactive tool that uses the source of the ill-typed function to automatically synthesize
the result on the bottom-left in Figure 1, which shows how the recursive calls reduce to a
configuration where the program “goes wrong” — i.e. the int value 1 is to be multiplied
with the bool value true. We achieve this via three concrete contributions.

1. Finding Witnesses Our first contribution is an algorithm for searching for witnesses to
type errors, i.e. inputs that cause a program to go wrong (§ 3). This problem is tricky when
we cannot rely on static type information, as we must avoid the trap of spurious inputs that
cause irrelevant problems that would be avoided by picking values of a different, relevant
type. We solve this problem by developing a novel operational semantics that combines
evaluation and type inference. We execute the program with holes — values whose type
is unknown — as the inputs. A hole remains abstract until the evaluation context tells us
what type it must have, for example the parameters to an addition operation must both be
integers. Our semantics conservatively instantiates holes with concrete values, dynamically

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 3

inferring the type of the input until the program goes wrong. We prove that our procedure
synthesizes general witnesses, which means, intuitively, that if a witness is found for a
given ill-typed function, then, for all (inhabited) input types, there exist values that can
make the function go wrong.

Given a witness to a type error, the novice may still be at a loss. The standard OCAML

interpreter and debugging infrastructure expect well-typed programs, so they cannot be
used to investigate how the witness causes the program to crash. More importantly, the
execution itself may be quite long and may contain details not relevant to the actual error.

2. Visualizing Witnesses Our second contribution is an interactive visualization of the
execution of purely functional OCAML programs, well-typed or not (§ 4). We extend the
semantics to also build a reduction graph which records all of the small-step reductions
and the context in which they occur. The graph lets us visualize the sequence of steps from
the source witness to the stuck term. The user can interactively expand the computation to
expose intermediate steps by selecting an expression and choosing a traversal strategy. The
strategies include many of the standard debugging moves, e.g. stepping forward or into or
over calls, as well stepping or jumping backward to understand how a particular value was
created, while preserving a context of the intermediate steps that allow the user to keep
track of a term’s provenance.

We introduce a notion of jump-compressed traces to abstract away the irrelevant details
of a computation. A jump-compressed trace includes only function calls and returns. For
example, the trace in the bottom-left of Figure 1 is jump-compressed. Jump-compressed
traces are similar to stack traces in that both show a sequence of function calls that lead to
a crash. However, jump-compressed traces also show the return values of successful calls,
which can be useful in understanding why a particular path was taken.

3. Evaluating Witnesses Of course, the problem of finding witnesses is undecidable in
general. In fact, due to the necessarily conservative nature of static typing, there may not
even exist any witnesses for a given ill-typed program. Thus, our approach is a heuristic
that is only useful if it can find compact witnesses for real-world programs. Our third
contribution is an extensive evaluation of our approach on two different sets of ill-typed
programs obtained by instrumenting compilers used in beginner’s classes (§ 5). The first
is the UW data set (Lerner et al., 2007) comprising 291 ill-typed programs. The second
is a new UCSD data set, comprising 4,509 ill-typed programs. We show that for both
data sets, our technique is able to generate witnesses for around 85% of the programs,
in under a second in the vast majority of cases. Furthermore, we show that a simple
interactive strategy yields compact counterexample traces with at most 5 steps for 60%
of the programs, and at most 10 steps for over 80% of the programs. We can even use
witnesses to localize type errors with a simple heuristic that treats the values in a “stuck”
term as sources of typing constraints and the term itself as a sink, achieving around 70%
accuracy in locating the source of the error.

The ultimate purpose of an error report is to help the programmer comprehend and fix
problematic code. Thus, our final contribution is a user study that compares NANOMALY’s
dynamic witnesses against OCAML’s type errors along the dimension of comprehensibil-
ity (§ 5.6). Our study finds that students given one of our witnesses are consistently more

ZU064-05-FPR main 18 March 2018 11:23

4 E. L. Seidel, R. Jhala, and W. Weimer

likely to correctly explain and fix a type error than those given the standard error message
produced by the OCAML compiler.

All together, our results show that in the vast majority of cases, (novices’) ill-typed pro-
grams do go wrong, and that the witnesses to these errors can be helpful in understanding
the source of the error. This, in turn, opens the door to a novel dynamic way to explain,
understand, and appreciate the benefits of static typing.

Contributions Relative to Prior Publications This paper extends our ICFP ’16 paper of
the same name (Seidel et al., 2016), focusing on the experimental evaluation. First, in § 5.3
we investigate the student programs for which we were unable to synthesize a witness. We
group the failures into five categories, give representative examples, and suggest ways to
improve our feedback in these cases. Interestingly, we find that in the majority of these
failed cases, the programs do not actually admit a witness in our semantics. Second, in
§ 5.7 we attempt to use our witnesses to localize type errors with a simple heuristic. We
treat the stuck term as a sink for typing constraints, and the values it contains as sources of
constraints. We can then predict that either the stuck term or one of the terms that produced
a value it contains is likely at fault for the error. We compare our localizations to OCAML

and two state-of-the-art type error localization tools, and find that we are competitive with
the state of the art. Finally, we have also extended § 5.6 with an analysis of the statistical
significance of our user study results.

2 Overview

We start with an overview of our approach to explaining (static) type errors using witnesses
that (dynamically) show how the program goes wrong. We illustrate why generating suit-
able inputs to functions is tricky in the absence of type information. Then we describe our
solution to the problem and highlight the similarity to static type inference, Finally, we
demonstrate our visualization of the synthesized witnesses.

2.1 Generating Witnesses

Our goal is to find concrete values that demonstrate how a program “goes wrong”.

Problem: Which inputs are bad? One approach is to randomly generate input values and
use them to execute the program until we find one that causes the program to go wrong.
Unfortunately, this approach quickly runs aground. Recall the erroneous fac function from
Figure 1. What types of inputs should we test fac with? Values of type int are fair game,
but values of type, say, string or int list will cause the program to go wrong in an
irrelevant manner. Concretely, we want to avoid testing fac with any type other than int

because any other type would cause fac to get stuck immediately in the n <= 0 test.

Solution: Don’t generate inputs until forced. Our solution is to avoid generating a con-
crete value for the input at all, until we can be sure of its type. The intuition is that we want
to be as lenient as possible in our tests, so we make no assumptions about types until it

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 5

becomes clear from the context what type an input must have. This is actually quite similar
in spirit to type inference.

To defer input generation, we borrow the notion of a “hole” from SmallCheck (Runci-
man et al., 2008). A hole — written ν [α] — is a placeholder for a value ν of some unknown
type α . We leave all inputs as uninstantiated holes until they are demanded by the program,
e.g. due to a primitive operation like the <= test.

Narrowing Input Types Primitive operations, data construction, and case-analysis nar-
row the types of values. For concrete values this amounts to a runtime type check, we
ensure that the value has a type compatible with the expected type. For holes, this means
we now know the type it should have (or in the case of compound data we know more
about the type) so we can instantiate the hole with a value. The value may itself contain
more holes, corresponding to components whose type we still do not know. Consider the
fst function:

let fst p = match p with

(a, b) -> a

The case analysis tells us that p must be a pair, but it says nothing about the contents
of the pair. Thus, upon reaching the case-analysis we would generate a pair containing
fresh holes for the fst and snd component. Notice the similarity between instantiation of
type variables and instantiation of holes. We can compute an approximate type for fst by
approximating the types of the (instantiated) input and output, which would give us:

fst : (α1 * α2) -> α1

We call this type approximate because we only see a single path through the program, and
thus will miss narrowing points that only occur in other paths.

Returning to fac, given a hole as input we will narrow the hole to an int upon reaching
the <= test. At this point we choose a random int1 for the instantiation and concrete
execution takes over entirely, leading us to the expected crash in the multiplication.

Witness Generality We show in § 3.3 that our lazy instantiation of holes produces general
witnesses. That is, we show that if “executing” a function with a hole as input causes the
function to “go wrong”, then there is no possible type for the function. In other words, for
any types you might assign to the function’s inputs, there exist values that will cause the
function to go wrong.

Problem: How many inputs does a function take? There is another wrinkle, though;
how did we know that fac takes a single argument instead of two (or none)? It is clear,
syntactically, that fac takes at least one argument, but in a higher-order language with
currying, syntax can be deceiving. Consider the following definition:

let incAllByOne = List.map (+ 1)

1 With standard heuristics (Claessen & Hughes, 2000) to favor small values.

ZU064-05-FPR main 18 March 2018 11:23

6 E. L. Seidel, R. Jhala, and W. Weimer

Fig. 2. The reduction graph for 1+2+3, highlighting the edges produced by reducing 1+2+3 to 3+3.

Is incAllByOne a function? If so, how many arguments does it take? The OCAML com-
piler deduces that incAllByOne takes a single argument because the type of List.map
says it takes two arguments, and it is partially applied to (+ 1). As we are dealing with
ill-typed programs we do not have the luxury of typing information.

Solution: Search for saturated application. We solve this problem by deducing the
number of arguments via an iterative process. We add arguments one-by-one until we
reach a saturated application, i.e. until evaluating the application returns a value other
than a lambda.

2.2 Visualizing Witnesses

We have described how to reliably find witnesses to type errors in OCAML, but this does
not fully address our original goal — to explain the errors. Having identified an input vector
that triggers a crash, a common next step is to step through the program with a debugger
to observe how the program evolves. The existing debuggers and interpreters for OCAML

assume a type-correct program, so unfortunately we cannot use them off-the-shelf. Instead
we extend our search for witnesses to produce an execution trace.

Reduction Graph Our trace takes the form of a reduction graph, which records small-
step reductions in the context in which they occur. For example, evaluating the expression
1+2+3 would produce the graph in Figure 2. Notice that when we transition from 1+2+3

to 3+3 we collect both that edge and an edge from the sub-term 1+2 to 3. These additional
edges allow us to implement two common debugging operations post-hoc: “step into” to
zoom in on a specific function call, and “step over” to skip over uninteresting computations.

Interacting with the graph The reduction graph is useful for formulating and executing
traversals, but displaying it all at once would quickly become overwhelming. Our interac-
tion begins by displaying a big-step reduction, i.e. the witness followed by the stuck term.
The user can then progressively fill in the hidden steps of the computation by selecting a
visible term and choosing one of the applicable traversal strategies — described in § 4 —
to insert another term into the visualization.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 7

Jump-compressed Witnesses It is rare for the initial state of the visualization to be infor-
mative enough to diagnose the error. Rather than abandon the user, we provide a short-cut
to expand the witness to a jump-compressed trace, which contains every function call and
return step. The jump-compressed trace abstracts the computation as a sequence of call-
response pairs, providing a high-level overview of steps taken to reach the crash, and a
high level of compression compared to the full trace. For example, the jump-compressed
trace in Figure 1 contains 4 nodes compared to the 19 in the fully expanded trace. Our
benchmark suite of student programs shows that jump-compression is practical, with an
average jump-compressed trace size of 7 nodes and a median of 5.

3 Type-Error Witnesses

Next, we formalize the notion of type error witnesses as follows. First, we define a core
calculus within which we will work (§ 3.1). Second, we develop a (non-deterministic)
operational semantics for ill-typed programs that precisely defines the notion of a wit-
ness (§ 3.2). Third, we formalize and prove a notion of generality for witnesses, which
states, intuitively, that if we find a single witness then for every possible type assignment
there exist inputs that are guaranteed to make the program “go wrong” (§ 3.3). Finally,
we refine the operational semantics into a search procedure that returns concrete (general)
witnesses for ill-typed programs § (3.4). We have formalized and tested our semantics
and generality theorem in PLT-REDEX (Felleisen et al., 2009). Detailed proofs for the
theorems in this section can be found in Appendix A.

3.1 Syntax

Figure 3 describes the syntax of λ H , a simple lambda calculus with integers, booleans,
pairs, and binary trees. As we are specifically interested in programs that do go wrong,
we include an explicit stuck term in our syntax. We write e to denote terms that may be
stuck, and e to denote terms that may not be stuck.

Holes Recall that a key challenge in our setting is to find witnesses that are meaningful
and do not arise from choosing values from irrelevant types. We solve this problem by
equipping our term language with a notion of a hole, written ν [α], which represents an
unconstrained value ν that may be replaced with any value of an unknown type α . Intu-
itively, the type holes α can be viewed as type variables that we will not generalize over.
A normalized value is one that is not a hole, but which may internally contain holes. For
example node[α] ν [α] leaf[α] leaf[α] is a normalized value.

Substitutions Our semantics ensure the generality of witnesses by incrementally refining
holes, filling in just as much information as is needed locally to make progress (inspired by
the manner in which SmallCheck uses lazy evaluation (Runciman et al., 2008)). We track
how the holes are incrementally filled in, by using value (resp. type) substitutions σ (resp.
θ) that map value (resp. type) holes to values (resp. types). The substitutions let us ensure
that we consistently instantiate each hole with the same (partially defined) value or type,

ZU064-05-FPR main 18 March 2018 11:23

8 E. L. Seidel, R. Jhala, and W. Weimer

Expressions e ::= e | stuck
e ::= v | x | e e | e+ e

| if e then e else e
| 〈e,e〉 | case e of 〈x,x〉 → e
| node e e e | leaf

| case e of

{
leaf→ e
node x x x→ e

Values v ::= n | b | λx.e | ν [α] | 〈v,v〉 | tr
tr ::= node[t] v v v | leaf[t]

Integers n ::= 0,1,−1, . . .

Booleans b ::= true | false
Types t ::= bool | int | fun

| t× t | tree t | α

Substitutions σ ::= ∅ | σ [ν [α] 7→ v]
θ ::= ∅ | θ [α 7→ t]

Contexts C ::= • | C e | v C
| C+ e | v+C
| if C then e else e
| 〈C,e〉 | 〈v,C〉
| case C of 〈x,x〉 → e
| node C e e | node v C e | node v v C

| case C of

{
leaf→ e
node x x x→ e

Fig. 3. Syntax of λ H

regardless of the multiple contexts in which the hole appears. This ensures we can report a
concrete (and general) witness for any (dynamically) discovered type errors.

A normalized value substitution is one whose co-domain is comprised of normalized
values. In the sequel, we will assume and ensure that all value substitutions are normal-
ized. We ensure additionally that the co-domain of a substitution does not refer to any
elements of its domain, i.e. when we extend a substitution with a new binding we apply the
substitution to itself.

3.2 Semantics

Recall that our goal is to synthesize a value that demonstrates why (and how) a function
goes wrong. We accomplish this by combining evaluation with type inference, giving
us a form of dynamic type inference. Each primitive evaluation step tells us more about
the types of the program values. For example, addition tells us that the addends must be
integers, and an if-expression tells us the condition must be a boolean. When a hole appears
in such a context, we know what type it must have in order to make progress and can fill it
in with a concrete value.

The evaluation relation is parameterized by a pair of functions, narrow (narrow) and
generate (gen), that “dynamically” perform type-checking and hole-filling respectively.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 9

narrow : v× t×σ ×θ → 〈v∪stuck,σ ,θ〉

narrow(ν [α], t,σ ,θ)
.
=

〈v,σ ,θ ′〉 if
v = σ(ν [α]),

θ ′ = unify({α, t,ty(v)},θ)

〈stuck,σ ,θ〉 if v = σ(ν [α])

〈v,σ [ν [α] 7→ v] ,θ ′〉 if
θ ′ = unify({α, t},θ),
v = gen(t,θ ′)

narrow(n,int,σ ,θ)
.
= 〈n,σ ,θ〉

narrow(b,bool,σ ,θ)
.
= 〈b,σ ,θ〉

narrow(λx.e,fun,σ ,θ)
.
= 〈λx.e,σ ,θ〉

narrow(〈v1,v2〉, t1× t2,σ ,θ)
.
= 〈〈v1,v2〉,σ ,θ ′′〉 if

θ ′ = unify({ty(v1), t1},θ),

θ ′′ = unify({ty(v2), t2},θ ′)

narrow(leaf[t1],tree t2,σ ,θ)
.
= 〈leaf[t1],σ ,θ ′〉 if θ ′ = unify({t1, t2},θ)

narrow(node[t1] v1 v2 v3,tree t2,σ ,θ)
.
= 〈node[t1] v1 v2 v3,σ ,θ ′〉 if θ ′ = unify({t1, t2},θ)

narrow(v, t,σ ,θ)
.
= 〈stuck,σ ,θ〉

Fig. 4. Narrowing values

Narrowing Types The procedure

narrow : v× t×σ ×θ → 〈v∪stuck,σ ,θ〉

defined in Figure 4, takes as input a value v, a type t, and the current value and type
substitutions, and refines v to have type t by yielding a triple of either the same value and
substitutions, or yields the stuck state if no such refinement is possible. In the case where v
is a hole, it first checks in the given σ to see if the hole has already been instantiated and,
if so, returns the existing instantiation. As the value substitution is normalized, in the first
case of narrow we do not need to narrow the result of the substitution, the sub-hole will be
narrowed when the context demands it.

Generating Values The (non-deterministic) gen(t,θ) in Figure 5 takes as input a type t
and returns a value of that type. For base types the procedure returns an arbitrary value
of that type. For functions it returns a lambda with a new hole denoting the return value.
For unconstrained types (denoted by α) it yields a fresh hole constrained to have type α

(denoted by ν [α]). When generating a tree t we must take care to ensure the resulting
tree is well-typed. For a polymorphic type tree α or α1×α2 we will place holes in the
generated value; they will be lazily filled in later, on demand.

Steps and Traces Figure 6 describes the small-step contextual reduction semantics for
λ H . A configuration is a triple 〈e,σ ,θ〉 of an expression e or the stuck term stuck, a
value substitution σ , and a type substitution θ . We write 〈e,σ ,θ〉 ↪→ 〈e′,σ ′,θ ′〉 if the
state 〈e,σ ,θ〉 transitions in a single step to 〈e′,σ ′,θ ′〉. A (finite) trace τ is a sequence
of configurations 〈e0,σ0,θ0〉, . . . ,〈en,σn,θn〉 such that ∀0 ≤ i < n, we have 〈ei,σi,θi〉 ↪→

ZU064-05-FPR main 18 March 2018 11:23

10 E. L. Seidel, R. Jhala, and W. Weimer

gen : t×θ → v
gen(α,θ)

.
= gen(θ(α),θ) if α ∈ dom(θ)

gen(int,θ)
.
= n non-det.

gen(bool,θ)
.
= b non-det.

gen(t1× t2,θ)
.
= 〈gen(t1,θ),gen(t2,θ)〉

gen(tree t,θ) .
= tr non-det.

gen(fun,θ)
.
= λx.ν [α] ν , α are fresh

gen(α,θ)
.
= ν [α] ν is fresh

Fig. 5. Generating values

〈ei+1,σi+1,θi+1〉. We write 〈e,σ ,θ〉 ↪→τ 〈e′,σ ′,θ ′〉 if τ is a trace of the form 〈e,σ ,θ〉, . . . ,
〈e′,σ ′,θ ′〉. We write 〈e,σ ,θ〉 ↪→∗ 〈e′,σ ′,θ ′〉 if 〈e,σ ,θ〉 ↪→τ 〈e′,σ ′,θ ′〉 for some trace τ .

Primitive Reductions Primitive reduction steps — addition, if-elimination, function ap-
plication, and data construction and case analysis — use narrow to ensure that values have
the appropriate type (and that holes are instantiated) before continuing the computation.
Importantly, beta-reduction does not type-check its argument, it only ensures that “the
caller” v1 is indeed a function.

Recursion Our semantics lacks a built-in fix construct for defining recursive functions,
which may surprise the reader. Fixed-point operators often cannot be typed in static type
systems, but our system would simply approximate its type as fun, apply it, and move
along with evaluation. Thus we can use any of the standard fixed-point operators and do
not need a built-in recursion construct.

3.3 Generality

A key technical challenge in generating witnesses is that we have no (static) type infor-
mation to rely upon. Thus, we must avoid the trap of generating spurious witnesses that
arise from picking irrelevant values, when instead there exist perfectly good values of a
different type under which the program would not have gone wrong. We now show that our
evaluation relation instantiates holes in a general manner. That is, given a lambda-term f ,
if we have 〈 f ν [α],∅,∅〉 ↪→∗ 〈stuck,σ ,θ〉, then for every concrete type t, we can find a
value v of type t such that f v goes wrong.

Theorem 1 (Witness Generality)
For any lambda-term f , if 〈 f ν [α],∅,∅〉 ↪→τ 〈stuck,σ ,θ〉, then for every (inhabited2)
type t there exists a value v of type t such that 〈 f v,∅,∅〉 ↪→∗ 〈stuck,σ ′,θ ′〉.

We need to develop some machinery in order to prove this theorem. First, we show how
our evaluation rules encode a dynamic form of type inference, and then we show that the
witnesses found by evaluation are indeed maximally general.

2 All types in λ H are inhabited, but in a larger language like OCAML this may not be true.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 11

Evaluation 〈e,σ ,θ〉 ↪→ 〈e,σ ,θ〉

PLUS-G

〈n1,σ
′,θ ′〉= narrow(v1,int,σ ,θ)

〈n2,σ
′′,θ ′′〉= narrow(v2,int,σ

′,θ ′)
n = n1 +n2

〈C [v1 + v2] ,σ ,θ〉 ↪→ 〈C [n] ,σ ′′,θ ′′〉
PLUS-B1

〈stuck,σ ′,θ ′〉= narrow(v1,int,σ ,θ)

〈C [v1 + v2] ,σ ,θ〉 ↪→ 〈stuck,σ ′,θ ′〉

PLUS-B2
〈stuck,σ ′,θ ′〉= narrow(v2,int,σ ,θ)

〈C [v1 + v2] ,σ ,θ〉 ↪→ 〈stuck,σ ′,θ ′〉
IF-G1

〈true,σ ′,θ ′〉= narrow(v,bool,σ ,θ)

〈C [if v then e1 else e2] ,σ ,θ〉 ↪→ 〈C [e1] ,σ
′,θ ′〉

IF-G2
〈false,σ ′,θ ′〉= narrow(v,bool,σ ,θ)

〈C [if v then e1 else e2] ,σ ,θ〉 ↪→ 〈C [e2] ,σ
′,θ ′〉

IF-B
〈stuck,σ ′,θ ′〉= narrow(v,bool,σ ,θ)

〈C [if v then e1 else e2] ,σ ,θ〉 ↪→ 〈stuck,σ ′,θ ′〉

APP-G
〈λx.e,σ ′,θ ′〉= narrow(v1,fun,σ ,θ)

〈C [v1 v2] ,σ ,θ〉 ↪→ 〈C [e [v2/x]] ,σ ′,θ ′〉
APP-B

〈stuck,σ ′,θ ′〉= narrow(v1,fun,σ ,θ)

〈C [v1 v2] ,σ ,θ〉 ↪→ 〈stuck,σ ′,θ ′〉

LEAF-G α is fresh
〈C [leaf] ,σ ,θ〉 ↪→ 〈C [leaf[α]] ,σ ,θ〉

NODE-G

t = ty(v1)
〈v′2,σ2,θ2〉= narrow(v2,tree t,σ1,θ1)
〈v′3,σ3,θ3〉= narrow(v3,tree t,σ2,θ2)

〈C [node v1 v2 v3] ,σ ,θ〉 ↪→ 〈C
[
node[t] v1 v′2 v′3

]
,σ3,θ3〉

NODE-B1

t = ty(v1)
〈stuck,σ2,θ2〉= narrow(v2,tree t,σ1,θ1)

〈C [node v1 v2 v3] ,σ ,θ〉 ↪→ 〈stuck,σ3,θ3〉
NODE-B2

t = ty(v1)
〈v′2,σ2,θ2〉= narrow(v2,tree t,σ1,θ1)
〈stuck,σ3,θ3〉= narrow(v3,tree t,σ2,θ2)

〈C [node v1 v2 v3] ,σ ,θ〉 ↪→ 〈stuck,σ3,θ3〉

CASE-G1
α is fresh 〈leaf[t],σ1,θ1〉= narrow(v,tree α,σ ,θ)

〈C

[
case v of

{
leaf→ e1

node x1 x2 x3→ e2

]
,σ ,θ〉 ↪→ 〈C [e1] ,σ1,θ1〉

CASE-G2
α is fresh 〈node[t] v1 v2 v3,σ1,θ1〉= narrow(v1,tree α,σ ,θ)

〈C

[
case v of

{
leaf→ e1

node x1 x2 x3→ e2

]
,σ ,θ〉 ↪→ 〈C [e2 [v1/x1] [v2/x2] [v3/x3]] ,σ1,θ1〉

CASE-B
α is fresh 〈stuck,σ1,θ1〉= narrow(v,tree α,σ ,θ)

〈C

[
case v of

{
leaf→ e1

node x1 x2 x3→ e2

]
,σ ,θ〉 ↪→ 〈stuck,σ1,θ1〉

CASE-PAIR-G
α1,α2 are fresh 〈〈v1,v2〉,σ1,θ1〉= narrow(v,α1×α2,σ ,θ)

〈C [case v of 〈x1,x2〉 → e] ,σ ,θ〉 ↪→ 〈C [e [v1/x1] [v2/x2]] ,σ1,θ1〉

CASE-PAIR-B
α1,α2 are fresh 〈stuck,σ1,θ1〉= narrow(v,α1×α2,σ ,θ)

〈C [case v of 〈x1,x2〉 → e] ,σ ,θ〉 ↪→ 〈stuck,σ1,θ1〉

Fig. 6. Evaluation relation for λ H

The Type of a Value The dynamic type of a value v is defined as a function ty(v) shown
in Figure 7. The types of primitive values are defined in the natural manner. The types of
functions are approximated, which is all that is needed to ensure an application does not
get stuck. For example,

ty(λx.x+1) = fun

ZU064-05-FPR main 18 March 2018 11:23

12 E. L. Seidel, R. Jhala, and W. Weimer

ty(n) .
= int

ty(b) .
= bool

ty(λx.e) .
= fun

ty(〈v1,v2〉)
.
= ty(v1)× ty(v2)

ty(leaf[t]) .
= tree t

ty(node[t] v1 v2 v3)
.
= tree t

ty(ν [α])
.
= α

Fig. 7. The dynamic type of a value.

instead of int→ int. The types of tuples are obtained directly from their values, and the
types of (polymorphic) trees from their labels. Note that the evaluation relation in Figure 6
guarantees that tree values will be annotated with their type. For nodes the type can be
taken from the type of its value v1, but for leaves the evaluation relation creates a new type
hole α (this corresponds to polymorphic instantiation in a typechecker).

Dynamic Type Inference We can think of the evaluation of f ν [α] as synthesizing a
partial instantiation of α , and thus dynamically inferring a (partial) type for f ’s input. We
can extract this type from an evaluation trace by applying the final type substitution to α .
Formally, we say that if 〈 f ν [α],∅,∅〉 ↪→τ 〈e,σ ,θ〉, then the partial input type of f up to
τ , written ρτ(f), is θ(α).

Compatibility A type s is compatible with a type t, written s∼ t, if ∃θ . θ(s) = θ(t). That
is, two types are compatible if there exists a type substitution that maps both types to the
same type. A value v is compatible with a type t, written v ∼ t, if ty(v) ∼ t, that is, if the
dynamic type of v is compatible with t.

Type Refinement A type s is a refinement of a type t, written s � t, if ∃θ .s = θ(t). In
other words, s is a refinement of t if there exists a type substitution that maps t directly to
s. A type t is a refinement of a value v, written t � v, if t � ty(v), i.e. if t is a refinement of
the dynamic type of v.

Preservation We prove two preservation lemmas. First, we show that each evaluation step
refines the partial input type of f , thus preserving type compatibility.

Lemma 2
If τ

.
= 〈 f ν [α],∅,∅〉, . . . ,〈e,σ ,θ〉 and τ ′

.
= τ,〈e,σ ,θ〉 ↪→〈e′,σ ′,θ ′〉 (i.e. τ ′ is a single-step

extension of τ) and ρτ(f) 6= ρτ ′(f) then θ ′ = θ [α1 7→ t1] . . . [αn 7→ tn].

Proof
By case analysis on the evaluation rules. α does not change, so if the partial input types
differ then θ 6= θ ′. Only narrow can change θ , via unify, which can only extend θ .

Second, we show that at each step of evaluation, the partial input type of f is a refinement
of the instantiation of ν [α].

Lemma 3
For all traces τ

.
= 〈 f ν [α],∅,∅〉, . . . ,〈e,σ ,θ〉, ρτ(f)� σ(ν [α]).

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 13

Proof
By induction on τ . In the base case τ = 〈 f ν [α],∅,∅〉 and α trivially refines ν [α]. In the
inductive case, consider the single-step extension of τ , τ ′ = τ,〈e′,σ ′,θ ′〉. We show by case
analysis on the evaluation rules that if ρτ(f)� σ(ν [α]), then ρτ ′(f)� σ ′(ν [α]).

Incompatible Types Are Wrong For all types that are incompatible with the partial input
type up to τ , there exists a value that will cause f to get stuck in at most k steps, where k is
the length of τ .

Lemma 4
For all types t, if 〈 f ν [α],∅,∅〉 ↪→τ 〈e,σ ,θ〉 and t � ρτ(f), then there exists a v such that
ty(v) = t and 〈 f v,∅,∅〉 ↪→∗ 〈stuck,σ ′,θ ′〉 in at most k steps, where k is the length of τ .

Proof
We can construct v from τ as follows. Let

τi = 〈 f ν [α],∅,∅〉, . . . ,〈ei−1,σi−1,θi−1〉,〈ei,σi,θi〉

be the shortest prefix of τ such that ρτi(f) � t. We will show that ρτi−1(f) must contain
some other hole α ′ that is instantiated at step i. Furthermore, α ′ is instantiated in such a
way that ρτi(f)� t. Finally, we will show that if we had instantiated α ′ such that ρτi(f)∼ t,
the current step would have gotten stuck.

By Lemma 2 we know that θi = θi−1[α1 7→ t1] . . . [αn 7→ tn]. We will assume, without loss
of generality, that θi = θi−1[α

′ 7→ t ′]. Since θi−1 and θi differ only in α ′ but the resolved
types differ, we have α ′ ∈ ρτi−1(f) and ρτi(f) = ρτi−1(f) [t ′/α ′]. Let s be a concrete type
such that ρτi−1(f) [s/α ′] = t. We show by case analysis on the evaluation rules that

〈ei−1,σi−1,θi−1[α
′ 7→ s]〉 ↪→ 〈stuck,σ ,θ〉

Finally, by Lemma 3 we know that ρτi−1(f)� σi−1(ν [α]) and thus α ′ ∈ σi−1(ν [α]). Let

u = gen(s,θ)
v = σi−1(ν [α]) [u/ν ′[α ′]] [s/α ′]

〈 f v,∅,∅〉 ↪→∗ 〈stuck,σ ,θ〉 in i steps.

Proof of Theorem 1
Suppose τ witnesses that f gets stuck, and let s = ρτ(f). We show that all types t have
stuck-inducing values by splitting cases on whether t is compatible with s.

Case s∼ t: Let τ = 〈 f ν [α],∅,∅〉, . . . ,〈stuck,σ ,θ〉. The value v = σ(ν [α]) demon-
strates that f v gets stuck.

Case s� t: By Lemma 4, we can derive a v from τ such that ty(v) = t and f v gets stuck.

3.4 Search Algorithm

So far, we have seen how a trace leading to a stuck configuration yields a general witness
demonstrating that the program is ill-typed (i.e. goes wrong for at least one input of every

ZU064-05-FPR main 18 March 2018 11:23

14 E. L. Seidel, R. Jhala, and W. Weimer

Saturate : e→ e
Saturate(e) = case eval(e) of
〈λx.e,σ ,θ〉, . . . → Saturate(e ν [α]) (ν ,α are fresh)

→ e

Fig. 8. Generating a saturated application.

type). In particular, we have shown how to non-deterministically find a witnesses for a
function of a single argument.

We must address two challenges to convert the semantics into a procedure for finding
witnesses. First, we must resolve the non-determinism introduced by gen. Second, in the
presence of higher-order functions and currying, we must determine how many concrete
values to generate to make execution go wrong (as we cannot rely upon static typing to
provide this information.)

The witness generation procedure GenWitness is formalized in Figure 9. Next, we de-
scribe its input and output, and how it addresses the above challenges to search the space
of possible executions for general type error witnesses.

Inputs and Outputs The problem of generating inputs is undecidable in general. Our
witness generation procedure takes two inputs: (1) a search bound k which is used to define
the number of traces to explore3 and (2) the target expression e that contains the type
error (which may be a curried function of multiple arguments). The witness generation
procedure returns a list of (general) witness expressions, each of which is of the form
e v1 . . .vn. The empty list is returned when no witness can be found after exploring k traces.

Modeling Semantics We resolve the non-determinism in the operational semantics (§ 3.2)
via the procedure

eval : e→ 〈v∪stuck,σ ,θ〉∗

Due to the non-determinism introduced by gen, a call eval(e) returns a list of possible
results of the form 〈v∪stuck,σ ,θ〉 such that 〈e,∅,∅〉 ↪→∗ 〈v∪stuck,σ ,θ〉.

Currying We address the issue of currying by defining a procedure Saturate(e), defined
in Figure 8, that takes as input an expression e and produces a saturated expression of the
form e ν1[α1] . . .νn[αn] that does not evaluate to a lambda. This is achieved with a simple
loop that keeps adding holes to the target application until evaluating the term yields a
non-lambda value.

Generating Witnesses Finally, Figure 9 summarizes the overall implementation of our
search for witnesses with the procedure GenWitness(k, e), which takes as input a bound
k and the target expression e, and returns a list of witness expressions e v1 . . .vn that
demonstrate how the input program gets stuck. The search proceeds as follows.

1. We invoke Saturate(e) to produce a saturated application esat .

3 We assume, without loss of generality, that all traces are finite.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 15

GenWitness : Nat× e→ e∗

GenWitness(n, e) = {σ(esat) | σ ∈ Σ}
where

esat = Saturate(e) (1)
res = take(n, eval(esat)) (2)
Σ = {σ | 〈stuck,σ ,θ〉 ∈ res} (3)

Fig. 9. Generating witnesses.

2. We take the first k traces returned by eval on the target esat , and
3. We extract the substitutions corresponding to the stuck traces, and use them to

return the list of witnesses.

We obtain the following corollary of Theorem 1:

Corollary 1 (Witness Generation)
If GenWitness(k, e) = 〈e v1 . . .vn,σ ,θ〉, . . . then for all types t1 . . . tn there exist values
w1 : t1 . . . wn : tn such that 〈e w1 . . .wn,∅,∅〉 ↪→∗ 〈stuck,σ ′,θ ′〉.

Proof
For any function f of multiple arguments, we can define f ′ as the uncurried version of f
that takes all of its arguments as a single nested pair, and then apply Theorem 1 to f ′.

4 Explaining Type Errors With Traces

A trace, on its own, is too detailed to be a good explanation of the type error. One approach
is to use the witness input to step through the program with a debugger to observe how the
program evolves. This route is problematic for two reasons. First, existing debuggers and
interpreters for typed languages (e.g. OCAML) typically require a type-correct program as
input. Second, we wish to have a quicker way to get to the essence of the error, e.g. by
skipping over irrelevant sub-computations, and focusing on the important ones.

In this section we present an interactive visualization of program executions. First, we
extend our semantics (§ 4.1) to record each reduction step in a trace, producing a reduction
graph alongside the witness. Then we describe a set of common interactive debugging
steps that can be expressed as simple traversals over the reduction graph (§ 4.2), yielding
an interactive debugger that allows the user to visualize how the program goes (wrong).

4.1 Tracing Semantics

Reduction Graphs A steps-to edge is a pair of expressions e1 e2, which indicates that
e1 reduces, in a single step, to e2. A reduction graph is a set of steps-to edges:

G ::= • | e e;G

Tracing Semantics We extend the transition relation (§ 3.2) to collect the set of edges
corresponding to the reduction graph. Concretely, we extend the operational semantics to
a relation of the form 〈e,σ ,θ ,G〉 ↪→ 〈e′,σ ′,θ ′,G′〉 where G′ collects the transitions.

ZU064-05-FPR main 18 March 2018 11:23

16 E. L. Seidel, R. Jhala, and W. Weimer

Fig. 10. A sequence of interactions with the trace of fac 1. The stuck term is red, in each node the
redex is highlighted. Thick arrows denote a multi-step transition, thin arrows denote a single-step
transition. We start in step 1. In step 2 we jump forward from the witness to the next function call. In
step 3 we step into the recursive fac 0 call, which spawns a new “thread” of execution. In step 4 we
take a single step forward from fac 0.

Collecting Edges The general recipe for collecting steps-to edges is to record the con-
sequent of each original rule in the trace. That is, each original judgment 〈e,σ ,θ〉 ↪→
〈e′,σ ′,θ ′〉 becomes 〈e,σ ,θ ,G〉 ↪→ 〈e′,σ ′,θ ′,e e′;G〉.

4.2 Interactive Debugging

Next, we show how to build a visual interactive debugger from the traced semantics, by
describing the visualization state — i.e. what the user sees at any given moment — and the
set of commands available to user and what they do.

Visualization State A visualization state is a directed graph whose vertices are expres-
sions and whose edges are such that each vertex has at most one predecessor and at most
one successor. In other words, the visualization state looks like a set of linear lists of
expressions as shown in Figure 10. The initial state is the graph containing a single edge
linking the initial and final expressions.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 17

Fig. 11. Jump-compressed trace of fac 1 with subtraction implemented as a function call.

Commands Our debugger supports the following commands, each of which is parameter-
ized by a single expression (vertex) selected from the (current) visualization state:

• StepForward, StepBackward: show the result of a single step forward or backward;
• JumpForward, JumpBackward: show the result of taking multiple steps (a “big”

step) up to the first function call, or return, forward or backward respectively;
• StepInto: show the result of stepping into a function call in a sub-term, isolating it

in a new reduction thread; and
• StepOver: show the result of skipping over a function call in a sub-term.

Jump Compression A jump compressed trace is one whose edges are limited to forward
or backward jumps. In our experience, jump compression abstracts many details of the
computation that are often uninteresting or irrelevant to the explanation. In particular, jump
compressed traces hide low-level operations and summarize function calls as call-return
pairs, see Figure 11 for a variant of fac that implements the subtraction as a function call
instead of a primitive. Once users have identified interesting call-return pairs, they can
step into those calls and proceed with more fine-grained steps. Note that jump compressed
traces are not quite the same as stack traces as they show all function calls, including those
that returned successfully.

5 Evaluation

We have implemented a prototype of our search procedure and trace visualization for
a purely functional subset of OCAML — with polymorphic types and records, but no
modules, objects, or polymorphic variants — in a tool called NANOMALY. 4 We treat
explicit type signatures, e.g. (x : int), as primitive operations that narrow the type of the
wrapped value. In our implementation we instantiated gen with a simple random generation
of values, which we will show suffices for the majority of type errors.

4 https://github.com/ucsd-progsys/nanomaly

ZU064-05-FPR main 18 March 2018 11:23

18 E. L. Seidel, R. Jhala, and W. Weimer

Evaluation Goals There are four questions we seek to answer with our evaluation:

1. Witness Coverage (§ 5.2, 5.3) How many ill-typed programs admit witnesses?
2. Witness Complexity (§ 5.4) How complex are the traces produced by the witnesses?
3. Witness Utility (§ 5.5, 5.6) How helpful are the witnesses in debugging type errors?
4. Witness-based Blame (§ 5.7) Can witnesses be used to locate the source of an error?

In the sequel we present our experimental methodology (§ 5.1) and then answer the
above questions. However, for the impatient reader, we first summarize our main results:

1. Most Type Errors Admit Witnesses Our prime result is that the vast majority of
static type errors, around 85%, do in fact admit a dynamic witness. Further, NANOMALY

efficiently synthesizes witnesses with its randomized search; it can synthesize a witness for
over 75% of programs in under one second, i.e. fast enough for interactive use.

2. Jump-Compressed Traces Are Small We find that our jump-compression heuristic
effectively abstracts the pedestrian details of computation, compressing the median trace
with 14–15 single-step reductions to only 4 jumps. Over 80% of programs have a jump-
compressed trace with at most 10 jumps, providing a bird’s-eye view from which we can
launch a more in-depth investigation.

3. Witnesses Help Novices A witness should also help programmers understand and
fix type errors. We use a set of ill-typed student programs to show that NANOMALY’s
witnesses effectively demonstrate the runtime error that the type system prevented. Fur-
thermore, we find, in a study of undergraduate students, that NANOMALY’s witnesses lead
to more accurate diagnoses and fixes of type errors than OCAML’s type error messages.

4. Witnesses Assign Blame Finally, we present a simple heuristic that allows us to use
witnesses to automatically assign blame for type errors. We treat the values inside the
stuck term as sources of typing constraints and the stuck term itself as a sink, producing
a slice of the program that likely contains the error. Using this heuristic, NANOMALY’s
witnesses are competitive with the state-of-the-art localization tools MYCROFT (Loncaric
et al., 2016) and SHERRLOC (Zhang & Myers, 2014).

5.1 Methodology

We answer the first two questions on two sets of ill-typed programs, i.e. programs that were
rejected by the OCAML compiler because of a type error. The first dataset comes from
the Spring 2014 undergraduate Programming Languages (CSE 130) course at UC San
Diego. We recorded each interaction with the OCAML top-level system over the course
of the first three assignments (IRB #140608), from which we extracted 4,509 distinct,
ill-typed OCAML programs from a cohort of 46 students. The second dataset — widely
used in the literature — comes from a graduate-level course at the University of Washing-
ton (Lerner et al., 2006), from which we extracted 284 ill-typed programs. Both datasets
contain relatively small programs, the largest being 348 SLoC; however, they demonstrate
a variety of functional programming idioms including (tail) recursive functions, higher-
order functions, and polymorphic and algebraic data types.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 19

Fig. 12. Results of our coverage testing. Our random search successfully finds witnesses for
76–83% of the programs in under one second, improving to 84–85% in under 10 seconds.

We answer the third question in two steps. First, we present a qualitative evaluation of
NANOMALY’s traces on a selection of programs drawn from the UCSD dataset. Second,
we present a quantitative user study of students in the University of Virginia’s Spring
2016 undergraduate Programming Languages (CS 4501) course. As part of an exam, we
presented the students with ill-typed OCAML programs and asked them to (1) explain the
type error, and (2) fix the type error (IRB #2014009900). For each problem the students
were given the ill-typed program and either OCAML’s error message or NANOMALY’s
jump-compressed trace.

We answer the last question on a subset of the UCSD dataset. For each ill-typed pro-
gram compiled by a student, we identify the student’s fix by searching for the first type-
correct program that the student subsequently compiled. We then use an expression-level
diff (Lempsink, 2009) to determine which sub-expressions changed between the ill-typed
program and the student’s fix, and treat those expressions as the source of the type error.

5.2 Witness Coverage

We ran our search algorithm on each program for 1,000 iterations, with the entry point set
to the function that OCAML had identified as containing a type error. Due to the possibility
of non-termination we set a timeout of one minute total per program. We also added a
naı̈ve check for infinite recursion; at each recursive function call we check whether the
new arguments are identical to the current arguments. If so, the function cannot possibly
terminate and we report an error. While not a type error, infinite recursion is still a clear
bug in the program, and thus valuable feedback for the user.

Results The results of our experiments are summarized in Figures 12 and 13. In both
datasets our tool was able to find a witness for over 75% of the programs in under one
second, i.e. fast enough to be integrated as a compile-time check. If we extend our tolerance

ZU064-05-FPR main 18 March 2018 11:23

20 E. L. Seidel, R. Jhala, and W. Weimer

Fig. 13. Distribution of test outcomes. In both datasets we detect actual type errors at least 77% of
the time, unbound variables or constructors 4% of the time, and diverging loops 2–3% of the time.
For the remaining 15–16% of the programs we are unable to provide any useful feedback.

to a 10 second timeout, we reach 84% coverage, and if we allow a 60 second search, we
hit a maximum of 84–85% coverage. Interestingly, while the vast majority of witnesses
corresponded to a type-error, as expected, 4% triggered an unbound variable error (even
though OCAML reported a type error) and 3% triggered an infinite recursion error. For the
remaining 15–16% of programs we were unable to provide any useful feedback as they
either completed 1,000 tests successfully, or timed out after one minute. While a more
advanced search procedure, e.g. dynamic-symbolic execution, could likely uncover more
errors, our experiments suggest that type errors are coarse enough (or that novice programs
are simple enough) that these techniques are not necessary.

5.3 How safe are the “safe” programs?

An immediate question arises regarding the 15–16% of programs for which we could not
synthesize a witness: are they actually safe (i.e. is the type system being too conservative),
or did NANOMALY simply fail to find a witness?

To answer this question, we investigated the 732 UCSD programs for which we failed to
find a witness. We used a combination of automatic and manual coding to categorize these
programs into four classes. The first class is easily detected by NANOMALY itself, and
thus admits a precise count. This left us with 504 programs that required manual coding;
we selected a random sample of 50 programs to investigate, and will report results based on
that sample. Figure 14 summarizes the results of our investigation — we note the classes
that were based on the random sample with a “*”. Note that the percentages referenced in
Figure 14 (and in the sequel) are with respect to the total number of programs in the UCSD
dataset, not only those were NANOMALY failed to find a witness.

Ad-hoc Polymorphism We found that for 5% of all programs NANOMALY got stuck
when it tried to compare two holes. OCAML provides polymorphic equality and com-

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 21

Fig. 14. Results of our investigation into programs where NANOMALY did not produce a witness.
A “*” denotes that the percentage is an estimate based on a random sampling of 50 programs.

parison operators, overloading them for each type. While convenient to use, they pose a
challenge for NANOMALY’s combination of execution and inference. For example, con-
sider the n <= 0 test in our fac example. The <= operator is polymorphic, but in this case
we can make progress because the literal 0 is not. Suppose, however, we parameterized
fac by a lower bound, e.g.

let rec fac n m =

if n <= m then

true

else

n * fac (n - 1) m

When given fac, NANOMALY will generate two fresh holes ν1[α1] and ν2[α2] and pro-
ceed directly into the n < m comparison. We cannot (yet) instantiate either hole because
we have no constraints on the αs (we know they must be equal, but nothing else), and
furthermore we do not know what constraints we may encounter later on in the program.
Thus, we cannot perform the comparison and proceed, and must give up our search for a
witness, even though one obviously exists, any pair of n and m such that n <= m is false.

Extending NANOMALY with support for symbolic execution would alleviate this issue,
as we could then begin symbolically executing the program until we learn how to instan-
tiate n and m. Alternatively, we could speculatively instantiate both n and m with some
arbitrary type, and proceed with execution until we discover a type error. This speculative
instantiation is, of course, unsound; we would have to take care to avoid reporting frivolous
type errors that were caused by such instantiations. We would need to track which holes
were instantiated speculatively to distinguish type errors that would have happened regard-
less, as in fac, from type errors that were caused by our instantiation.

ZU064-05-FPR main 18 March 2018 11:23

22 E. L. Seidel, R. Jhala, and W. Weimer

Further, suppose that our speculative instantiation induces a frivolous type error. For
example, suppose we are given

let bad x y =

if x < y then

x *. y

else

0.0

and choose to (speculatively) instantiate x and y as ints and proceed down the “true”
branch. We will quickly discover this was the wrong choice, as they are immediately
narrowed to floats. We must now backtrack and try a different instantiation, but we no
longer need to choose one at random. Since our instantiation was speculative, and x and
y were originally holes, we can treat the *. operator as a normal narrowing point with
two holes. This tells us that the correct instantiation was in fact float, and we can then
proceed as normal from the backtracking point with a concrete choice of floats. Thus, it
appears that speculative instantiation of holes may be a useful, lightweight alternative to
symbolic execution for our purposes.

Non-Parametric Function Type * 5% of all programs lack a witness in our semantics due
to our non-parametric fun type for functions. Recall that our goal is to expose the runtime
errors that would have been prevented by the type systems. At runtime, it is always safe
to call a function, thus we give functions a simple type fun that says they may be applied,
but says nothing about their inputs or outputs. But consider the following clone function,
which is supposed to produce a list containing n copies of the input x.

let rec clone x n =

if n > 0 then

clone [x] (n - 1)

else

[]

Unfortunately, the student instead constructs an n-level nested list containing a single x.
The OCAML compiler rejects this program because the recursive call to clone induces
a cyclic typing constraint ’a = ’a list, capturing the fact that each call increases the
nesting of the list. NANOMALY fails to catch this because we do not track the types of the
inputs to clone.

We note, however, that clone cannot go wrong; it is perfectly safe to repeatedly enclose
a list inside another (disregarding the fact that the nested list is never returned). Still, such
a function would be very difficult to call safely, as the programmer would have to reason
about the dependency between the input n and the nesting of the output list, which cannot
be expressed in OCAML’s type system.

Thus, it is not particularly satisfying that NANOMALY fails to produce a witness here;
one solution could be to track the types of the inputs, and demonstrate to the user how
they change between recursive calls. This would require maintaining a typing environment
of variables in addition to the environments we maintain for holes. We would have to
modify the rule APP-G from Figure 6 to additionally narrow the function’s type against

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 23

the concrete inputs. However, we would want to ensure that this narrow cannot fail — it is
preferable to report a stuck term as that provides a fuller view of the error. Rather, we would
note which evaluation steps induced incompatible type refinements, and if a traditional
witness cannot be found, we could then report a trace expanded to show precisely these
steps. This represents only a modest extension to our semantics and would be interesting
to explore further.

The fun abstraction is also problematic when we have to generate new functions. Con-
sider the following pipe function that composes a list of functions.

let pipe fs =

let f a x = a x in

let base a = a in

List.fold_left f base fs

In the folding function f, the student has applied the accumulator a to the new function
x, rather than composing the two. The OCAML compiler again detects a cyclic typing
constraint and rejects the program, but NANOMALY is unable to produce a witness. In
this case the issue lies in the fact that the safety of a call to pipe is determined by its
arguments: the call pipe [(fun x -> 1)] is safe, but the call pipe [(fun x -> 1)

; (fun x -> 2); (fun x -> 3)] will get stuck when we try to reduce 1 (fun x

-> 3). Unfortunately, NANOMALY is unable to synthesize such a witness because of the
abstraction to fun. Specifically, this abstraction forces our hand inside gen; we do not know
the what the input and output types of the function should be, so the only safe thing to do is
to generate a function that accepts any input and returns a value of a yet-to-be-determined
type. Thus, our lenient instantiation of holes prevents us from discovering a witness here.

Dead Code and “Safe” Function Calls * 4% of all programs contained type errors that
were unreachable, either because they were dead code, or because the student called the
function with inputs that could not trigger the error.

1% contained type errors that were unreachable by any inputs, often due to overlapping
patterns in a match expression. While technically safe, dead code is generally considered
a maintenance risk, as the programmer may not realize that it is dead (Wheeler, 2014) or
may accidentally bring it back to life (Seven, 2014). Thus, a warning like that provided by
OCAML’s pattern exhaustiveness checker would be helpful.

A further 3% included a function call where the student supplied ill-typed inputs, but the
path induced by the call did not contain an error. Consider the following assoc function,
which looks up a key in an association list, returning a default if it cannot be found.

let rec assoc (d, k, l) = match l with

| (ki, vi)::tl ->

if ki = k then

vi

else

assoc (d, k, tl)

| _ -> d

let _ = assoc ([], 123, [(123 , "sad"); (321, "happy")])

ZU064-05-FPR main 18 March 2018 11:23

24 E. L. Seidel, R. Jhala, and W. Weimer

The student’s definition of assoc is correct, but OCAML rejects their subsequent call
because the default value [] is incompatible with the string values in the list. In this
particular call the key 123 is in the list, so the default will not be used (even if it were,
there would not be an error) and OCAML’s complaint is moot. Of course, OCAML cannot
be expected to know that this particular call is safe, its type system is not sophisticated
enough to express the necessary conditions.

Witness Exists * We found that only 2% of all programs admit a witness that NANOMALY

was unable to discover. Slightly over half involved synthesizing a pair of specially-crafted
inputs that would result in the function returning values of incompatible types. The rest
required synthesizing an input that would trigger a particular path through the program,
and would likely have been caught by symbolic execution.

Summary Our investigation suggests that the majority of programs for which we fail
to find a witness do not, in fact, admit a witness under NANOMALY’s semantics. These
programs were generally cases where OCAML’s type system was overly conservative. Of
course, the conservatism is somewhat justified as each case pointed to code that would be
difficult to use or maintain; it would be interesting to investigate how demonstrate these
issues in an intuitive manner.

5.4 Witness Complexity

For each of the ill-typed programs for which we could find a witness, we measure the
complexity of the generated trace using two metrics.

1. Single-step: The size of the trace after expanding all of the single-step edges from
the witness to the stuck term, and

2. Jump-compressed: The size of the jump-compressed trace.

Results The results of the experiment are summarized in Figure 15. The average number
of single-step reductions per trace is 17 for the UCSD dataset (42 for the UW dataset)
with a maximum of 2,745 (resp. 982) and a median of 15 (resp. 15). The average number
of jumps per trace is 7 (resp. 9) with a maximium of 353 (resp. 221) and a median of 4
(resp. 4). In both datasets about 60% of traces have at most 5 jumps, and 80% or more have
at most 10 jumps.

5.5 Qualitative Evaluation of Witness Utility

Next, we present a qualitative evaluation that compares the explanations provided by
NANOMALY’s dynamic witnesses with the static reports produced by the OCAML com-
piler and SHERRLOC, a state-of-the-art fault localization approach (Zhang & Myers,
2014). In particular, we illustrate, using a series of examples drawn from student programs
in the UCSD dataset, how NANOMALY’s jump-compressed traces can get to the heart
of the error. Our approach highlights the conflicting values that cause the program to get
stuck, rather that blaming a single one, shows the steps necessary to reach the stuck state,

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 25

Fig. 15. Complexity of the generated traces. Over 80% of the combined traces have a jump
complexity of at most 10, with an average complexity of 7 and a median of 5.

and does not assume that a function is correct just because it type-checks. For each example
we will present: (1) the code; (2) the error message returned OCAML; (3) the error locations
returned by OCAML and SHERRLOC ; and (4) NANOMALY’s jump-compressed trace.

Example: Recursion with Bad Operator The recursive function sqsum should square
each element of the input list and then compute the sum of the result.

1 let rec sqsum xs = match xs with

2 | [] -> 0

3 | h::t -> sqsum t @ (h * h)

Unfortunately the student has used the list-append operator @ instead of +. Both OCAML

and SHERRLOC blame the wrong location, the recursive call sqsum t, with the message

ZU064-05-FPR main 18 March 2018 11:23

26 E. L. Seidel, R. Jhala, and W. Weimer

This expression has type

int

but an expression was expected of type

’a list

NANOMALY produces a trace showing how the evaluation of sqsum [1] gets stuck.

The trace highlights the entire stuck term (not just the recursive call), emphasizing the
conflict between int and list rather than assuming one or the other is correct.

Example: Recursion with Bad Base Case The function sumList should add up the
elements of its input list.

1 let rec sumList xs = match xs with

2 | [] -> []

3 | y::ys -> y + sumList ys

Unfortunately, in the base case, it returns [] instead of 0. SHERRLOC blames the base
case, and OCAML assumes the base case is correct and blames the recursive call on line 3:

This expression has type

’a list

but an expression was expected of type

int

Both of the above are parts of the full story, which is summarized by NANOMALY’s trace
showing how sumList [1; 2] gets stuck at 2 + [].

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 27

The trace clarifies (via the third step) that the [] results from the recursive call sumList [],
and shows how it is incompatible with the subsequent + operation.

Example: Bad Helper Function that Type-Checks The function digitsOfInt should
return a list of the digits of the input integer.

1 let append x xs =

2 match xs with

3 | [] -> [x]

4 | _ -> x :: xs

5
6 let rec digitsOfInt n =

7 if n <= 0 then

8 []

9 else

10 append (digitsOfInt (n / 10)) [n mod 10]

Unfortunately, the student’s append function conses an element onto a list instead of
appending two lists. Though incorrect, append still type-checks and thus OCAML and
SHERRLOC blame the use-site on line 10.

This expression has type

int

but an expression was expected of type

’a list

In contrast, NANOMALY makes no assumptions about append, yielding a trace that illus-
trates the error on line 4, by highlighting the conflict in consing a list onto a list of integers.

Example: Higher-Order Functions The higher-order function wwhile is supposed to
emulate a traditional while-loop. It takes a function f and repeatedly calls f on the first
element of its output pair, starting with the initial b, till the second element is false.

ZU064-05-FPR main 18 March 2018 11:23

28 E. L. Seidel, R. Jhala, and W. Weimer

1 let rec wwhile (f,b) =

2 match f with

3 | (z, false) -> z

4 | (z, true) -> wwhile (f, z)

5
6 let f x =

7 let xx = x * x in

8 (xx, (xx < 100))

9

10 let _ = wwhile (f , 2)

The student has forgotten to apply f at all on line 2, and just matches it directly against a
pair. This faulty wwhile definition nevertheless typechecks, and is assumed to be correct
by both OCAML and SHERRLOC which blame the use-site on line 10.

This expression has type

int -> int * bool

but an expression was expected of type

’a * bool

NANOMALY synthesizes a trace that draws the eye to the true error: the match expression
on line 2, and highlights the conflict in matching a function against a pair pattern.

By highlighting conflicting values, i.e. the source and sink of the problem, and not making
assumptions about function correctness, NANOMALY focusses the user’s attention on the
piece of code that is actually relevant to the error.

5.6 Quantitative Evaluation of Witness Utility

We assigned four problems to the 60 students in the course: the sumList, digitsOfInt,
and wwhile programs from § 5.5, as well as the following append program

1 let append x l =

2 match x with

3 | [] -> l

4 | h::t -> h :: t :: l

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 29

which triggers an occurs-check error on line 4. For each problem the students were given
the ill-typed program and either OCAML’s error or NANOMALY’s jump-compressed trace;
the full user study is available in Appendix B. Due to the nature of an in-class exam, not
every student answered every question; we received between 13 and 28 (out of a possible
30) responses for each problem-tool pair.

We then instructed four annotators (one of whom is an author, the other three are teach-
ing assistants at UCSD) to classify the answers as correct or incorrect. We performed
an inter-rater reliability (IRR) analysis to determine the degree to which the annotators
consistently graded the exams. 5 As we had more than two annotators assigning nominal
(“correct” or “incorrect”) ratings we used Fleiss’ kappa (Fleiss, 1971) to measure IRR.
Fleiss’ kappa is measured on a scale from 1, indicating total agreement, to −1, indicating
total disagreement, with 0 indicating random agreement.

Finally, we used a one-sided Mann-Whitney U test (Mann & Whitney, 1947) to de-
termine the significance of our results. The null hypothesis was that the responses from
students given NANOMALY’s witnesses were drawn from the same distribution as those
given OCAML’s errors, i.e. NANOMALY had no effect. Since we used a one-sided test, the
alternative to the null hypothesis is that NANOMALY had a positive effect on the responses.
We reject the null hypothesis in favor of the alternative if the test produces a significance
level p < 0.05, a standard threshold for determining statistical significance.

Results The measured kappa values were κ = 0.72 for the explanations and κ = 0.83 for
the fixes; while there is no formal notion for what consititutes strong agreement (Krippen-
dorff, 2012), kappa values above 0.60 are often called “substantial” agreement (Landis &
Koch, 1977). Figure 16 summarizes a single annotator’s results, which show that students
given NANOMALY’s jump-compressed trace were consistently more likely to correctly
explain and fix the type error than those given OCAML’s error message. Across each
problem the NANOMALY responses were marked correct 10− 30% more often than the
OCAML responses, which suggests that the students who had access to NANOMALY’s
traces had a better understanding of the type errors; however, only the append tests were
statistically significant at p < 0.05.

Threats to Validity Measuring understanding is a difficult task; the following summarize
the threats to the validity of our results.

Construct. We used the correctness of the student’s explanation of, and fix for, the type
error as a proxy for her understanding, but it is possible that other metrics would produce
different results. One such metric that is also surely relevant is time-to-completion, i.e. a
good error report should quickly guide the student to a fix. Unfortunately, the in-class exam
setting of our study did not admit the collection of timing data.

Furthermore, one might object to our selection of OCAML as the baseline comparison
rather than SHERRLOC or MYCROFT, which also claim to produce more accurate error

5 Measuring IRR is an established practice to account for potential bias among raters. The students
were asked to explain the errors in English; judging whether they truly understood the errors
involved a surprising amount of subjectivity, and is thus subject to rater bias.

ZU064-05-FPR main 18 March 2018 11:23

30 E. L. Seidel, R. Jhala, and W. Weimer

Fig. 16. A classification of students’ explanations and fixes for type errors, given either OCAML’s
error message or NANOMALY’s jump-compressed trace. The students given NANOMALY’s jump-
compressed trace consistently scored better (≥ 10%) than those given OCAML’s type error. We report
the result of a one-sided Mann-Whitney U test for statistical significance in parentheses.

reports. This is indeed a limitation of our study, but we note that SHERRLOC blames the
same expression as OCAML in both wwhile and append, and in digitsOfInt both blame
the wrong function.

Finally, one might point out that our study investigates the use of NANOMALY as a
debugging aid rather than as a teaching aid. That is, it may be that NANOMALY helps stu-
dents solve their immediate problem, but does not help them build a lasting understanding
of the type system. We have not attempted a longitudinal study of the long-term impact of
using NANOMALY, but we agree that it would be an interesting future direction.

Internal. We assigned students randomly to two groups. The first was given OCAML’s
errors for append and digitsOfInt, and NANOMALY’s trace for sumList and wwhile;

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 31

the second was given the opposite assignment of errors and traces. This assignment en-
sured that: (1) each student was given OCAML and NANOMALY problems; and (2) each
student was given an “easy” and “hard” problem for both OCAML and NANOMALY.
Students without sufficient knowledge of OCAML could affect the results, as could the
time-constrained nature of an exam. For these reasons we excluded any answers left blank
from our analysis.

External. Our experiment used students in the process of learning OCAML, and thus may
not generalize to all developers. The four programs were chosen manually, via a random
selection and filtering of the programs in the UCSD dataset. In some cases we made minor
simplifying edits (e.g. alpha-renaming, dead-code removal) to the programs to make them
more understandable in the short timeframe of an exam; however, we never altered the
resulting type-error. A different selection of programs may lead to different results.

Conclusion. We collected exams from 60 students, though due to the nature of the study
not every student completed every problem. The number of complete submissions ranges
from 13 (for the NANOMALY version of wwhile) to 28 (for the OCAML version of
sumList), out of a maximum of 30 per program-tool pair. Our results are statistically
significant in only 2 out of 8 tests; however, collecting more responses per test pair was
not possible as it would require having students answer the same problem twice (once with
OCAML and once with NANOMALY).

5.7 Locating Errors with Witnesses

We have seen that NANOMALY can effectively synthesize witnesses to explain the major-
ity of (novice) type errors, but a good error report should also help locate the source of the
error. Thus, our final experiment seeks to use NANOMALY’s witnesses as localizations.

As discussed in § 5.1, we recorded each interaction of our students with the OCAML

top-level system. This means that, in addition to collecting ill-typed programs, we collected
subsequent, fixed versions of the same programs. For each ill-typed program compiled by a
student, we identify the student’s fix by searching for the first type-correct program that the
student subsequently compiled. We then use an expression-level diff (Lempsink, 2009) to
determine which sub-expressions changed between the ill-typed program and the student’s
fix, and treat those expressions as the source of the type error.

Not all ill-typed programs will have an associated fix; furthermore, at some point a “fix”
becomes a “rewrite”. We do not wish to consider the “rewrites”, so we discard outliers
where the fraction of expressions that have changed is more than one standard deviation
above the mean, establishing a diff threshold of 40%. This accounts for roughly 14% of
programs pairs we discovered, leaving us with 2,710 program pairs.

For each pair of an ill-typed program and its fix, we run NANOMALY and collect two
sets of source locations: (1) the source location corresponding to the stuck term; and (2)
the source locations that produced the values inside the stuck term. Intuitively, these two
classes of locations correspond to sinks and sources for typing constraints. For example, in
the sqsum program from § 5.5 the stuck term is 0 @ 1. This corresponds to the call to @

on line 3, and contains the literal 0 from line 2 and the value 1 produced by the * on line 3.

ZU064-05-FPR main 18 March 2018 11:23

32 E. L. Seidel, R. Jhala, and W. Weimer

Fig. 17. Accuracy of type error localization. NANOMALY’s witness-based predictions outperform
OCAML by 21 points, and are competitive with the state-of-the-art tools MYCROFT and SHERRLOC.

We compare NANOMALY’s witness-based predictions against a baseline of the OCAML

compiler as well as the state-of-the-art localization tools SHERRLOC and MYCROFT.
SHERRLOC (Zhang & Myers, 2014) attempts to predict the most likely source of a type
error by searching the typing constraint graph for constraints that participate in many
unsatisfiable paths and few satisfiable paths. MYCROFT (Loncaric et al., 2016) reduces
the localization problem to MaxSAT by searching for a minimal subset of constraints that
can be removed, such that the resulting system is satisfiable. Both tools produce a set of
equally-likely expressions to blame for the error (in practice the set contains only a few
expressions), similar to NANOMALY’s witness-based predictions.

We evaluate each tool based on whether any of its predictions identifies a changed ex-
pression. There were a number of programs where MYCROFT or SHERRLOC encountered
an unsupported language feature or timed out after one minute, or where NANOMALY

failed to produce a witness. We discard all such programs in our evaluation to level the
playing field, around 15% for each tool, leaving us with a benchmark set of 1,759 programs.

Results Figure 17 summarizes our results, which show that NANOMALY’s witnesses are
competitive with MYCROFT and SHERRLOC in automatically locating the source of a type
error. NANOMALY, MYCROFT, and SHERRLOC all outperform the OCAML compiler,
which is not surprising given that they can produce multiple possible error locations, while
the OCAML compiler is limited to one predicted error location. Interestingly, while all tools
have a median of 2 predicted error locations per program, MYCROFT and SHERRLOC have
a long tail with a maximum of 22 (resp. 11) locations, while NANOMALY’s maximum is 5
locations. We also note that while MYCROFT and SHERRLOC were designed specifically
to localize type errors, NANOMALY’s foremost purpose is to explain them, we consider its
ability to localize type errors an added benefit.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 33

Threats to Validity Our benchmarks were drawn from students in an undergraduate course
at UCSD and may not be representative of other student bodies. We mitigate this threat
with a large empirical evaluation of 1,759 programs, drawn from a cohort of 46 students.
A similar threat is that students are not industrial programmers, thus our results may not
translate to large-scale software engineering. However, in our experience programmers are
able to construct a mental model of type systems after sufficient exposure, at which point
traditional error reports may suffice. We are thus particularly interested in aiding novice
programmers as they learn to work with the type system.

Our definition of the next well-typed program as the intended ground truth answer is
another threat to validity. Students might submit multiple well-typed “rewrites” between
the initial ill-typed program and the final intended answer. Our approach to discarding
outliers is intended to mitigate this threat. A similar threat is our removal of programs
where any of the tools could not produce an answer. It may be, for example, that MY-
CROFT and SHERRLOC are particularly effective on programs that do not admit dynamic
witnesses. Finally, our use of student fixes as oracles for the source of type errors assumes
that students are able to correctly identify the source. As the students are in the process
of learning OCAML and the type system, this assumption may be faulty, expert users may
disagree with the student fixes. We believe, however, that it is reasonable to use student
fixes as oracles, as the student is the best judge of what she intended to do.

5.8 Discussion

To summarize, our experiments demonstrate that NANOMALY finds witnesses to type
errors: (1) with high coverage in a timespan amenable to compile-time analysis; (2) with
traces that have a low median complexity of 5 jumps; (3) that are more helpful to novice
programmers than traditional type error messages; and (4) that can be used to automatically
locate the source of a type error.

There are, of course, drawbacks to our approach. In the sequel we discuss a selection of
drawbacks, and how we might address them in future work.

Random Generation Random test generation has difficulty generating highly constrained
values, e.g. red-black trees or a pair of equal integers. If the type error is hidden be-
hind a complex branch condition NANOMALY may not be able to trigger it. Exhaustive
testing and dynamic-symbolic execution can address this short-coming by performing an
exhaustive search for inputs (resp. paths through the program). Our approach does not
rely on random generation, we could easily substitute it for dynamic-symbolic execution
by extending the evaluation relation to maintain a path condition and replacing the gen

function with a call to the constraint solver. As our experiments show, however, novice
programs do not appear to require more advanced search techniques, likely because they
tend to be simple.

Trace Explosion Though the average complexity of our generated traces is low in terms
of jumps, there are some extreme outliers. We cannot reasonably expect a novice user to
explore a trace containing 50+ terms and draw a conclusion about which pieces contributed
to the bug in their program. Enhancing our visualization to slice out program paths relevant

ZU064-05-FPR main 18 March 2018 11:23

34 E. L. Seidel, R. Jhala, and W. Weimer

to specific values (Perera et al., 2012), would likely help alleviate this issue, allowing users
to highlight a confusing value and ask: “Where did this come from?”

Non-Parametric Function Type As we discussed in § 5.3 some ill-typed programs lack
a witness in our semantics due to our use of a non-parametric type fun for functions.
These programs cannot “go wrong”, strictly speaking, but would be very difficult to use
in practice. We also note that many of these programs induce cyclic typing constraints,
causing infinite-type errors, which in our experience can be particularly difficult to debug
(and to explain to novices). Better support for these programs would be welcome. For
example, we might track how the types of inputs change between recursive calls. If we
cannot find a traditional witness, we could then produce a trace expanded to show these
particular steps.

Ad-Hoc Polymorphism Also discussed in § 5.3, our approach can only support ad-hoc
polymorphism (e.g. type-classes in HASKELL or polymorphic comparison functions in
OCAML) in limited cases where we have enough typing information at the call-site to
resolve the overloading. This issue is uncommon in OCAML (we detected it in around
5% of our benchmarks), but it would surely be exacerbated by a language like HASKELL,
which overloads not only functions but also numeric literals, as well as strings and lists if
one enables the respective language extensions. We suspect that either dynamic-symbolic
execution or speculative instantiation of holes would allow us to handle ad-hoc polymor-
phism, but defer a proper treatment to future work.

Traversal Bias A common problem with typecheckers is that the order in which the
typechecker traverses the abstract syntax tree biases it in favor of blaming expressions
that are seen later (McAdam, 1998). This usually takes the form of a left-to-right bias with
respect to the source code (terms that appear later textually are more likely to be blamed),
but in our case the bias is with respect to the execution trace.

Incorporating our notion of type sources from § 5.7 into the visualization, e.g. by in-
cluding those reductions in the initial visualization, may help alleviate our bias in a similar
manner to McAdam’s proposal. Hage and Heeren (2009) offer another solution that allows
the compiler author to selectively control the bias, and thus produce better errors, by prior-
itizing typing constraints. Unfortunately, due to NANOMALY’s dynamic nature, providing
this sort of control would likely require selectively changing the order of evalution; while
sound for the pure subset of OCAML that we address, this could nonetheless confuse
newcomers to the language even more.

Side Effects While our implementation does not currently support side effects, we believe
it would not be difficult to add support. The search procedure is easily extended to support
mutation by maintaining a store in the evaluation relation, the main complexity would be in
extending the trace visualization to demonstrate mutation. Incorporating mutation directly
into our reduction-based visualization would be difficult, as mutation would have non-local
effects on the expressions and may be difficult for students to follow. Instead, we could
follow the example of PYTHON TUTOR (Guo, 2013) and provide a separate visualization
of the mutable store, with references visualized as constant pointers to changing objects.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 35

6 Related Work

Localizing and Repairing Type Errors Many groups have explored techniques to im-
prove the error locations reported by static type checkers. The traditional Damas-Milner
type inference algorithm (Damas & Milner, 1982) reports the first program location where
a type mismatch is discovered (subject to the traversal strategy (Lee & Yi, 1998)). As
a result the error can be reported far away from its source (McAdam, 1998) without
enough information to guide the user. Type-error slicing (Haack & Wells, 2003; Schilling,
2011; Rahli et al., 2015; Sagonas et al., 2013; Gast, 2004; Neubauer & Thiemann, 2003)
recognizes this flaw and instead produces a slice of the program containing all program
locations that are connected to the type error. Though the program slice must contain
the source of the error, it can suffer from the opposite problem of providing too much
information, motivating recent work in ranking the candidate locations. Zhang et al. (2014;
2015) present an algorithm for identifying the most likely culprit using Bayesian reasoning.
Pavlinovic et al. (2014; 2015) translate the localization problem to a MaxSMT optimiza-
tion problem, using compiler-provided weights to rank the possible sources. Loncaric et
al. (2016) improve the scalability of Pavlinovic et al. by reusing the existing type checker
as a theory solver in the Nelson-Oppen (1979) style, thus requiring only a MaxSAT solver.

In addition to localizing the error, Lerner et al. (2007) attempt to suggest a fix by replac-
ing expressions (or removing them entirely) with alternatives based on the surrounding
program context. Chen & Erwig (2014) use a variational type system to allow for the
possibility of changing an expression’s type, and search for an expression whose type can
be changed such that type inference would succeed. In contrast to Lerner et al., who search
for changes at the value-level, Chen & Erwig search at the type-level and are thus complete
due the finite universe of types used in the program.

In contrast to these approaches, we do not attempt to localize or fix the type error. Instead
we try to explain it to the user using a dynamic witness that demonstrates how the program
is not just ill-typed but truly wrong. In addition, allowing users to run their program (even
knowing that it is wrong) enables experimentation and the use of debuggers to step through
the program and investigate its evolution.

Improving Error Messages The content and quality of the error messages themselves
has also been studied extensively. Marceau et al. (2011b; 2011a) study the effectiveness of
error messages in novice environments and present suggestions for improving their quality
and consistency. Hage & Heeren (2006) identify a variety of general heuristics to improve
the quality of type error messages, based on their teaching experience. Charguéraud (2014)
presents a tabular format for type errors that can provide multiple explanations in a compact
form. Heeren et al. (2003), Christiansen (2014), and Serrano & Hage (2016) provide
methods for library authors to specialize type errors with domain-specific knowledge. The
difference with our work is more pronounced here as we do not attempt to improve the
quality of the error message, instead we search for a witness to the error and explain it with
the resulting execution trace.

Running Ill-Typed Programs Vytiniotis et al. (2012) extend the HASKELL compiler
GHC to support compiling ill-typed programs, but their intent is rather different from ours.

ZU064-05-FPR main 18 March 2018 11:23

36 E. L. Seidel, R. Jhala, and W. Weimer

Their goal was to allow programmers to incrementally test refactorings, which often cause
type errors in distant functions. They replace any expression that fails to type check with
a runtime error, but do not check types at runtime. Bayne et al. (2011) also provide a
semantics for running ill-typed (JAVA) programs, but in constrast transform the program to
perform nearly all type checking at run-time. The key difference between Bayne et al. and
our work is that we use the dynamic semantics to automatically search for a witness to the
type error, while their focus is on incremental, programmer-driven testing.

Testing NANOMALY is at its heart a test generator, and as such, builds on a rich line of
work. Our use of holes to represent unknown values is inspired by the work of Runciman,
Naylor, and Lindblad (Runciman et al., 2008; Naylor & Runciman, 2007; Lindblad, 2007),
who use lazy evaluation to drastically reduce the search space for exhaustive test genera-
tion, by grouping together equivalent inputs by the set of values they force. An exhaustive
search is complete (up to the depth bound), if a witness exists it will be found, but due to
the exponential blowup in the search space the depth bound can be quite limited without
advanced grouping and filtering techniques. Our search is not exhaustive; instead we use
random generation to fill in holes on demand. Random test generation (Claessen & Hughes,
2000; Csallner & Smaragdakis, 2004; Pacheco et al., 2007) is by its nature incomplete, but
is able to check larger inputs than exhaustive testing as a result.

Instead of enumerating values, which may trigger the same path through the program,
one might enumerate paths. Dynamic-symbolic execution (Godefroid et al., 2005; Cadar
et al., 2008; Tillmann & de Halleux, 2008) combines symbolic execution (to track which
path a given input triggers) with concrete execution (to ensure failures are not spurious).
The system collects a path condition during execution, which tracks symbolically what
conditions must be met to trigger the current path. Upon successfully completing a test
run, it negates the path condition and queries a solver for another set of inputs that satisfy
the negated path condition, i.e. inputs that will not trigger the same path. Thus, it can prune
the search space much faster than techniques based on enumerating values, but is limited
by the expressiveness of the underlying solver.

Our operational semantics is amenable to dynamic-symbolic execution, one would just
need to collect the path condition and replace our implementation of gen by a call to the
solver. We chose to use lazy, random generation instead because it is efficient, does not
incur the overhead of an external solver, and produces high coverage for our domain of
novice programs.

A function’s type is a theorem about its behavior. Thus, NANOMALY’s witnesses can
be viewed as counter-examples, thereby connecting it to work on using test cases to find
counter-examples prior to starting a proof (Chamarthi et al., 2011; Nguyen & Van Horn,
2015; Seidel et al., 2015).

Program Exploration Flanagan et al. (1996) describe a static debugger for Scheme,
which helps the programmer interactively visualize problematic source-sink flows cor-
responding to soft-typing errors. The debugger allows the user to explore an abstract
reduction graph computed from a static value set analysis of the program. In contrast,
NANOMALY generates witnesses and allows the user to explore the resulting dynamic
execution.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 37

Clements et al. (2001) present a reduction-based visualization of program execution sim-
ilar to NANOMALY’s, though their interaction model is closer to that of a traditional step-
debugger, limited to taking single step forwards or backwards. In contrast, NANOMALY

first presents an overview of the whole computation, and then allows the user to focus in
on the interesting reductions.

Perera et al. (2012) present a tracing semantics for functional programs that tags values
with their provenance, enabling a form of backwards program slicing from a final value
to the sequence of reductions that produced it. Notably, they allow the user to supply a
partial value — containing holes — and present a partial slice, containing only those steps
that affected the the partial value. Perera et al. focus on backward exploration; in con-
trast, our visualization supports forward and backward exploration, though our backward
steps are more limited. Specifically, we do not support selecting a value and inserting the
intermediate terms that preceded it while ignoring unrelated computation steps.

Acknowledgments

We thank Ethan Chan, Matthew Chan and Timothy Nguyen for assisting with our user
study, and we thank the anonymous reviewers and Matthias Felleisen for their insightful
feedback on earlier drafts of this paper.

References

Bayne, Michael, Cook, Richard, & Ernst, Michael D. (2011). Always-available static and dynamic
feedback. Pages 521–530 of: Proceedings of the 33rd International Conference on Software
Engineering. ICSE ’11. New York, NY, USA: ACM.

Cadar, Cristian, Dunbar, Daniel, & Engler, Dawson. (2008). KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. Pages 209–224 of: Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation. OSDI’08.
Berkeley, CA, USA: USENIX Association.

Chamarthi, Harsh Raju, Dillinger, Peter C., Kaufmann, Matt, & Manolios, Panagiotis. (2011).
Integrating testing and interactive theorem proving. Pages 4–19 of: Proceedings of the 10th
International Workshop on the ACL2 Theorem Prover and its Applications. ACL2 ’11.

Charguéraud, Arthur. (2014). Improving type error messages in ocaml. Pages 80–97 of: Proceedings
of the ML Family/OCaml Users and Developers Workshops. Electronic Proceedings in Theoretical
Computer Science, vol. 198. Open Publishing Association.

Chen, Sheng, & Erwig, Martin. (2014). Counter-factual typing for debugging type errors. Pages
583–594 of: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’14. New York, NY, USA: ACM.

Christiansen, David Raymond. (2014). Reflect on your mistakes! lightweight domain-specific error
messages. Preproceedings of the 15th Symposium on Trends in Functional Programming.

Claessen, Koen, & Hughes, John. (2000). QuickCheck: A lightweight tool for random testing of
haskell programs. Pages 268–279 of: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming. ICFP ’00. New York, NY, USA: ACM.

Clements, John, Flatt, Matthew, & Felleisen, Matthias. (2001). Modeling an algebraic stepper. Pages
320–334 of: Programming Languages and Systems. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg.

Csallner, Christoph, & Smaragdakis, Yannis. (2004). JCrasher: an automatic robustness tester for
java. Softw. pract. exp., 34(11), 1025–1050.

ZU064-05-FPR main 18 March 2018 11:23

38 E. L. Seidel, R. Jhala, and W. Weimer

Damas, Luis, & Milner, Robin. (1982). Principal type-schemes for functional programs. Pages 207–
212 of: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’82. New York, NY, USA: ACM.

Felleisen, Matthias, Findler, Robert Bruce, & Flatt, Matthew. (2009). Semantics engineering with
PLT redex. 1st edn. The MIT Press.

Flanagan, Cormac, Flatt, Matthew, Krishnamurthi, Shriram, Weirich, Stephanie, & Felleisen,
Matthias. (1996). Catching bugs in the web of program invariants. Pages 23–32 of: Proceedings
of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation.
PLDI ’96. New York, NY, USA: ACM.

Fleiss, Joseph L. (1971). Measuring nominal scale agreement among many raters. Psychol. bull.,
76(5), 378.

Gast, Holger. (2004). Explaining ML type errors by data flows. Pages 72–89 of: Implementation
and Application of Functional Languages. Lecture Notes in Computer Science. Springer Berlin
Heidelberg.

Godefroid, Patrice, Klarlund, Nils, & Sen, Koushik. (2005). DART: Directed automated random
testing. Pages 213–223 of: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’05. New York, NY, USA: ACM.

Guo, Philip J. (2013). Online Python Tutor: Embeddable web-based program visualization for CS
education. Pages 579–584 of: Proceedings of the 44th ACM Technical Symposium on Computer
Science Education. SIGCSE ’13. New York, NY, USA: ACM.

Haack, Christian, & Wells, J B. (2003). Type error slicing in implicitly typed Higher-Order
languages. Pages 284–301 of: Programming Languages and Systems. Lecture Notes in Computer
Science. Springer Berlin Heidelberg.

Hage, Jurriaan, & Heeren, Bastiaan. (2006). Heuristics for type error discovery and recovery.
Pages 199–216 of: Implementation and Application of Functional Languages. Lecture Notes in
Computer Science. Springer Berlin Heidelberg.

Hage, Jurriaan, & Heeren, Bastiaan. (2009). Strategies for solving constraints in type and effect
systems. Electron. notes theor. comput. sci., 236(2 Apr.), 163–183.

Heeren, Bastiaan, Hage, Jurriaan, & Swierstra, S Doaitse. (2003). Scripting the type inference
process. Pages 3–13 of: Proceedings of the eighth ACM SIGPLAN international conference on
Functional programming, vol. 38. ACM.

Krippendorff, K. (2012). Content analysis: An introduction to its methodology. SAGE Publications.
Landis, J R, & Koch, G G. (1977). The measurement of observer agreement for categorical data.

Biometrics, 33(1), 159–174.
Lee, Oukseh, & Yi, Kwangkeun. (1998). Proofs about a folklore let-polymorphic type inference

algorithm. Acm trans. program. lang. syst., 20(4), 707–723.
Lempsink, Eelco. (2009). Generic type-safe diff and patch for families of datatypes. M.Phil. thesis,

Universiteit Utrecht.
Lerner, Benjamin, Grossman, Dan, & Chambers, Craig. (2006). Seminal: Searching for ML type-

error messages. Pages 63–73 of: Proceedings of the 2006 Workshop on ML. ML ’06. New York,
NY, USA: ACM.

Lerner, Benjamin S, Flower, Matthew, Grossman, Dan, & Chambers, Craig. (2007). Searching for
type-error messages. Pages 425–434 of: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’07. New York, NY, USA: ACM.

Lindblad, Fredrik. (2007). Property directed generation of First-Order test data. Pages 105–123
of: Morazán, Marco T (ed), Proceedings of the Eighth Symposium on Trends in Functional
Programming. TFP ’07, vol. 8.

Loncaric, Calvin, Chandra, Satish, Schlesinger, Cole, & Sridharan, Manu. (2016). A practical
framework for type inference error explanation. Pages 781–799 of: Proceedings of the 2016 ACM

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 39

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications. ACM.

Mann, H B, & Whitney, D R. (1947). On a test of whether one of two random variables is
stochastically larger than the other. Ann. math. stat., 18(1), 50–60.

Marceau, Guillaume, Fisler, Kathi, & Krishnamurthi, Shriram. (2011a). Measuring the effectiveness
of error messages designed for novice programmers. Pages 499–504 of: Proceedings of the 42Nd
ACM Technical Symposium on Computer Science Education. SIGCSE ’11. New York, NY, USA:
ACM.

Marceau, Guillaume, Fisler, Kathi, & Krishnamurthi, Shriram. (2011b). Mind your language: On
novices’ interactions with error messages. Pages 3–18 of: Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software.
Onward! 2011. New York, NY, USA: ACM.

McAdam, Bruce J. (1998). On the unification of substitutions in type inference. Pages 137–152 of:
Hammond, Kevin, Davie, Tony, & Clack, Chris (eds), Implementation of Functional Languages.
Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Naylor, M, & Runciman, Colin. (2007). Finding inputs that reach a target expression. Pages 133–142
of: Seventh IEEE International Working Conference on Source Code Analysis and Manipulation.
SCAM ’07.

Nelson, Greg, & Oppen, Derek C. (1979). Simplification by cooperating decision procedures. Acm
trans. program. lang. syst., 1(2), 245–257.

Neubauer, Matthias, & Thiemann, Peter. (2003). Discriminative sum types locate the source of type
errors. Pages 15–26 of: Proceedings of the Eighth ACM SIGPLAN International Conference on
Functional Programming. ICFP ’03. New York, NY, USA: ACM.

Nguyen, Phúc C, & Van Horn, David. (2015). Relatively complete counterexamples for higher-
order programs. Pages 446–456 of: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2015. New York, NY, USA: ACM.

Pacheco, Carlos, Lahiri, Shuvendu K, Ernst, Michael D, & Ball, Thomas. (2007). Feedback-Directed
random test generation. Pages 75–84 of: 29th International Conference on Software Engineering.
ICSE ’07.

Pavlinovic, Zvonimir, King, Tim, & Wies, Thomas. (2014). Finding minimum type error sources.
Pages 525–542 of: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’14. New York, NY, USA: ACM.

Pavlinovic, Zvonimir, King, Tim, & Wies, Thomas. (2015). Practical SMT-based type error
localization. Pages 412–423 of: Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming. ICFP 2015. New York, NY, USA: ACM.

Perera, Roly, Acar, Umut A, Cheney, James, & Levy, Paul Blain. (2012). Functional programs that
explain their work. Pages 365–376 of: Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’12. New York, NY, USA: ACM.

Rahli, Vincent, Wells, Joe, Pirie, John, & Kamareddine, Fairouz. (2015). Skalpel: A type error slicer
for standard ML. Electron. notes theor. comput. sci., 312(24 Apr.), 197–213.

Runciman, Colin, Naylor, Matthew, & Lindblad, Fredrik. (2008). Smallcheck and lazy smallcheck:
Automatic exhaustive testing for small values. Pages 37–48 of: Proceedings of the First ACM
SIGPLAN Symposium on Haskell. Haskell ’08. New York, NY, USA: ACM.

Sagonas, Konstantinos, Silva, Josep, & Tamarit, Salvador. (2013). Precise explanation of success
typing errors. Pages 33–42 of: Proceedings of the ACM SIGPLAN 2013 Workshop on Partial
Evaluation and Program Manipulation. PEPM ’13. New York, NY, USA: ACM.

Schilling, Thomas. (2011). Constraint-Free type error slicing. Pages 1–16 of: Trends in Functional
Programming. Lecture Notes in Computer Science. Springer Berlin Heidelberg.

ZU064-05-FPR main 18 March 2018 11:23

40 E. L. Seidel, R. Jhala, and W. Weimer

Seidel, Eric L., Vazou, Niki, & Jhala, Ranjit. (2015). Type targeted testing. Pages 812–836 of:
Proceedings of the 24th European Symposium on Programming on Programming Languages and
Systems. ESOP ’15. New York, NY, USA: Springer-Verlag New York, Inc.

Seidel, Eric L, Jhala, Ranjit, & Weimer, Westley. (2016). Dynamic witnesses for static type errors (or,
ill-typed programs usually go wrong). Pages 228–242 of: Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming. ICFP ’16. ACM.

Serrano, Alejandro, & Hage, Jurriaan. (2016). Type error diagnosis for embedded DSLs by Two-
Stage specialized type rules. Pages 672–698 of: Programming Languages and Systems. Lecture
Notes in Computer Science. Springer Berlin Heidelberg.

Seven, Doug. 2014 (17 Apr.). Knightmare: A DevOps cautionary tale. https://dougseven.com/
2014/04/17/knightmare-a-devops-cautionary-tale/. Accessed: 2017-4-24.

Tillmann, Nikolai, & de Halleux, Jonathan. (2008). Pex–White box test generation for .NET. Pages
134–153 of: Beckert, Bernhard, & Hähnle, Reiner (eds), Tests and Proofs. Lecture Notes in
Computer Science. Springer Berlin Heidelberg.

Vytiniotis, Dimitrios, Peyton Jones, Simon, & Magalhães, José Pedro. (2012). Equality proofs and
deferred type errors: A compiler pearl. Pages 341–352 of: Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming. ICFP ’12. New York, NY, USA: ACM.

Wheeler, David A. 2014 (23 Nov.). The apple goto fail vulnerability: lessons learned. https:

//www.dwheeler.com/essays/apple-goto-fail.html. Accessed: 2017-4-24.
Zhang, Danfeng, & Myers, Andrew C. (2014). Toward general diagnosis of static errors. Pages

569–581 of: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’14. New York, NY, USA: ACM.

Zhang, Danfeng, Myers, Andrew C, Vytiniotis, Dimitrios, & Peyton-Jones, Simon. (2015).
Diagnosing type errors with class. Pages 12–21 of: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2015. New York, NY,
USA: ACM.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 41

A Proofs for Section 3

Proof of Lemma 3
By induction on τ . In the base case τ = 〈 f ν [α],∅,∅〉 and α is trivially a refinement of
ν [α]. In the inductive case, consider the single-step extension of τ , τ ′ = τ,〈e′,σ ′,θ ′〉. We
show by case analysis on the evaluation rules that if θ(α)� σ(ν), then θ ′(α)� σ ′(ν).

We can immediately discharge all of the E-*-BAD rules (except for NODE-B1) as the
calls to narrow return stuck. An examination of narrow shows that if narrow returns stuck
then σ and θ are unchanged.

Case PLUS-G: We narrow v1 and v2 to int, so we must consider the narrow(ν [α], t,σ ,θ)

and narrow(n,int,σ ,θ) cases. The narrow(n,int,σ ,θ) case is trivial as it does not
change σ or θ . In the narrow(ν [α], t,σ ,θ) we will either find that ν ∈ σ or we will
generate a fresh int and extend σ . Note that when we extend σ we also extend θ due
to the call to unify, thus in the ν [∈]σ we cannot actually refine either ν or α and thus
the refinement is preserved. When we extend σ with a binding for ν , the call to unify

ensures that we add a compatible binding for α if one was not already in θ , thus the
refinement relation must continue to hold.

Case E-IF-GOOD{1,2}: Similar to PLUS-G.
Case APP-G: Similar to PLUS-G.
Case LEAF-G: This step cannot change σ or θ thus the refinement relation continues to

hold trivially.
Case NODE-G: We narrow v2 and v3 to tree t, so we must consider three cases of
narrow.

narrow(ν [α], t,σ ,θ): Similar to PLUS-G.
narrow(leaf[t1],tree t2,σ ,θ): This case may extend θ but not σ , so the refinement

continues to hold trivially.
narrow(node[t1] v1 v2 v3,tree t2,σ ,θ): Same as leaf[t1].

Case E-CASE-GOOD{1,2}: Similar to PLUS-G.
Case CASE-PAIR-G: Similar to PLUS-G.

Proof of Lemma 4
We can construct v from τ as follows. Let

τi = 〈 f ν [α],∅,∅〉, . . . ,〈ei−1,σi−1,θi−1〉,〈ei,σi,θi〉

be the shortest prefix of τ such that ρτi(f) � t. We will show that ρτi−1(f) must contain
some other hole α ′ that is instantiated at step i. Furthermore, α ′ is instantiated in such a
way that ρτi(f)� t. Finally, we will show that if we had instantiated α ′ such that ρτi(f)∼ t,
the current step would have gotten stuck.

Since θi−1 and θi differ only in α ′ but the resolved types differ, we have α ′ ∈ ρτi−1(f)
and ρτi(f) = ρτi−1(f) [t ′/α ′]. Let s be a concrete type such that ρτi−1(f) [s/α ′] = t. We
show by case analysis on the evaluation rules that

〈ei−1,σi−1,θi−1[α
′ 7→ s]〉 ↪→ 〈stuck,σ ,θ〉

ZU064-05-FPR main 18 March 2018 11:23

42 E. L. Seidel, R. Jhala, and W. Weimer

Case PLUS-G: Here we narrow v1 and v2 to int, so the first case of narrow must apply
(narrow(n,int,σ ,θ) cannot apply as it does not change θ). In particular, since we
extended θi−1 with [α ′ 7→ t ′] we know that α ′ = α and t ′ = int. Let s be any concrete
type that is incompatible with int and θs = θi−1[α 7→ s], narrow(ν [α],int,σi−1,θs]) =

〈stuck,σi−1,θs〉.
Case E-PLUS-BAD{1,2}: These cases cannot apply as narrow does not update θ when

it returns stuck.
Case E-IF-GOOD{1,2}: Similar to PLUS-G.
Case IF-B: This case cannot apply as narrow does not update θ when it returns stuck.
Case APP-G: Similar to PLUS-G.
Case APP-B: This case cannot apply as narrow does not update θ when it returns stuck.
Case LEAF-G: This case cannot apply as it does not update θ .
Case NODE-G: Here we narrow v2 and v3 to tree t, so we must consider three cases of
narrow.

narrow(ν [α], t,σ ,θ): Similar to PLUS-G.
narrow(leaf[t1],tree t2,σ ,θ): For this case to extend θ with [α ′ 7→ t ′], either t1 or

t2 must contain α ′. Let s be any concrete type that is incompatible with t ′ and θs =

θi−1[α 7→ s], narrow(ν [α],int,σi−1,θs]) = 〈stuck,σi−1,θs〉.
narrow(node[t1] v1 v2 v3,tree t2,σ ,θ): Same as leaf[t1].

Case NODE-B1: This case cannot apply as narrow does not update θ whe it returns
stuck.

Case NODE-B2: Similar to NODE-G.
Case E-CASE-GOOD{1,2}: Here we narrow v to tree α , so we must consider three

cases of narrow.

narrow(ν [α], t,σ ,θ): Similar to PLUS-G.
narrow(leaf[t1],tree t2,σ ,θ): This case cannot extend θ with [α ′ 7→ t ′] as we use a

fresh α , which cannot be referenced by ρτi−1(f), in the call to narrow, and thus it
cannot apply.

narrow(node[t1] v1 v2 v3,tree t2,σ ,θ): Same as leaf[t1].

Case CASE-B: This case cannot apply as narrow does not update θ whe it returns stuck.
Case CASE-PAIR-G Here we narrow v to α1×α2, so we must consider two cases of
narrow.

narrow(ν [α], t,σ ,θ): Similar to PLUS-G.
narrow(〈v1,v2〉, t1× t2,σ ,θ): This case cannot extend θ with [α ′ 7→ t ′] as we use a fresh

α1 and α2, which cannot be referenced by ρτi−1(f), in the call to narrow, and thus it
cannot apply.

Case CASE-PAIR-B: This case cannot apply as narrow does not update θ whe it returns
stuck.

Finally, by Lemma 3 we know that ρτi−1(f) � σi−1(ν) and thus α ′ ∈ σi−1(ν [α]). Let
u = gen(s,θ) and v = σi−1(ν) [u/ν ′[α ′]] [s/α ′], 〈 f v,∅,∅〉 ↪→∗ 〈stuck,σ ,θ〉 in i steps.

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 43

B User Study

B.1 Version A

9 Debugging and Functional Programming (16 points)
Consider these OCaml programs that do not type-check and their corresponding error messages
(including the implicated code, shown underlined). Each has comments detailing what the program
should do as well as sample invocations that should type-check.

(* "append xs ys" returns a list containing the
elements of "xs" followed by the elements of "ys" *)

let rec append xs ys =
match xs with
| [] -> ys
| h::t -> h :: t :: ys

assert(append [1] [2] = [1;2]) ;;

This expression has type
’a list

but an expression was expected of type
’a

The type variable ’a occurs inside ’a list

(* "digitsOfInt n" returns "[]" if "n" is
not positive, and otherwise returns the
list of digits of "n" in the order in
which they appear in "n". *)

let rec append x ys =
match xs with
| [] -> [x]
| -> x :: xs

let rec digitsOfInt n =
if n <= 0 then

[]
else

append (digitsOfInt (n/10))
[n mod 10]

assert(digitsOfInt 99 = [9;9]) ;;

This expression has type
int

but an expression was expected of type
’a list

(a) [2 pts] Why is the append program not well-typed?

(b) [2 pts] Fix the append program.

(c) [2 pts] Why is the digitsOfInt program not well-typed?

(d) [2 pts] Fix the digitsOfInt program.

15

xs

ZU064-05-FPR main 18 March 2018 11:23

44 E. L. Seidel, R. Jhala, and W. Weimer

Consider an execution trace that shows a high-level overview of a
program execution focusing on function calls. For example, the trace
on the right tells us that:

i. We start o� with fac 1.

ii. After performing some computation, we have the expression 1
* fac 0. The 1 * is grayed out, indicating that fac 0 is the
next expression to be evaluated.

iii. When we return from fac 0, we are left with 1 * true, in-
dicating a program error: we cannot multiply an int with a
bool.

let rec fac n =
if n <= 0 then

true
else

n * fac (n - 1)

assert(fac 1 = 1) ;;

(* "sumlist xs" returns the sum of the
integer elements of "xs" *)

let rec sumList xs = match xs with
| [] -> []
| y :: ys -> y + sumList ys

assert(sumList [1;2] = 3);;

Error encountered because
’a list

is incompatible with
int

(e) [2 pts] Why is the sumList program not well-typed?

(f) [2 pts] Fix the sumList program.

16

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 45

(* "wwhile (f, x)" returns x’ where there exist
values v0, ..., vn such that:

- x is equal to v0
- x’ is equal to vn
- for each i between 0 and n-2, we have

(f vi) equals (vi+1, true)
- (f vn≠1) equals (vn, false) *)

let f x =
let xx = x * x in
(xx, (xx < 100))

let rec wwhile (f,b) =
match f with
| (z, false) -> z
| (z, true) -> wwhile (f, z)

assert(wwhile (f, 2) = 256) ;;

Error encountered because
’a -> ’b

is incompatible with
’c * ’d

(g) [2 pts] Why is the wwhile program not well-typed?

(h) [2 pts] Fix the wwhile program.

17

ZU064-05-FPR main 18 March 2018 11:23

46 E. L. Seidel, R. Jhala, and W. Weimer

B.2 Version B

8 Debugging and Functional Programming (16 points)
Consider these OCaml programs that do not type-check and their corresponding error messages
(including the implicated code, shown underlined). Each has comments detailing what the program
should do as well as sample invocations that should type-check.

(* "sumlist xs" returns the sum of the
integer elements of "xs" *)

let rec sumList xs = match xs with
| [] -> []
| y :: ys -> y + sumList ys

assert(sumList [1;2] = 3);;

This expression has type
’a list

but an expression was expected of type
int

(* "wwhile (f, x)" returns x’ where there exist
values v0, ..., vn such that:

- x is equal to v0
- x’ is equal to vn
- for each i between 0 and n-2, we have

(f vi) equals (vi+1, true)
- (f vn≠1) equals (vn, false) *)

let f x =
let xx = x * x in
(xx, (xx < 100))

let rec wwhile (f,b) =
match f with
| (z, false) -> z
| (z, true) -> wwhile (f, z)

assert(wwhile (f, 2) = 256) ;;

This expression has type
int -> int * bool

but an expression was expected of type
’a * bool

(a) [2 pts] Why is the sumList program not well-typed?

(b) [2 pts] Fix the sumList program.

(c) [2 pts] Why is the wwhile program not well-typed?

(d) [2 pts] Fix the wwhile program.

12

ZU064-05-FPR main 18 March 2018 11:23

Dynamic Witnesses for Static Type Errors 47

Consider an execution trace that shows a high-level overview of a
program execution focusing on function calls. For example, the trace
on the right tells us that:

i. We start o� with fac 1.

ii. After performing some computation, we have the expression 1
* fac 0. The 1 * is grayed out, indicating that fac 0 is the
next expression to be evaluated.

iii. When we return from fac 0, we are left with 1 * true, in-
dicating a program error: we cannot multiply an int with a
bool.

let rec fac n =
if n <= 0 then

true
else

n * fac (n - 1)

assert(fac 1 = 1) ;;

(* "append xs ys" returns a list containing the
elements of "xs" followed by the elements of "ys" *)

let rec append xs ys =
match xs with
| [] -> ys
| h::t -> h :: t :: ys

assert(append [1] [2] = [1;2]) ;;

Error encountered because
int

is incompatible with
int list

(e) [2 pts] Why is the append program not well-typed?

(f) [2 pts] Fix the append program.

13

ZU064-05-FPR main 18 March 2018 11:23

48 E. L. Seidel, R. Jhala, and W. Weimer

(* "digitsOfInt n" returns "[]" if "n" is
not positive, and otherwise returns the
list of digits of "n" in the order in
which they appear in "n". *)

let rec append x ys =
match xs with
| [] -> [x]
| -> x :: xs

let rec digitsOfInt n =
if n <= 0 then

[]
else

append (digitsOfInt (n/10))
[n mod 10]

assert(digitsOfInt 99 = [9;9]) ;;

Error encountered because
’a list

is incompatible with
int

(g) [2 pts] Why is the digitsOfInt program not well-typed?

(h) [2 pts] Fix the digitsOfInt program.

14

xs

