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ABSTRACT
In this paper, we explore the concept of code readability
and investigate its relation to software quality. With data
collected from human annotators, we derive associations be-
tween a simple set of local code features and human notions
of readability. Using those features, we construct an au-
tomated readability measure and show that it can be 80%
effective, and better than a human on average, at predict-
ing readability judgments. Furthermore, we show that this
metric correlates strongly with two traditional measures of
software quality, code changes and defect reports. Finally,
we discuss the implications of this study on programming
language design and engineering practice. For example, our
data suggests that comments, in of themselves, are less im-
portant than simple blank lines to local judgments of read-
ability.

Categories and Subject Descriptors
D.2.9 [Management]: Software quality assurance (SQA);
D.2.8 [Software Engineering]: Metrics

General Terms
Measurement, Human Factors

Keywords
software readability, program understanding, machine learn-
ing, software maintenance, code metrics, FindBugs

1. INTRODUCTION
We define“readability”as a human judgment of how easy a

text is to understand. The readability of a program is related
to its maintainability, and is thus a critical factor in over-
all software quality. Typically, maintenance will consume
over 70% of the total lifecycle cost of a software product [5].
Aggarwal claims that source code readability and documen-
tation readability are both critical to the maintainability of
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a project [1]. Other researchers have noted that the act
of reading code is the most time-consuming component of
all maintenance activities [29, 36, 38]. Furthermore, main-
taining software often means evolving software, and modi-
fying existing code is a large part of modern software en-
gineering [35]. Readability is so significant, in fact, that
Elshoff and Marcotty proposed adding a development phase
in which the program is made more readable [11]. Knight
and Myers suggested that one phase of software inspection
should be a check of the source code for readability [26].
Haneef proposed the addition of a dedicated readability and
documentation group to the development team [19].

We hypothesize that everyone who has written code has
some intuitive notion of this concept, and that program fea-
tures such indentation (e.g., as in Python [43]), choice of
identifier names [37], and comments are likely to play a part.
Dijkstra, for example, claimed that the readability of a pro-
gram depends largely upon the simplicity of its sequencing
control, and employed that notion to help motivate his top-
down approach to system design [10].

We present a descriptive model of software readability
based on simple features that can be extracted automat-
ically from programs. This model of software readability
correlates strongly both with human annotators and also
with external notions of software quality, such as defect de-
tectors and software changes.

To understand why an empirical and objective model of
software readability is useful, consider the use of readabil-
ity metrics in natural languages. The Flesch-Kincaid Grade
Level [12], the Gunning-Fog Index [18], the SMOG Index [31],
and the Automated Readability Index [24] are just a few ex-
amples of readability metrics that were developed for ordi-
nary text. These metrics are all based on simple factors such
as average syllables per word and average sentence length.
Despite their relative simplicity, they have each been shown
to be quite useful in practice. Flesch-Kincaid, which has
been in use for over 50 years, has not only been integrated
into popular text editors including Microsoft Word, but has
also become a United States governmental standard. Agen-
cies, including the Department of Defense, require many
documents and forms, internal and external, to meet have
a Flesch readability grade of 10 or below (DOD MIL-M-
38784B). Defense contractors also are often required to use
it when they write technical manuals.

These metrics, while far from perfect, can help organiza-
tions gain some confidence that their documents meet goals
for readability very cheaply, and have become ubiquitous
for that reason. We believe that similar metrics, targeted
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specifically at source code and backed with empirical evi-
dence for effectiveness, can serve an analogous purpose in
the software domain.

It is important to note that readability is not the same as
complexity, for which some existing metrics have been em-
pirically shown useful [44]. Brooks claims that complexity is
an “essential” property of software; it arises from system re-
quirements, and cannot be abstracted away [13]. Readabil-
ity, on the other hand, is purely “accidental.” In the Brooks
model, software engineers can only hope to control acciden-
tal difficulties: coincidental readability can be addressed far
more easily than intrinsic complexity.

While software complexity metrics typically take into ac-
count the size of classes and methods, and the extent of
their interactions, the readability of code is based primarily
on local, line-by-line factors. It is not related, for example,
to the size of a piece of code. Furthermore, our notion of
readability arises directly from the judgments of actual hu-
man annotators who need not be familiar with the purpose
of the system. Complexity factors, on the other hand, may
have little relation to what makes code understandable to
humans. Previous work [34] has shown that attempting to
correlate artificial code complexity metrics directly to de-
fects is difficult, but not impossible. In this study, we have
chosen to target readability directly both because it is a con-
cept that is independently valuable, and also because devel-
opers have great control over it. We show in Section 4 that
there is indeed a significant correlation between readability
and quality.

The main contributions of this paper are:

• An automatic software readability metric based on lo-
cal features. Our metric correlates strongly with both
human annotators and also external notions of soft-
ware quality.

• A survey of 120 human annotators on 100 code snip-
pets that forms the basis for our metric. We are un-
aware of any published software readability study of
comparable size (12,000 human judgments).

• A discussion of the features involved in that metric and
their relation to software engineering and program-
ming language design.

There are a number of possible uses for an automated
readability metric. It may help developers to write more
readable software by quickly identifying code that scores
poorly. It can assist project managers in monitoring and
maintaining readability. It can serve as a requirement for
acceptance. It can even assist inspections by helping to tar-
get effort at parts of a program that may need improvement.

The structure of this paper is as follows. In Section 2 we
investigate the extent to which our study group agrees on
what readable code looks like, and in Section 3 we determine
a small set of features that is sufficient to capture the notion
of readability for a majority of annotators. In Section 4 we
discuss the correlation between our readability metric and
external notions of software quality. We discuss some of the
implications of this work on programming language design
in Section 5, place our work in context in Section 6, discuss
possibilities for extension in Section 7, and conclude in Sec-
tion 8.

2. HUMAN READABILITY ANNOTATION
A consensus exists that readability is an essential deter-

mining characteristic of code quality [1, 5, 10, 11, 19, 29, 34,
35, 36, 37, 38, 44], but not about which factors most con-
tribute to human notions of software readability. A previous
study by Tenny looked at readability by testing comprehen-
sion of several versions of a program [42]. However, such an
experiment is not sufficiently fine-grained to extract precise
features. In that study, the code samples were large, and
thus the perceived readability arose from a complex inter-
action of many features, potentially including the purpose
of the code. In contrast, we choose to measure the software
readability of small (7.7 lines on average) selections of code.
Using many short code selections increases our ability to
tease apart which features are most predictive of readabil-
ity. We now describe an experiment designed to extract a
large number of readability judgments over short code sam-
ples from a group of human annotators.

Formally, we can characterize software readability as a
mapping from a code sample to a finite score domain. In this
experiment, we present a sequence of short code selections,
called snippets, through a web interface. Each annotator is
asked to individually score each snippet based on a personal
estimation of how readable it is. There are two important
parameters to consider: snippet selection policy and score
range.

2.1 Snippet Selection Policy
We claim that the readability of code is very different from

that of natural languages. Code is highly structured and
consists of elements serving different purposes, including de-
sign, documentation, and logic. These issues make the task
of snippet selection an important concern. We have designed
an automated policy-based tool that extracts snippets from
Java programs.

First, snippets should be relatively short to aid feature
discrimination. However, if snippets are too short, then they
may obscure important readability considerations. Second,
snippets should be logically coherent to give the annotators
the best chance at appreciating their readability. We claim
that they should not span multiple method bodies and that
they should include adjacent comments that document the
code in the snippet. Finally, we want to avoid generating
snippets that are “trivial.” For example, the readability of a
snippet consisting entirely of boilerplate import statements
or entirely of comments is not particularly meaningful.

Consequently, an important tradeoff exists such that snip-
pets must be as short as possible to adequately support anal-
ysis, yet must be long enough to allow humans to make sig-
nificant judgments on them. Note that it is not our intention
to “simulate” the reading process, where context may be im-
portant to understanding. Quite the contrary: we intend
to eliminate context and complexity to a large extent and
instead focus on the “low-level” details of readability. We
do not imply that context is unimportant; we mean only
to show that there exists a set of local features that, by
themselves, have a strong impact on readability and, by ex-
tension, software quality.

With these considerations in mind, we restrict snippets
for Java programs as follows. A snippet consists of precisely
three consecutive simple statements [16], the most basic unit
of a Java program. Simple statements include field declara-
tions, assignments, function calls, breaks, continues, throws
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and returns. We find by experience that snippets with fewer
such instructions are sometimes too short for a meaningful
evaluation of readability, but that three statements are gen-
erally both adequate to cover a large set of local features
and sufficient for a fine-grained feature-based analysis.

A snippet does include preceding or in-between lines that
are not simple statements, such as comments, function head-
ers, blank lines, or headers of compound statements like if-

else, try-catch, while, switch, and for. Furthermore, we
do not allow snippets to cross scope boundaries. That is, a
snippet neither spans multiple methods nor starts inside a
compound statement and then extends outside it. We find
that with this set of policies, over 90% of statements in all of
the programs we considered (see Figure 8) are candidates for
incorporation in some snippet. The few non-candidate lines
are usually found in functions that have fewer than three
statements. This snippet definition is specific to Java but
extends directly to similar languages like C and C++.

2.2 Readability Scoring
Prior to their participation, our volunteer human annota-

tors were told that they would be asked to rate Java code
on its readability, and that their participation would assist
in a study of that aspect of software quality. Responses
were collected using a web-based annotation tool, Snippet
Sniper, that users were permitted to access at their leisure.
Users were presented with a sequence of snippets and but-
tons labeled 1–5 [28]. Each user was shown the same set of
one hundred snippets in the same order. Users were graph-
ically reminded that they should select a number near five
for “more readable” snippets and a number near one for “less
readable” snippets, with a score of three indicating neutral-
ity. Additionally, there was an option to skip the current
snippet; however, it was used very infrequently (15 times
in 12,000). Snippets were not modified from the source,
but they were syntax highlighted to better simulate the way
code is typically viewed. Finally, clicking on a “help” link
reminded users that they should score the snippets “based
on [their] estimation of readability” and that “readability is
[their] judgment about how easy a block of code is to un-
derstand.” Readability was intentionally left formally unde-
fined in order to capture the unguided and intuitive notions
of participants.

Our 120 annotators each scored 100 snippets for a total
of 12,000 distinct judgments. Figure 1 provides a graphical
representation of this publicly-available data.1 The distri-
bution of scores can be seen in Figure 2. The annotators
were all computer science students. They had varying expe-
rience reading and writing code as evidenced by their current
course enrollment: 17 were taking 100-level courses, 63 were
taking 200-level courses, 30 were taking 400-level courses,
and 10 were graduate students. In Section 3.2 we will dis-
cuss the effect of experience on readability judgments.

The snippets were generated from five open source projects
(see Figure 8). They were chosen to include varying levels
of maturity and multiple application domains to keep the
model generic and widely-applicable. We discuss the possi-
bility of domain-specific models in Section 7.

Next we consider inter-annotator agreement, and evalu-
ate whether we can extract a single coherent model from
this data set. The fact that this judgment data is ordinal

1The dataset is available at http://www.cs.virginia.edu/
~weimer/readability/data

Figure 1: The complete data set obtained for this
study. Each box corresponds to a judgment made
by a human annotator. Darker colors correspond to
lower readability scores (e.g., 1 and 2) the lighter
ones correspond to higher scores. Our metric for
readability is derived from these 12,000 judgments.
Vertical bands indicate snippets that were judged
similarly by many annotators.

(i.e., ranked), rather than simply nominal, is an important
statistical consideration. Since the annotators did not re-
ceive precise guidance on how to score snippets, absolute
score differences are not as important as relative ones. If
two annotators both gave snippet X a higher score than
snippet Y , then we consider them to be in agreement with
respect to those two snippets, even if the actual numerical
score values differ. The most popular correlation statistic for
this sort of data is the Pearson product-moment correlation
coefficient [40]. A Pearson correlation of 1 indicates perfect
correlation, and 0 indicates no correlation (i.e., uniformly
random scoring with only random instances of agreement).
A correlation of 0.5 would arise, for example, if two annota-
tors scored half of the snippets exactly the same way, and
then scored the other half randomly. We employ the Pearson
statistic throughout this study as a measure of agreement.

We can combine our large set of judgments into a single
model simply by averaging them. Pearson, like other similar
correlation statistics, compares the judgments of two anno-
tators at a time. We extend it by finding the average cor-
relation between our unified model and each annotator, and
obtain 0.56. Translating this sort of statistic into qualitative
terms is difficult, but correlation at this level is typically con-
sidered to be moderate to strong. We use this unified model
in our subsequent experiments and analyses. Figure 3 shows
the range of agreements. We have explored using the median
and mode statistics as well, but found that the correlation
was essentially the same. We therefore choose the mean
because it produces values on a continuum, making them
more directly comparable to the classifier probabilities we
will discuss later.

This analysis seems to confirm the widely-held belief that
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Figure 2: Distribution of readability scores made by
120 human annotators on code snippets taken from
several open source projects (see Figure 8).

people agree significantly on what readable code looks like,
but not to an overwhelming extent, due perhaps to individ-
ual preferences. One implication is that there are, indeed,
underlying factors that influence readability of code. By
modeling the average score, we can capture most of these
common factors, while simultaneously omitting those that
arise largely from personal preference.

3. READABILITY MODEL
We have shown that there is significant agreement between

our group of annotators on the relative readability of snip-
pets. However, the processes that underlie this correlation
are unclear. In this section, we explore the extent to which
we can mechanically predict human readability judgments.
We endeavor to determine which code features are predic-
tive of readability, and construct a model (i.e., an automated
software readability metric) to analyze other code.

3.1 Model Generation
First, we form a set of features that can be detected stati-

cally from a snippet or other block of code. We have chosen
features that are relatively simple, and that intuitively seem
likely to have some effect on readability. They are factors
related to structure, density, logical complexity, documen-
tation, and so on. Importantly, to be consistent with our
notion of readability as discussed in Section 2.1, each feature
is independent of the size of a code block. Figure 4 enumer-
ates the set of code features that our metric considers when
judging code readability. Each feature can be applied to an
arbitrary sized block of Java source code, and each repre-
sents either an average value per line, or a maximum value
for all lines. For example, we have a feature that represents
the average number of identifiers in each line, and another
that represents the maximum number in any one line. The
last two features listed in Figure 4 detect the character and
identifier that occur most frequently in a snippet, and return
the number of occurrences found. Together, these features
create a mapping from snippets to vectors of real numbers
suitable for analysis by a machine-learning algorithm.

Earlier, we suggested that human readability judgments
may often arise from a complex interaction of features, and
furthermore that the important features and values may be

Figure 3: Distribution of the average readability
scores across all the snippets. The resulting bimodal
distribution presents us with a natural cutoff point
from which we can train a binary classifier. The
curve is a probability-density representation of the
distribution with a window size of 0.8.

hard to locate. As a result, simple methods for establishing
correlation may not be sufficient. Fortunately, there are a
number of machine learning algorithms designed precisely
for this situation. Such algorithms typically take the form
of a classifier which operates on instances [33]. For our
purposes, an instance is a feature vector extracted from a
single snippet. In the training phase, we give a classifier a
set of instances along with a labeled “correct answer” based
on the readability data from our annotators. The labeled
correct answer is a binary judgment partitioning the snip-
pets into “more readable” and “less readable” based on the
human annotator data. We designate snippets that received
an average score below 3.14 to be “less readable” based on
the natural cutoff from the bimodal distribution in Figure 3.
We group the remaining snippets and consider them to be
“more readable.” Furthermore, the use of binary classifica-
tions also allows us to take advantage of a wider variety of
learning algorithms.

When the training is complete, we apply the classifier to
an instance it has not seen before, obtaining an estimate of
the probability that it belongs in the“more readable”or“less
readable” class. This allows us to use the probability that
the snippet is “more readable” as a score for readability. We
used the Weka [21] machine learning toolbox.

We build a classifier based on a set of features that have
predictive power with respect to readability. To help miti-
gate the danger of over-fitting (i.e., of constructing a model
that fits only because it is very complex in comparison the
amount of data), we use 10-fold cross validation [27]. This
consists of randomly partitioning the data set into 10 sub-
sets, training on 9 of them and testing on the last one. This
process is repeated 10 times, so that each of the 10 subsets is
used as the test data exactly once. Finally, to mitigate any
bias arising from the random partitioning, we repeat the en-
tire 10-fold validation 10 times and average the results across
all of the runs.
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Average Maximum Feature Name

X X line length (characters)
X X identifiers
X X identifier length
X X indentation (preceding whitespace)
X X keywords
X X numbers
X comments
X periods
X commas
X spaces
X parenthesis
X arithmetic operators
X comparison operators
X assignments (=)
X branches (if)
X loops (for, while)
X blank lines

X occurrences of any single character
X occurrences of any single identifier

Figure 4: The set of features considered by our met-
ric.

3.2 Model Performance
Two relevant success metrics in an experiment of this type

are recall and precision. Here, recall is the percentage of
those snippets judged as “more readable” by the annotators
that are classified as “more readable” by the model. Preci-
sion is the fraction of the snippets classified as “more read-
able” by the model that were also judged as “more readable”
by the annotators. When considered independently, each of
these metrics can be made perfect trivially (e.g., a degener-
ate model that always returns “more readable” has perfect
recall). We thus weight them together using the f-measure
statistic, the harmonic mean of precision and recall [8]. This,
in a sense, reflects the accuracy of the classifier with respect
to the “more readable” snippets. We also consider the over-
all accuracy of the classifier by finding the percentage of
correctly classified snippets.

We performed this experiment on ten different classifiers.
To establish a baseline, we trained each classifier on the set of
snippets with randomly generated score labels. None of the
classifiers were able to achieve an f-measure of more than
0.61 (note, however, that by always guessing ‘more read-
able’ it would actually be trivial to achieve an f-measure
of 0.67). When trained on the average human data (i.e.,
when not trained randomly), several classifiers improved to
over 0.8. Those models included the multilayer perceptron
(a neural network), the Bayesian classifier (based on condi-
tional probabilities of the features), and the Voting Feature
Interval approach (based on weighted “voting” among clas-
sifications made by each feature separately). On average,
these three best classifiers each correctly classified between
75% and 80% of the snippets. We view a model that is well-
captured by multiple learning techniques as an advantage:
if only one classifier could agree with our training data, it
would have suggested a lack of generality in our notion of
readability.

While an 80% correct classification rate seems reasonable
in absolute terms, it is perhaps simpler to appreciate in rel-

Figure 5: Annotator agreement with a model ob-
tained by averaging the scores of 100 annotators
with the addition of our metric.

Figure 6: Annotator agreement by experience
group.

ative ones. When we compare the output of the Baysean
classifier to the average human score model it was trained
against, we obtain a Pearson correlation of 0.63. As shown
in Figure 5, that level of agreement is better than what the
average human in our study produced. While we could at-
tempt to employ more exotic classifiers or investigate more
features to improve this result, it is not clear that the result-
ing model would be any “better” since the model is already
well within the margin of error established by our human
annotators. In other words, in a very real sense, this metric
is “just as good” as a human. For performance we can thus
select any classifier in that equivalence class, and we choose
to adopt the Bayesian classifier because of its run-time effi-
ciency.

We also repeated the experiment separately with each an-
notator experience group (e.g., 100-level CS students, 200-
level CS students). Figure 6 shows the mean Pearson cor-
relations. The dark blue bars on the left show the average
agreement between humans and the average score vector for
their group (i.e., inter-group agreement). For example, 400-
level CS students agree with each other more often (Pearson
correlation over 0.6) than do 100-level CS students (corre-
lation under 0.5). The light red bar on the right indicates
the correlation between our metric (trained on the annotator
judgments for that group) and the average of all annotators
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Figure 7: Relative power of features as determined
by a singleton (one-feature-at-a-time) analysis. The
direction of correlation for each is also indicated.

in the group. Two interesting observations arise. First, for
all groups except graduate students, our automatic metric
agrees with the human average more closely than the hu-
mans agree. We suspect that the difference with respect to
graduates may a reflection of the more diverse background
of the graduate student population, their more sophisticated
opinions, or some other external factor. Second, we see a
gradual trend toward increased agreement with experience.

We investigated which features have the most predictive
power by re-running our all-annotators analysis using only
one feature at a time. The relative magnitude of the per-
formance of the classifier is indicative of the comparative
importance of each feature. Figure 7 shows the result of
that analysis with the magnitudes normalized between zero
and one.

We find, for example, that factors like ‘average line length’
and ‘average number of identifiers per line’ are very impor-
tant to readability. Conversely, ‘average identifier length’ is
not, in of itself, a very predictive factor; neither are if con-
structs, loops, or comparison operators. Section 5 includes a
discussion of some of the possible implications of this result.

We prefer this singleton feature analysis to a leave-one-
out analysis (which judges feature power based on decreases
in classifier performance) that may be misleading due to
significant feature overlap. This occurs when two or more
features, though different, capture the same underlying phe-

Project Name KLOC Maturity Description

JasperReports 2.04 269 6 Dynamic content
Hibernate* 2.1.8 189 6 Database
jFreeChart* 1.0.9 181 5 Data rep.
FreeCol* 0.7.3 167 3 Game
jEdit* 4.2 140 5 Text editor
Gantt Project 3.0 130 5 Scheduling
soapUI 2.0.1 98 6 Web services
Xholon 0.7 61 4 Simulation
Risk 1.0.9.2 34 4 Game
JSch 0.1.37 18 3 Security
jUnit* 4.4 7 5 Software dev.
jMencode 0.64 7 3 Video encoding

Figure 8: Benchmark programs used in our exper-
iments. The “Maturity” column indicates a self-
reported SourceForge project status. *Used as a
snippet source.

nomena. As a simple example, if there is exactly one space
between every two words then a feature that counts words
and a feature that counts spaces will capture essentially the
same information and leaving one of them out is unlikely to
decrease accuracy. A principle component analysis (PCA)
indicates that 98% of the total variability can be explained
by 6 principle components, thus implying that feature over-
lap is significant.

4. CORRELATING READABILITY
WITH SOFTWARE QUALITY

In the previous section we constructed an automated model
of readability that mimics human judgments. We imple-
mented our model in a tool that assesses the readability
of programs using a fixed classifier. In this section we use
that tool to investigate whether our model of readability
compares favorably with external conventional metrics of
software quality. Specifically, we first look for a correlation
between readability and FindBugs, a popular static bug-
finding tool [22]. Second, we look for a similar correlation
with changes to code between versions of several large open
source projects. We chose FindBugs defects and version
changes related to code churn in part because they can be
measured objectively. Finally, we look for trends in code
readability across those projects.

The set of open source Java programs we have employed
as benchmarks can be found in Figure 8. They were selected
because of their relative popularity, diversity in terms of de-
velopment maturity and application domain, and availabil-
ity in multiple versions from SourceForge, an open source
software repository. Maturity is self reported, and catego-
rized by SourceForge into 1-planning, 2-pre-alpha, 3-alpha,
4-beta, 5-production/stable, 6-mature, 7-inactive. Note that
some projects present multiple releases at different maturity
levels; in such cases we selected the release for the maturity
level indicated.

Running our readability tool (including feature detection
and the readability judgment) was quite rapid. For example,
the 98K lines of code in soapUI took less than 16 seconds to
process on a machine with a 2GHz processor and disk with
a maximum 150 MBytes/sec transfer rate.
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Figure 9: f-measure for using readability to predict
functions with FindBugs defect reports and func-
tions which change between releases.

4.1 Readability Correlations
Our first experiment attempts to correlate defects de-

tected by FindBugs with our readability metric at the func-
tion level. We first ran FindBugs on the benchmark, not-
ing defect reports. Second, we extracted all of the functions
and partitioned them into two sets: those containing at least
one reported defect, and those containing none. We normal-
ized function set sizes to avoid bias between programs for
which more or fewer defects were reported. We then ran
the already-trained classifier on the set of functions, record-
ing an f-measure for “contains a bug” with respect to the
classifier judgment of “less readable.”

Our second experiment relates future code churn to read-
ability. Version-to-version changes capture another impor-
tant aspect of code quality. This experiment used the same
setup as the first, but used readability to predict which func-
tions will be modified between two successive releases of a
program. For this experiment, “successive release” means
the two most recent stable versions. In other words, instead
of “contains a bug” we attempt to predict “is going to change
soon.” We consider a function to have changed in any case
where the text is not exactly the same, including changes
to whitespace. Whitespace is normally ignored in program
studies, but since we are specifically focusing on readability
we deem it relevant.

Figure 9 summarizes the results of these two experiments.
Guessing randomly yields an f-measure of 0.5 and serves as
a baseline, while 1.0 represents a perfect upper bound. The
average f-measure over 11 of our benchmarks for the Find-
Bugs correlation is 0.61. The average f-measure for version
changes over all 12 of our benchmarks is 0.63. It is important
to note that our goal is not perfect correlation with Find-
Bugs or any other source of defect reports: projects can run
FindBugs directly rather than using our metric to predict
its output. Instead, we argue that our readability metric
has general utility and is correlated with multiple notions of
software quality.

A second important consideration is the magnitude of the
difference. We claim that classifier probabilities (i.e. con-
tinuous output v.s. discrete classifications) is useful in eval-
uating readability. Figure 10 presents this data in the form
of a ratio, the mean probability assigned by the classifier to
functions positive for FindBugs defects or version changes
to functions without these features. A ratio over 1 (i.e., >

Figure 10: Mean ratio of the classifier probabilities
(predicting ‘less readable) assigned to functions that
contained a FindBugs defect or that will change in
the next version to those that were not. For ex-
ample, Risk functions with FindBug errors were as-
signed a probability of ‘less readable’ that was nearly
150% greater on average than the probabilities as-
signed to functions without such defects.

100%) for many of the projects indicates that the functions
with these features tend to have lower readability scores than
functions without them. For example, in the jMencode and
soapUI projects, functions judged less readable by our met-
ric were dramatically more likely to contain FindBugs de-
fect reports, and in the JasperReports project less-readable
methods were very likely to change in the next version.

For both of these external quality indicators we found that
our tool exhibits a substantial degree of correlation. Predict-
ing based on our readability metric yields an f-measure over
0.7 in some cases. Again, our goal is not a perfect correla-
tion with version changes and code churn. These moderate
correlations do, however, imply a connection between code
readability, as described by our model, and defects and up-
coming code changes.

4.2 Software Lifecycle
To further investigate the relation of our readability met-

ric to external factors, we investigate changes over long pe-
riods of time. Figure 11 shows how readability tends to
change over the lifetime of a project. To construct this fig-
ure we selected several projects with rich version histories
and calculated the average readability level over all of the
functions in each.

Note that newly-released versions for open source projects
are not always more stable than their predecessors. Projects
often undergo major overhauls or add additional crosscut-
ting features. Consider jUnit, which has recently adopted a
“completely different API . . . [that] depends on new features
of Java 5.0 (annotations, static import. . . )” [15]. We thus
conducted an additional experiment to measure readability
against maturity and stability.

Figure 12 plots project readability against project matu-
rity, as self-reported by developers. The data shows a noisy
upward trend implying that projects that reach maturity
tend to be more readable. The results of these two experi-
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Figure 11: Average readability metric of all func-
tions in a project as a function of project lifetime.
Note that over time, the readability of some projects
tends to decrease, while it gradually increases in oth-
ers.

ments would seem not to support the Fred Brooks argument
that, “all repairs tend to destroy the structure, to increase
the entropy and disorder of the system . . . as time passes,
the system becomes less and less well ordered” [14] for the
readability component of “order”. While Brooks was not
speaking specifically of readability, a lack readability can be
a strong manifestation of disorder.

5. DISCUSSION
This study includes a significant amount of empirical data

about the relation between local code features and readabil-
ity. We believe that this information may have implications
for the way code should be written and evaluated, and for
the design of programming languages. However, we caution
that this data may only be truly relevant to our annotators;
it should not be interpreted to represent a comprehensive or
universal model for readability.

To start, we found that the length of identifier names con-
stitutes almost no influence on readability (0% relative pre-
dictive power). Recently there has been a significant move-
ment toward “self documenting code” which is often char-
acterized by long and descriptive identifier names and few
abbreviations. The movement has had particular influence
on the Java community. Furthermore, naming conventions,
like the “Hungarian” notation which seeks to encode typing
information into identifier names, may not be as advisable
as previously thought [39]. While descriptive identifiers cer-
tainly can improve readability, perhaps some additional at-
tention should be paid to the fact that they may also reduce
it; our study indicates the net gain may be near zero.

For example, forcing readers to process long names, where
shorter ones would suffice, may negatively impact readabil-
ity. Furthermore, identifier names are not always an ap-
propriate place to encode documentation. There are many
cases where it would be more appropriate to use comments,
possibly associated with variable or field declarations, to ex-
plain program behavior. Long identifiers may be confusing,
or even misleading. We believe that in many cases sophisti-

Figure 12: Average readability metric of all func-
tions in a project as a function of self-reported
project maturity with best fit linear trend line. Note
that projects of greater maturity tend to exhibit
greater readability.

cated integrated development environments (IDEs) and spe-
cialized static analysis tools designed to aid in software in-
spections (e.g., [3]), may constitute a better approach to
the goal of enhancing program understanding.

Unlike identifiers, comments are a very direct way of com-
municating intent. One might expect their presence to in-
crease readability dramatically. However, we found that
comments were are only moderately well-correlated with
readability (33% relative power). One conclusion may be
that while comments can enhance readability, they are typ-
ically used in code segments that started out less readable:
the comment and the unreadable code effectively balance
out. The net effect would appear to be that comments are
not always, in and of themselves, indicative of high or low
readability.

The number of identifiers and characters per line has a
strong influence on our readability metric (100% and 96%
relative power respectively). It would appear that just as
long sentences are more difficult to understand, so are long
lines of code. Our findings support the conventional wisdom
that programmers should keep their lines short, even if it
means breaking up a statement across multiple lines.

When designing programming languages, readability is an
important concern. Languages might be designed to force
or encourage improved readability by considering the im-
plications of various design and language features on this
metric. For example, Python enforces a specific indentation
scheme in order to aid comprehension [43, 32]. In our exper-
iments, the importance of character count per line suggests
that languages should favor the use of constructs, such as
switch statements and pre- and post-increment, that encour-
age short lines. Our conclusion, that readability does not
appear to be negatively impacted by repeated characters or
words, runs counter to the common perception that oper-
ator overloading is necessarily confusing. Finally, our data
suggests that languages should add additional keywords if it
means that programs can be written with fewer new identi-
fiers.

As we consider new language features, it might be useful to
conduct studies of the impact of such features on readability.
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The techniques presented in this paper offer a means for
conducting such experiments.

6. RELATED WORK
Previously, we identified several of the many automated

readability metrics that are in use today for natural lan-
guage [12, 18, 24, 31]. While we have not found analogous
metrics targeted at source code (as presented in this paper),
some metrics do exist outside the realm of traditional lan-
guage. For example, utility has been claimed for a readabil-
ity metric for computer generated math [30], for the layout
of treemaps [4], and for hypertext [20].

Perhaps the bulk of work in the area of source code read-
ability today is based on coding standards (e.g., [2, 6, 41]).
These conventions are primarily intended to facilitate col-
laboration by maintaining uniformity between code written
by different developers. Style checkers such as PMD [9] and
The Java Coding Standard Checker are employed as a means
to automatically enforce these standards.

We also note that machine learning has, in the past, been
used for defect prediction, typically by training on data from
source code repositories (e.g., [7, 17, 23, 25]). We believe
that machine learning has substantial advantages over tra-
ditional statistics and that much room yet exists for the
exploitation of such techniques in the domains of Software
Engineering and Programming Languages.

7. FUTURE WORK
The techniques presented in this paper should provide an

excellent platform for conducting future readability experi-
ments, especially with respect to unifying even a very large
number of judgments into an accurate model of readability.

While we have shown that there is significant agreement
between our annotators on the factors that contribute to
code readability, we would expect each annotator to have
personal preferences that lead to a somewhat different weight-
ing of the relevant factors. It would be interesting to inves-
tigate whether a personalized or organization-level model,
adapted over time, would be effective in characterizing code
readability. Furthermore, readability factors may also vary
significantly based on application domain. Additional re-
search is needed to determine the extent of this variability,
and whether specialized models would be useful.

Another possibility for improvement would be an exten-
sion of our notion of local code readability to include broader
features. While most of our features are calculated as aver-
age or maximum value per line, it may be useful to consider
the size of compound statements, such as the number of
simple statements within an if block. For this study, we in-
tentionally avoided such features to help ensure that we were
capturing readability rather than complexity. However, in
practice, achieving this separation of concerns is likely to be
less compelling.

Readability measurement tools present their own chal-
lenges in terms of programmer access. We suggest that
such tools could be integrated into an IDE, such as Eclipse,
in the same way that natural language readability metrics
are incorporated into word processors. Software that seems
readable to the author may be quite difficult for others to
understand [19]. Such a system could alert programmers as
such instances arise, in a way similar to the identification of
syntax errors.

Finally, in line with conventional readability metrics, it
would be worthwhile to express our metric using a simple
formula over a small number of features (the PCA from Sec-
tion 3.2 suggests this may be possible). Using only the truly
essential and predictive features would allow the metric to be
adapted easily into many development processes. Further-
more, with a smaller number of coefficients the readability
metric could be parameterized or modified in order to bet-
ter describe readability in certain environments, or to meet
more specific concerns.

8. CONCLUSION
It is important to note that the metric described in this

paper is not intended as the final or universal model of read-
ability. Rather, we have shown how to produce a metric
for software readability from the judgments of human an-
notators, relevant specifically to those annotators. In fact,
we have shown that it is possible to create a metric that
agrees with these annotators as much as they agree with
each other by only considering a relatively simple set of low-
level code features. In addition, we have seen that readabil-
ity, as described by this metric, exhibits a significant level
of correlation with more conventional metrics of software
quality, such as defects, code churn, and self-reported sta-
bility. Furthermore, we have discussed how considering the
factors that influence readability has potential for improving
the programming language design and engineering practice
with respect to this important dimension of software quality.
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