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ABSTRACT
Exception handling is a powerful and widely-used program-
ming language abstraction for constructing robust software
systems. Unfortunately, it introduces an inter-procedural
flow of control that can be difficult to reason about. Fail-
ure to do so correctly can lead to security vulnerabilities,
breaches of API encapsulation, and any number of safety
policy violations.

We present a fully automated tool that statically infers
and characterizes exception-causing conditions in Java pro-
grams. Our tool is based on an inter-procedural, context-
sensitive analysis. The output of this tool is well-suited for
use as human-readable documentation of exceptional condi-
tions.

We evaluate the output of our tool by comparing it to
over 900 instances of existing exception documentation in
almost two million lines of code. We find that the output of
our tool is at least as good as existing documentation 85%
of the time and is better 25% of the time.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification techniques; D.2.7 [Distribution,
Maintenance, and Enhancement]: Documentation

General Terms
Documentation, Human Factors

Keywords
Software Documentation, Documentation Inference, Excep-
tion Handling

1. INTRODUCTION
Modern exception handling allows an error detected in

one part of a program to be handled elsewhere depending
on the context. Most language-level exception schemes are
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based on the replacement model [16, 40]. A method may
not have enough information to handle erroneous or oth-
erwise “exceptional” conditions. In such cases the method
“raises” or “throws” an exception to a parent method farther
up the call stack where sufficient context exists to properly
handle the event. This non-sequential control flow is simul-
taneously convenient and problematic [25, 29]. Uncaught
exceptions and poor support for exception handling are re-
ported as major obstacles for large-scale and mission-critical
systems (e.g., [1, 3, 4, 34]). Some have argued that the best
defense against this class of problem is the complete and cor-
rect documentation of exceptions [23]. The use of so-called
“checked” exceptions, which force developers to declare the
presence of uncaught exceptions, is a partial solution. How-
ever, in practice, many developers have found this to be bur-
densome requirement. Often exceptions are caught trivially
(i.e., no action is taken to resolve the underlying error [39])
or the mechanism is purposely circumvented [30, 32].

Reasoning about programs that use exceptions is diffi-
cult for humans and also for automatic tools and analyses
(e.g., [7, 8, 15, 17, 35, 36]). We propose to relieve part of
that burden. We present an algorithm for inferring condi-
tions that may cause a given method to raise an exception.
Our automatic approach is based on symbolic execution and
inter-procedural dataflow analysis. It alerts developers to
the presence of “leaked” exceptions they may not be aware
of, as well as to the causes of those exceptions. It also makes
plain the concrete types of exceptions that have been masked
by subsumption and subtyping; designing an exception han-
dler often requires precise exception type information [23,
30]. Finally, but importantly, the tool can be used to au-
tomatically generate documentation for the benefit of the
developers, maintainers, and users of a system.

Software maintenance, traditionally defined as any mod-
ification made on a system after its delivery, is a domi-
nant activity in software engineering. Some reports place
maintenance at 90% of the total cost of a typical software
project [28, 33]. One of the main difficulties in software
maintenance is a lack of up-to-date documentation [10]. As
a result, some studies indicate that 40% to 60% of main-
tenance activity is spent simply studying existing software
(e.g., [27] p. 475, [28] p. 35). Improving software docu-
mentation is thus of paramount importance, and in many
cases our proposed algorithm does just that. In addition,
our algorithm is fully automatic and quite efficient, making
it reasonable to run it nightly and thus prevent drift between
the maintained program and the documentation.

Many tools exist that allow for the automatic extraction
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of API-level documentation from source-code annotations.
Javadoc, a popular tool for Java, has been studied in the
past (e.g., [21]) and is in common use among both commer-
cial and open source Java projects. Javadoc allows pro-
grammers to document the conditions under which methods
throw exceptions, but in many existing projects this docu-
mentation is incomplete or inconsistent [14, 19, 37]. Users
report that they prefer documentation that, among other
properties, “provides explanations at an appropriate level of
detail”, is “complete” and is “correct” [26]. The documen-
tation produced by our prototype tool integrates directly
with Javadoc and we evaluate it in terms of its complete-
ness, correctness and use of potentially-inappropriate infor-
mation.

The main contributions of this paper are:

• A study of the documentation of exceptions in several
existing open source projects.

• An automatic algorithm for determining conditions suf-
ficient to cause an exception to be thrown. Those con-
ditions are used to generate human-readable documen-
tation for explicitly-thrown and implicitly-propagated
exceptions.

• Experimental evidence that our tool generates docu-
mentation that is at least as accurate as what was
generated by humans in 85% of cases.

The structure of this paper is as follows. In Section 2 we
present a motivating example related to exception documen-
tation inference. We present our algorithm in Section 3. We
describe a prototype tool based on that algorithm in Sec-
tion 4. In Section 5 we empirically study existing programs
and motivate the need for automatic exception documenta-
tion. Section 6 presents experimental results about the effi-
cacy of our algorithm on off-the-shelf programs. We present
future work in Section 7, and Section 8 concludes.

2. MOTIVATING EXAMPLE
In this section we illustrate some of the challenges in

documenting exceptions with a simple example drawn from
FreeCol, an open-source game. The class in question is
called Unit and is intended to be sub-classed many times.

1 /**
2 * Moves this unit to america.
3 *
4 * @exception IllegalStateException
5 * If the move is illegal.
6 */
7 public void moveToAmerica () {
8 if (!( getLocation () instanceof Europe )) {
9 throw new IllegalStateException("A unit"
10 + " can only be moved to america from"
11 + " europe.");
12 }
13 setState(TO_AMERICA );
14 // Clear the alreadyOnHighSea flag:
15 alreadyOnHighSea = false;
16 }

Our goal is to determine what exceptions moveToAmer-

ica() can raise, and what conditions are sufficient to cause
them to be raised. On the surface, this seems fairly simple:
if the result of a call to getLocation() returns an object

that is not of type Europe an IllegalStateException will
be thrown on line 9.

There is more to consider, however. Any method invoca-
tion, including getLocation() (line 8) and setState() (line
13), has the potential to throw an exception as well. We
thus need to inspect those methods to see which exceptions
they may throw. Additionally, because this class is likely
to be extended and method invocation is handled by dy-
namic dispatch, the call to either method may resolve to an
implementation for any subclass of Unit. Any of those meth-
ods may contain method invocations of their own. Finding
all relevant exception sources can thus require significant
tracing, and the more complex the code gets, the harder it
becomes to track what must be true to reach those throw

statements. Java addresses part of this problem by requiring
“throws clause” annotations for checked exceptions and lim-
iting what checked exceptions can be declared for subtypes.
However, for unchecked exceptions in Java (or all exceptions
in C#, etc.) the problem remains.

Software evolution and maintenance present additional
major concerns. If a throw statement is added to any method
reachable from moveToAmerica, the documentation of it, and
potentially many other methods, including any method that
calls moveToAmerica, would have to be amended. Notice also
that the human provided Javadoc documentation for this
method is“If the move is illegal”. This hides what con-
stitutes an illegal move, which might be desirable if we ex-
pect that the implementation might change later. However,
an automated tool could provide specific and useful docu-
mentation that would be easy to keep synchronized with an
evolving code base. The algorithm we present in this pa-
per generates “IllegalStateException thrown when get-

Location() is not a Europe.”

3. ALGORITHM DESCRIPTION
We now present an algorithm that generates documenta-

tion characterizing the runtime circumstances sufficient to
cause a method to throw an exception. First, our algorithm
locates exception-throwing instructions and tracks the flow
of exceptions through the program. Second, the algorithm
symbolically executes control flow paths that lead to these
exceptions. This symbolic execution generates predicates
describing feasible paths yielding a boolean formula over
program variables. If the formula is satisfied at the time
the method is invoked, then the exception can be raised.

The first phase of our algorithm is a refinement of Jex [6,
30]. For each method we generate a set of possible excep-
tion types that could be thrown by (and thus escape) that
method. Our algorithm contains two improvements over
previous work: a pre-processing of the call graph for in-
creased speed, and a more precise treatment of throw state-
ments to ensure soundness. This phase takes as input a
program, its call graph, and the results of a receiver-class
analysis on dynamic dispatches, and produces as output a
mapping from methods to information about thrown excep-
tions.

The second phase of our algorithm starts with the ex-
ception information generated in the first phase and uses
it to produce predicates that describe paths that throw ex-
ceptions. Those predicates become the documentation de-
scribing the conditions under which the exception is thrown.
The second phase uses a form of symbolic execution to trace
through method bodies and gather constraints about excep-
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Input: Receiver-class information R.
Input: Program call graph C (built using R).
Input: Maximum desired propagation depth.
Output: Mapping M : methods → exception information.

1: for all all methods m ∈ C do
2: M(m)← ∅
3: end for
4: Worklist ← methods in C
5: Topological sort Worklist
6: while Worklist is not empty do
7: for all m ∈ c do
8: Explicit ← {(e, l, 0) | m has throw e at l}
9: Propa ← {(e, l, d+1) | m has a method call at l ∧

m′ ∈ R(l) ∧ (e, l′, d) ∈M(m′)}
10: for all (e, l, d) ∈ Explicit ∪ Propa do
11: if l not enclosed by catch e′ with e ≤ e′ then
12: if d ≤ depth then
13: M(m)←M(m) ∪ {(e, l, d)}
14: end if
15: end if
16: end for
17: if M changed then
18: Add m and methods calling m to Worklist
19: end if
20: end for
21: end while

Figure 1: Algorithm for determining method excep-
tion information. If M(m) is (e, l, d) then m can prop-
agate (leak) exception e from location l, with e hav-
ing already propagated through d other methods.

tions. While doing so, in some cases we are able to prune
infeasible (i.e., over-constrained) paths. For each method
and each exception type that method may raise, the output
of phase two is a human-readable documentation instance
representing conditions the may cause that method to raise
an exception of that type.

3.1 Phase 1: Exception Information
The goal of this phase is to produce a mapping from meth-

ods to information about thrown exceptions. Figure 1 de-
scribes this algorithm formally. For each method, we call
each separate exception that can escape that method and
be propagated to its callers an exception instance. Each ex-
ception instance is an opportunity for documentation. An
exception instance can be thrown directly from the method
in question or thrown (but not caught) in a called method.
For each exception instance, we trace the statement that
raises it to each the methods can propagate it. We produce
a set of exception instances for each method in the input
program.

We require the program call graph C and a mapping R
from method invocations to sets of concrete methods that
could be invoked there at runtime. Our approach takes the
form of a fixpoint worklist algorithm that considers and pro-
cesses methods in turn. Since exceptions can be propagated
through method invocations, we first process leaf methods
that make no such invocations. We process a method only
when we have precise information about all of methods it
may invoke. This process terminates because the updates

(line 13) are monotonic (i.e., we can learn additional excep-
tions that a method may raise, but we never subtract infor-
mation) and the underlying lattice is of finite height (i.e., at
worst a method can raise all possible exceptions mentioned
in the program).

Processing a method consists of determining the set of
exception instances that method can raise. We consider
both explicit throw statements (line 8) and also method
invocations (line 9) as possible sources of exceptions. We
associate a new exception instance with the given method
if a thrown exception is not caught by an enclosing catch

clause (line 11) and thus may propagate to the caller. With
respect to sources of exceptions that we consider, this anal-
ysis is conservative and may report exceptions that could
never be thrown at run-time (e.g., if (1 == 2) throw Ex-

ception();).
We do not consider non-throw statements as possible sources

of exceptions (e.g., division raising a divide-by-zero excep-
tion). While there may be some utility in a system that at-
tempts to exhaustively track all exceptions, those exceptions
that are implicitly-thrown are generally indicative of pro-
gramming errors rather than design choices [39], and their
inclusion in an API-level documentation might often be con-
sidered inappropriate [14]. Furthermore, estimating all im-
plicitly thrown exceptions is likely to result in many false
positives (as noted by [30], strictly speaking any statement
can throw any exception).

This algorithm is a refinement of Jex [6, 30]. The primary
differences are that we topologically sort the call graph and
also that we maintain completeness by considering throw

statements, instead of just those where the operand is a
new object allocation. We also track additional informa-
tion, such as the exception instance depth. We define depth
to be the minimum number of methods an exception must
propagate through before it reaches the method in ques-
tion. For example, if an exception is explicitly thrown in
the method body, its depth is 0. If foo calls bar and bar

raises an exception, that exception has depth 1 in foo. In
section Section 5 we will relate depth to the likelihood of
human-written documentation.

3.2 Phase 2: Generating Documentation
In the first phase of the algorithm we derived where ex-

ceptions can be thrown. In this phase, we will use that
information to discover, for each exception, why it might be
thrown. Specifically, we use inter-procedural symbolic ex-
ecution to discover predicates over program variables that
would be sufficient to trigger a throw statement. Figure 2
describes this algorithm formally. The algorithm produces
a mapping D; if D(m, e) = doc then m can raise exception
e when doc is true.

The algorithm is a fixed point computation using a work-
list of methods. Each method is processed in turn (line
7) and a fixed point is reached when there is no change in
the inferred documentation (line 20). Processing a method
involves determining path predicates that describe condi-
tions under which exceptions may be propagated from that
method.

To process a method, we first enumerate all of the control
flow paths (line 9) that can lead from the method head to the
statements that we have previously determined can raise ex-
ceptions. We construct these control flow paths by starting
at the exception-throwing statement and working backward
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Input: Mapping M : method → exception information.
Input: Receiver-class information R.
Input: Program call graph C (built using R).
Output Documentation D : method × exception → predicate.

1: for all all methods m ∈ C and all exceptions e do
2: D(m, e)← false

3: end for
4: Worklist ← methods in C
5: Topological sort Worklist
6: while Worklist is not empty do
7: for all m ∈ c do
8: for all (e, l, d) ∈M(m) do
9: for all loop-free paths p from start to l do

10: Preds ← symbolically execute p
11: if l is a method call then
12: for all methods m′ in R(l) do
13: D(m, e)← D(m, e) ∨ (Preds ∧D(m′, e))
14: end for
15: else
16: D(m, e)← D(m, e) ∨ Preds
17: end if
18: end for
19: end for
20: if D changed then
21: Add m and methods calling m to Worklist
22: end if
23: end for
24: end while

Figure 2: Algorithm for inferring exception docu-
mentation that explains why an exception is thrown.
If D(m, e) = P then method m can raise exception e
when P is true; the predicate P is the documenta-
tion.

through the control flow graph of the method until we reach
the method entry point; we ignore forward edges during this
traversal and thus obtain loop-free paths. When a statement
has two predecessors, we duplicate the dataflow information
and explore both: our analysis is thus path-sensitive and
potentially exponential.

Each full control flow path is then symbolically executed
(line 10, as in, e.g., [9]). We track conditional statements
(e.g., if and while) and evaluate their guarding predicates
using the current symbolic values for variables. We collect
the resulting predicates; conjuncted together they form a
constraint called a path predicate that describes conditions
under which that path can be taken [2, 5, 20, 31]. An off-
the-shelf path predicate analysis could also be used; we in-
terleave path predicate generation with fixed-point method
processing for efficiency.

If the exception-throwing statement is a dynamic dispatch
method invocation, we process the dataflow information for
each concrete method that may be invoked (line 11). We
use an off-the-shelf conservative receiver class analysis [22]
to obtain this information (line 12). A method invocation
is thus handled by assigning the actual arguments to the
formal parameters and including the body of the callee. We
thus model execution paths that extend all of the way to
the original throw statement. If the callee method m′ raises
an exception e under conditions D(m′, e) and the caller m
can reach that point with path predicate Preds then the

propagated exception occurs on condition D(m′, e) ∧ Preds
(line 13).

To guarantee termination we only enumerate and explore
paths that do not contain loops involving backwards branches.
That is, we only consider paths in which loop bodies are eval-
uated at most once. Because we do not filter out paths with
infeasible path predicates, employing this common heuris-
tic [13] will not cause us to miss exception-throwing state-
ments. Instead, it will cause us to generate potentially-
inaccurate predicates, and thus potentially-inaccurate doc-
umentation, in some cases. We make this trade off favoring
speed over precision because exception-throwing conditions
typically do not depend on particular values of loop induc-
tion variables (see Section 6). We are interested in docu-
menting exceptions in terms of API-level variables and not in
terms of local loop induction variables. Exception-throwing
conditions often depend on whether a loop or conditional is
taken at all, but rarely depend on more detailed iteration
conditions.

After a fixed point is reached, the path predicate becomes
our documentation for the exception instance. If one excep-
tion type can be thrown via multiple different paths, those
path predicates are combined with a logical disjunction to
form a single path predicate. The result is, for each method
and for each exception raised by that method, a boolean
expression over program variables which, if satisfied at run-
time, is sufficient to cause the exception to be raised.

3.3 Documentation Post-Processing
We post-process and pretty-print the resulting path pred-

icates to produce the final human-readable documentation
output of our tool. We employ a small number of recur-
sive pattern-matching translations to phrase common Java
idioms more succinctly. For example:

• true becomes always

• false ∨ x becomes x

• x != null becomes “x is not null”

• x instanceof T becomes “x is a T”

• x.hasNext() becomes “x is nonempty”

• x.iterator().next() becomes “x.{some element}”

We also apply some basic boolean simplifications (e.g., re-
placing x && not(x) with “false”). The most complicated
transformation we use replaces (x && y) || (x && z) with
x && (y || z). An off-the-shelf term rewriting engine or al-
gebraic simplification tool could easily be employed; in our
experiments the generated exception documentation did not
involve terms that could be simplified arithmetically.

4. PROTOTYPE TOOL AND
EXPERIMENTAL SETUP

To evaluate the effectiveness of our algorithm, we elected
to target Java programs, anticipating that we could use ex-
isting Javadoc documentation as a basis for comparison.
We chose several popular systems, detailed in Figure 3, for
our experiments.

Our algorithm requires a call graph that maps invoca-
tion sites to possible concrete target methods. The problem
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Name Version Domain kLOC methods throws documented

Azureus 2.5 Internet File Sharing 470 14678 655 35.42%
DrJava 20070828 Development 131 2215 121 19.01%
FindBugs 1.2.1 Program Analysis 142 2965 245 7.76%
FreeCol 0.7.2 Game 103 3606 330 75.15%
hsqldb 1.8.0 Database 154 2383 315 26.03%
jEdit 4.2 Text Editor 138 1110 53 15.09%
jFreeChart 1.0.6 Data Presentation 181 41 7 42.86%
Risk 1.0.9 Game 34 366 15 40.00%
tvBrowser 2.5.3 TV guide 155 3306 21 57.14%
Weka 3.5.6 Machine Learning 436 127 9 88.89%

Total or Mean 1944 30797 1771 40.73%

Figure 3: The set of Benchmark programs used in this study. The “methods” column gives the total number
of methods reachable from main(). The “throws” column gives the number of throw statements contained in
those methods. The “documented” column gives the percentage of those exceptions that are documented
with a non-empty Javadoc comment.

Name Paths Instances Mean depth RCA EFA DocInf Total

Azureus 93,052 17,296 3.30 703.2s 2.32s 504.56s 1,210s
DrJava 1,288 317 1.66 606.0s 0.22s 46.33s 653s
FindBugs 9,280 1,160 1.99 431.0s 0.27s 62.00s 493s
FreeCol 79,620 6,635 4.18 454.5s 2.49s 135.80s 593s
hsqldb 30,569 2,779 2.98 153.6s 0.84s 323.77s 478s
jEdit 6,216 588 4.80 430.1s 0.16s 54.40s 485s
jFreeChart 17 9 1.11 368.7s 0.01s 0.02s 369s
Risk 74 33 0.91 374.0s 0.09s 10.90s 385s
tvBrowser 1,557 283 5.37 490.6s 1.30s 43.30s 535s
Weka 18 14 0.57 458.0s 0.08s 55.34s 513s

Total or Mean 221,691 29,114 2.69 4,470s 7.79s 1,236s 5,714s

Figure 4: Measurements from running our tool on each benchmark, generating documentation for every
exception. “Paths” is the number of control flow paths enumerated and symbolically executed. “Instances” is
the number of documentations generated.. “Mean Depth” is the mean distance between the method where the
documentation is generated, and the original throw statement. “RCA” is runtime for receiver class analysis
(we did not implement this) and includes the time for loading and parsing the program files. “EFA” is the
runtime for Exception Flow Analysis (Phase 1). “DocInf” is runtime for documentation generation (Phase
2) and includes all post processing. All experiments were conducted on a 2GHz dual core system.
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of constructing an accurate and precise call graph for dy-
namic languages typically involves receiver class analysis or
alias analysis. Many off-the-shelf solutions exist. In fact,
this problem has become one of the most heavily-researched
topics in program analysis [18]. We employed Spark [22] to
produce call graphs. Spark is reasonably fast (terminating
in less than one hour for all of our benchmarks) and is inte-
grated into Soot [12], the Java bytecode analysis framework
we used to parse input programs. We used the Eclipse jdt
to parse source code and extract Javadocs.

5. EXISTING EXCEPTION
DOCUMENTATION

We claim that complete documentation of exceptions is
important to software developers because incompleteness
can lead to problems with security, reliability, and encap-
sulation, as well as to difficulties in software maintenance.
In this section we will provide evidence to demonstrate that
the conditions under which real world programs can raise
exceptions are often not completely documented.

To evaluate documentation completeness we first explore
the rate at which exceptions of each type are documented.
We would expect “complete” documentation to either in-
clude every instance where a particular exception type can
be raised, or almost no instances. That is, we hypothesize
that if SecurityException is deemed worth documenting
some of the time, it should be worth documenting all of the
time. This is similar to the assumption used by Engler et
al. [11] to find bugs from inconsistencies in systems code.
This notion of consistency allows for the possibility that the
developers may consciously decide not to document certain
kinds of exceptions, but views partial documentation of an
exception type as a mistake.

Experimentally, we found many examples of inconsistent
documentation in our benchmarks. Figure 5 presents some
of the most frequently documented, yet sometimes neglected,
exception types. For each benchmark chosen, the two most
commonly documented exception types are listed. For each
exception type we list the static percentage of methods doc-
umenting that exception as a percentage of methods that
can throw that exception (as determined by our algorithm,
see Section 3.1). We do not consider “stub” annotations,
which indicate an exception type without additional com-
ment (e.g., just @throws Exception), to be actual documen-
tations since they do not convey any information regarding
the triggering of the exception, and may have been automati-
cally inserted by a development environment. We conjecture
it is unlikely that documentation for a particular exception
type is needed or appropriate in over 90% of methods that
raise it, but not needed or desired in the other 10%. It is
interesting to note that some commonly-documented excep-
tions are associated with standard library exception types
(e.g., NullPointer) while others are program-specific (e.g.,
DataflowAnalysis).

We also hypothesize that some exception instances may
not be documented because of the difficulty of (or lack of
programmer interest in, e.g., [28] p. 45 and [38]) manually
modeling exception propagation. Figure 6 indicates that the
propagation depth of an exception, in practice, has a strong
inverse correlation with the probability that it will be doc-
umented. In particular, it is quite rare for documentation
to appear for any exception not explicitly raised in the cur-

Figure 6: Exception documentation as a function of
exception propagation depth. The line represents
the average over all exception instances within all
of our benchmarks. The vertical bars indicate the
maximum and minimum observed value. All of our
benchmarks are included. An exception instance ex-
plicitly thrown within the method in question has
depth zero; higher depths indicate the number of
method invocations through which the exception
must be propagated.

rent method (i.e., for any exception instance at depth > 0).
For propagation depths larger than three, documentation
becomes almost non-existent.

We claim that the lack of exception documentation in
practice follows from the difficulty in developing it and not
from a lack of need for it. Both of these observations serve
as evidence that the presence of Javadocs for exceptions is
inconsistent and incomplete.

6. EVALUATION
The purpose of our algorithm is the automatic construc-

tion of useful documentation for exceptions. In this sec-
tion we compare the documentation produced by our pro-
totype implementation with pre-existing documentation al-
ready present in programs.

Having ran our tool on each of the benchmarks in Fig-
ure 3 and generated documentation for each exception, we
now restrict our attention to only those instances for which
a Javadoc comment exists. For our benchmarks there were
951 human-documented exception instances. We paired each
existing piece of documentation with the documentation sug-
gested by our tool and then manually reviewed each docu-
mentation pair. We categorized each according whether the
tool-generated documentation was better, worse, or about
the same as the human-created version present in the code.

We consider the tool-generated documentation to be bet-
ter when it is more precise. For example:

Worse: if inappropriate

(Us) Better: parameter:params not a KeyParameter

We also consider our documentation to be better when
it contains more complete information or otherwise includes
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Figure 5: Frequency of exception documentation. Each column represents methods that document the given
exception expressed as a percentage of methods that throw the exception. For each benchmark, the two most
frequently documented exceptions where the rate is below 100% are listed.

cases that were forgotten in the human-written documenta-
tion. For example:

Worse: id == null

(Us) Better: id is null or id.equals("")

Often, both pieces of documentation conveyed the condi-
tion. For example:

Same: has an insufficient amount of gold.

(Us) Same: getPriceForBuilding() >

getOwner().getGold()

In all other cases, we considered the tool-generated doc-
umentation to be worse. This typically happened when hu-
man created documentation contained special insight into
the relationship between program variables, or expressed
high-level information about the program state that could
not be readily inferred from a set of predicates without ad-
ditional knowledge. For example:

Better: the queue is empty

(Us) Worse: private variable m_Head is null

All ties or difficult decisions were resolved in favor of the
existing documentation. The total time taken to evaluate all
951 documentation pairs was 3.5 hours; the determination
was usually quite direct.

Figure 7 shows relative quality of the documentation pro-
duced by our tool for the 951 exception instances in our
benchmarks. The ten columns on the left give breakdowns
for individual benchmarks. The three rightmost columns
give overall performance; we describe them in more detail
below.

We also measured whether the generated conditions could
be expressed strictly in terms of non-private API-level vari-
ables. This property is generally beyond our control, al-
though techniques involving Craig interpolants can be used
to express predicates in terms of certain variables instead of
others [24]. Predicates over private or local variables might
not be useful because their meanings might not be clear

at the API-level, and because users of the system cannot
directly affect them. Furthermore, documentation involving
private variables has the potential to expose implementation
details that were intended to be hidden.

In our experiments 29% of the documentation instances
involved private or local variables; 71% involved parameters
and public variables only. Surprisingly, however, documen-
tation instances involving private variables were nearly as
good (83% vs 88% same as or better than existing) as those
that were constructed strictly in terms of public variables.
This follows largely from the descriptiveness of private vari-
able names in our benchmarks. Consider this indicative ex-
ample from FindBugs:

Same: the class couldn’t be found

(Us) Same: {private classesThatCantBeFound}.

contains(parameter:className)

Even though classesThatCantBeFound is a private field,
and we may not even know what type of object it is, this gen-
erated documentation is still as good as the human-written
one. Not all private variables were descriptive, as this ex-
ample from Weka shows:

Better: Matrix must be square

(Us) Worse: {private m} == {private n}

Without knowing that m and n are matrix dimensions, our
documentation is not useful. In general, we need not always
reject generated documentation that contains a private ref-
erence. The decision to accept or reject such documentations
depends on several factors: the extent to which encapsula-
tion is a concern, the relative readability of private vs. pub-
lic data, and on the intended purpose of the documentation
(e.g., internal or external use).

Finally, note that in this section we have provided exper-
imental evidence of the utility of our tool primarily with
respect to low-depth (i.e., < 4) exceptions: those for which
we have a significant baseline for comparison. While higher-
depth exceptions will, in general, be represented by more
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Figure 7: The relative quality of the documentation produced by our tool for 951 exception instances in
1.9MLOC that were already human-documented.

complex predicates, it is not clear at what point they become
too complex to be useful to human readers as documenta-
tion. In any case, we can see in Figure 4 that our inference
algorithm does in fact scale to large programs, where nearly
100,000 control flow paths are enumerated and depths can
sometimes average greater than 5. In practice, the determi-
nation of which exception types and depths should be doc-
umented is likely to depend on program-specific concerns
(e.g., the meaning of the exception) as well as usage (e.g.,
whether the documentation is to be employed as a debugging
aide or an API-level documentation supplement, etc.).

7. FUTURE WORK
We found documentation produced by our tool to be sur-

prisingly readable after only a few simple transformations.
However, it would be interesting to enhance readability by
simulating human prose or re-arranging predicates. Even
though most of the generated documentation did not involve
complex logic, we suspect that a system capable of symbolic
algebra simplification would be useful in certain application
domains.

Documentations generated by our tool only involve pred-
icates over program variables. However, there is other in-
formation available in the source code that might provide
additional insight into the exceptional condition. For exam-
ple, we might incorporate the argument (typically a string)
provided to the exception constructor into the associated
documentation.

In some obvious cases, our implementation prunes infea-
sible paths. Integrating a theorem prover would allow us to
rule out more infeasible paths and thus reduce false posi-
tives.

Finally, during the course of our experiments, we noticed
that certain exception types are frequently documented in
a standardized or templated manner by developers. For ex-
ample, for nearly every ClassNotFoundException the cor-
responding comment is a variation on “thrown if the class
couldn’t be found.” In such cases, it may be appropriate
to “copy” or “instantiate” existing documentation structure
rather than inferring it.

8. CONCLUSION
In this paper we have described an algorithm for auto-

matic exception documentation in 2 phases. Phase 1 deter-
mines which exceptions may be thrown or propagated by
which methods; this algorithm is a slight refinement of pre-
vious work. The analysis is conservative; it will not miss
exceptions but may report false positives. Phase 2, the pri-
mary contribution of this work, then characterizes the con-
ditions, or path predicates, under which exceptions may be
thrown. This analysis is also conservative; it may gener-
ate poor predicates for exceptions that depend on loops or
where the call graph is imprecise. We convert these predi-
cates into human-readable documentation. We are able to
generate documentation involving only public and API-level
variables in 71% of 951 instances associated with 1.9M lines
of code.

The documentation instances we generated are at least
as accurate as what was created by humans in 85% of the
instances, and are strictly better in 25% of them.

Our study of existing documentation suggests that many
exception instances remain undocumented in practice. This
is especially true when exceptions are propagated through
methods. Our algorithm is completely automatic and han-
dles both propagated and local exceptions. It is efficient
enough to be used nightly, taking 95 minutes for two million
lines of code, thus reducing drift between an implementation
and its documentation.

The time costs are low, no annotations are required, and
the potential benefits are large. We believe this work is a
solid step toward making automatic documentation genera-
tion for exceptions a reality.
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