
Leveraging Light-Weight Analyses to Aid Software Maintenance

Zachary P. Fry
zpf5a@virginia.edu

Westley Weimer
weimer@cs.virginia.edu

I. INTRODUCTION

Software maintenance can account for up to 90% of
a system’s life cycle cost [1]. Anecdotal evidence from
real-world developers suggests that for real systems,
maintenance teams often cannot keep up with the high
rate at which faults are found and reported [2]. As a
result, many automated techniques have been developed
to reduce the overall effort necessary to sustain software
over time. While many of these tools work well under
certain circumstances, we believe that they could be
improved by taking advantage of large untapped sources
of unstructured information that result from natural
software development. Software maintenance remains
a costly problem in practice; the proposed work will
identify weaknesses in common maintenance processes
and attempt to address them to reduce both human and
computational costs.

The proposed research will design lightweight anal-
yses to extract latent information encoded by humans in
software development artifacts and thereby reduce the
costs of software maintenance. We will design analyses
that apply throughout the maintenance process, focusing
on three areas: (1) the human cost associated with man-
ually triaging large collections of automatically exposed
defects; (2) the computational cost and expressive power
of evolving automatic defect repairs; and (3) ensuring
the continued consistency of system documentation to
reduce the difficulty (and thus cost) of understanding
systems over time. In each case, we hope to concretely
show that specific maintenance costs can be reduced by
extracting and analyzing previously unused information
thereby easing the total maintenance burden.

The key insight is that many existing maintenance
techniques could be improved by leveraging the less-
structured, human-created artifacts that are inherent in
software development. For example, we have previously
shown that natural language clues can dramatically im-
prove automatic defect localization from human-written
defect reports [3]. We hypothesize that light-weight
techniques can be used to extract and analyze actionable
information latent in software artifacts, thus reducing

maintenance costs overall.

II. PROPOSED RESEARCH

We will evaluate our techniques and tools on large,
real-world systems, comprising tens of millions of lines
of code and thousands of defects. The proposed work
will attempt to reduce the cost of three specific main-
tenance tasks: triaging automatically-generated defect
reports, automatically synthesizing defect repairs, and
automatically identifying out-of-date or incomplete sys-
tem documentation. We hope to address bottlenecks in
each of these three areas and show concrete time and
effort savings for each process. The rest of this section
describes each maintenance process and our proposed
improvements in each case.

A. Clustering Duplicate Automatically-Generated De-
fect Reports.

Large software systems contain so many faults that
automatic defect-finding tools are commonly used to ex-
pose them [4] — and in large systems, many faults share
the same symptoms or the same causes. Unfortunately,
automatic defect finders rarely recognize such similarity.
We have found, however, that over 30% of such defect
reports (over 2,600 actual instances in our study), were
similar enough that time and effort could be saved by
handling them aggregately. While some of these defect
reports share syntactic similarities, in many cases the
similarities are only visible at a semantic level. We
propose to cluster such reports by extracting both syn-
tactic and semantic information and using lightweight
metrics to model their similarity. The success metrics
for such a technique are accuracy (i.e., clustering only
defects that are related) and effort savings (i.e., reducing
the number of clusters that must be triaged separately).
While there are no directly-comparable tools, we adapt
three established code clone detectors to the task of
clustering automatically-generated defects to use as
baselines when assessing our technique’s ability to save
maintenance effort. Preliminary results show that our
technique is both capable of producing clusters that
perfectly match our annotated data set (while code clone

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation

978-0-7695-4968-2/13 $26.00 © 2013 IEEE

DOI 10.1109/ICST.2013.77

507

tools are not) and can save more developer effort at
nearly all levels of accuracy.

B. Improved Fitness Functions for Automatic Program
Repair.

Even after similar defect reports have been triaged, so
many defects remain that there has been increasing in-
terest in automated program repair techniques to reduce
the maintenance burden [5]. However, quickly evolving
functionally correct repairs remains a challenge. Current
techniques typically measure the fitness or “quality” of
a candidate repair only in terms of test cases, treating all
tests equally. Unfortunately, this is a very noisy signal in
practice [6] — not all test cases are created equal [7] and
internal program state remains an untapped resource [8].
We propose to build a light-weight model that can
guide the search to a repair. By weighting test cases
and including information about run-time program state,
we propose to develop a fitness function with a higher
fitness-distance correlation [9]. The goal of this work is
to allow program repair tools to generate more eventual
defect fixes and to do so faster than they would with
more naive fitness functions, on an established ([5]) set
of real-world defects.

C. Ensuring Documentation Consistency.

Changing a program, either to fix a fault or to
add a feature, may lead to inconsistent or incorrect
documentation. Previous researchers have shown that
comments rarely co-evolve with code in real-world
systems [10], which can lead to severely inconsistent
comments [11], [12]. We propose to create a general,
lightweight model of comment quality with respect
to consistency and completeness. We will do so by
synthesizing structured “template” documentation that
includes key concepts but not extraneous natural lan-
guage. We will then extract similar information from
existing natural language comments and perform a
structured comparison. This proposed work is the most
speculative and represents a higher-risk higher-reward
research trade-off. We propose to evaluate our technique
with a set of human studies, focusing on two evaluation
metrics: (1) how often human annotators agree with
our model’s judgments of comment consistency and
completeness; and (2) how much the use of our tool
increases humans’ speed and accuracy when identifying
inconsistent and incomplete comments.

III. ACKNOWLEDGMENT

I wish to thank my research advisor, Westley Weimer,
for the guidance he has provided throughout the disser-
tation process.

REFERENCES

[1] R. C. Seacord, D. Plakosh, and G. A. Lewis, Moderniz-
ing Legacy Systems: Software Technologies, Engineering
Process and Business Practices. Addison-Wesley Long-
man Publishing Co., Inc., 2003.

[2] N. Jalbert and W. Weimer, “Automated duplicate detec-
tion for bug tracking systems,” in International Confer-
ence on Dependable Systems and Networks, pp. 52–61,
2008.

[3] Z. P. Fry and W. Weimer, “Fault Localization Using
Textual Similarities,” ArXiv e-prints, 2012.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak,
and D. R. Engler, “A few billion lines of code later:
using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75,
2010.

[5] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer, “A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each,” in Inter-
national Conference on Software Engineering, pp. 3–13,
2012.

[6] E. Fast, C. Le Goues, S. Forrest, and W. Weimer,
“Designing better fitness functions for automated pro-
gram repair,” in Genetic and Evolutionary Computation
Conference, pp. 965–972, 2010.

[7] K. Walcott, M. Soffa, G. Kapfhammer, and R. Roos,
“Time-aware test suite prioritization,” in International
Symposium on Software Testing and Analysis, 2006.

[8] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” in Programming
Language Design and Implementation, pp. 141–154,
2003.

[9] T. Jones and S. Forrest, “Fitness distance correlation
as a measure of problem difficulty for genetic algo-
rithms,” in International Conference on Genetic Algo-
rithms, pp. 184–192, 1995.

[10] B. Fluri, M. Wursch, and H. C. Gall, “Do code and
comments co-evolve? on the relation between source
code and comment changes,” WCRE ’07, pp. 70–79,
2007.

[11] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* iCom-
ment: Bugs or bad comments? */,” in Proceedings of the
21st ACM Symposium on Operating Systems Principles
(SOSP07), October 2007.

[12] S. H. Tan, D. Marinov, L. Tan, and G. T. Leav-
ens, “@tComment: Testing javadoc comments to detect
comment-code inconsistencies,” in Proceedings of the
5th International Conference on Software Testing, Veri-
fication and Validation, April 2012.

508

