
Hammad Ahmad, Madeline Endres, Kaia Newman, Priscila Santiesteban, Emma Shedden, and Westley Weimer
Talk Outline

1. Research Motivation and Overview
2. Experimental Design and Data Collection
3. Analysis and Results
4. Discussion and Summary
Understanding the cognitive basis of software engineering is important

- Can inform **pedagogy** and **training**
- **Make novices more like experts** – faster!

Medical imaging increasingly common for this in SE research
Prior research links spatial reasoning to programming tasks

Two different neuroimaging techniques saw activity in spatial reasoning-related regions of the brain in a study by Huang et al. [1]

“95% of [brain activity] was statistically indistinguishable between Mental and Tree tasks.”

Prior research links spatial reasoning to programming tasks

Supplementary motor area (SMA) potentially relevant for:

- Code comprehension [1]
- Data structure manipulation [2]
- Comprehension of code with higher complexity metrics [3]

Primary motor cortex (M1) potentially relevant for:

- Code writing (as opposed to prose writing) [4]

But causality is not definitively determined!

Unfortunately, prior SE neuroimaging studies only show correlation, not causation.

To investigate a causal relationship, we want an experimental intervention that is:

- Noninvasive
- Safe
- Time-efficient
- Well-understood and previously validated
Enter: *Transcranial Magnetic Stimulation* (TMS)

TMS uses magnets to induce an electrical current in a targeted region, which can stimulate localized activity

TMS:
- Takes only minutes to localize and administer
- Is used in a variety of scientific and medical cases – 1000+ papers published each year use TMS
- Is safe and well-tolerated
TMS has been used to uncover causality and has been shown to improve outcomes in other fields

Mental math: TMS resulted in a **30% accuracy increase** in memorization and addition of numbers [1].

Language: TMS resulted in **faster verb processing speed** for manual actions [2].

Our study, from a bird’s-eye view

We present the first study to investigate causal relationships between previously-implicated brain regions and programming tasks using TMS

Main RQs:

1. Can we replicate previous results finding TMS can impact spatial ability?

2. Is there a direct, causal relationship between TMS of spatially-related brain regions (M1, SMA) and programming task completion time or outcomes?

3. Can TMS affect programming tasks at all?
Talk Outline

1. Research Motivation and Overview
2. Experimental Design and Data Collection
3. Analysis and Results
4. Discussion and Summary
Consider the AVL tree below. After inserting 14 into the tree (and performing rotations to keep the tree balanced as necessary), which of the following will be produced by a pre-order traversal of the resulting tree?

A: 10, 5, 3, 1, 8, 7, 12, 11, 14, 13, 16
B: 10, 5, 3, 1, 8, 7, 12, 11, 16, 13, 14
Stimuli used

Data Structure Manipulation

Code Comprehension

Consider the AVL tree below. After inserting 14 into the tree (and performing rotations to keep the tree balanced as necessary), which of the following will be produced by a pre-order traversal of the resulting tree?

A: 10, 5, 3, 1, 8, 7, 12, 11, 14, 13, 16
B: 10, 5, 3, 1, 8, 7, 12, 11, 16, 13, 14

What is true about the following code for reversing a vector?
Assume that \(n = v.size() \).

```cpp
vector<int> v{1, 2, 3, 4};
stack<int> s;
for (size_t i = 0; i < v.size(); ++i)
    s.push(v[i]);
for (size_t i = 0; i < v.size(); ++i) {
    v[i] = s.top();
    s.pop();
} // for ..i
```

A: The memory complexity is \(O(1) \).
B: The memory complexity is \(O(n) \).
Stimuli used

Data Structure Manipulation

Code Comprehension

Spatial Rotation

Consider the AVL tree below. After inserting 14 into the tree (and performing rotations to keep the tree balanced as necessary), which of the following will be produced by a pre-order traversal of the resulting tree?

A: 10, 5, 3, 1, 8, 7, 12, 11, 14, 13, 16
B: 10, 5, 3, 1, 8, 7, 12, 11, 16, 13, 14

What is true about the following code for reversing a vector? Assume that n = v.size().

```cpp
vector<int> v{1, 2, 3, 4};
stack<int> s;
for (size_t i = 0; i < v.size(); ++i)
    s.push(v[i]);
for (size_t i = 0; i < v.size(); ++i) {
v[i] = s.top();
s.pop();
} // for ..i
```

A: The memory complexity is O(1).
B: The memory complexity is O(n).
We did an experiment on 16 participants for 3 sessions of TMS each, recording timing and correctness on stimuli.

- MRI scan + “thresholding”
- 40 seconds of TMS on randomized condition (SMA/M1/control)
- 30 minutes of 61 random stimuli
- Likert questionnaire
We did an experiment on 16 participants for 3 sessions of TMS each, recording timing and correctness on stimuli.

MRI scan + “thresholding”

40 seconds of TMS on randomized condition (SMA/M1/control)

30 minutes of 61 random stimuli

Likert questionnaire
We did an experiment on 16 participants for **3 sessions of TMS each**, recording timing and correctness on stimuli.

MRI scan + “thresholding”

40 seconds of TMS on randomized condition (SMA/M1/control)

30 minutes of **61 random stimuli**

*We **pre-registered** our primary experimental design and hypothesis to mitigate for p-hacking!*

Likert questionnaire
Talk Outline

1. Research Motivation and Overview
2. Experimental Design and Data Collection
3. Analysis and Results
4. Discussion and Summary
We used mixed-effects modeling to analyze timing and correctness data

- **Mixed-effects modeling** was used to account for both systematic (direct) and heterogeneous effects
 - TMS has been shown to have a heterogeneous treatment effect that varies between people in dozens of psychology studies
- Relevant analyses were conducted blind to *reduce researcher bias*
- BH adjustment used to *control for multiple comparisons* when calculating p-values
Up next: the answers to our questions!

RQ1, *Replication and Correct Application*: Can we *replicate previous results* finding TMS can impact spatial ability?

RQ2, *Direct Relationship*: Is there a *direct, causal relationship* between TMS of spatially-related brain regions and programming task completion time or outcomes?

RQ3, *Affecting Programming Outcomes*: Can TMS *affect programming tasks at all*?
RQ1, Replication and Correct Application

Question: Can we replicate previous results [1] finding TMS can impact spatial ability?

RQ1, *Replication and Correct Application*

Question: Can we *replicate previous results* [1] finding TMS can impact spatial ability?

Yes! *(p ≤ .02, 15.3% increase in raw response time)*

RQ2, *Direct Relationship*

Question: Is there a *direct, causal relationship* between TMS of spatially-related brain regions and programming task completion time or outcomes?
RQ2, *Direct Relationship*

Question: Is there a **direct, causal relationship** between TMS of spatially-related brain regions and programming task completion time or outcomes?

We found no significant, direct relationships between experimental condition and behavioral programming outcomes in this experiment.

Result: Contrary to *multiple* previous correlative studies, we **do not** find evidence for one!
RQ3, Affecting Programming Outcomes

Question: Can TMS affect programming tasks at all?

● Our model predicts variance in outcomes according to various factors
 ○ Common to TMS studies
RQ3, *Affecting Programming Outcomes*

Question: Can TMS affect programming outcomes at all?

- Our model predicts variance in outcomes according to various factors common to TMS studies.

Spoiler: YES! TMS *can affect* programming outcomes!
RQ3, **Affecting Programming Outcomes**

Question: Can TMS *affect programming tasks at all?*

Which factors matter more for time taken?

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect Size (Normalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“How hard is the question?”</td>
<td>1.00</td>
</tr>
<tr>
<td>“Participant expertise”</td>
<td>0.18</td>
</tr>
</tbody>
</table>
RQ3, *Affecting Programming Outcomes*

Question: Can TMS *affect programming tasks at all?*

Which factors matter more for time taken?

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect Size (Normalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“How hard is the question?”</td>
<td>1.00</td>
</tr>
<tr>
<td>“Participant expertise”</td>
<td>0.18</td>
</tr>
<tr>
<td>“TMS”</td>
<td>0.05</td>
</tr>
</tbody>
</table>

The effect of TMS was one-twentieth the effect of question difficulty, i.e., not zero. (Our 95% confidence interval excludes zero).
RQ3, Affecting Programming Outcomes

Question: Can TMS affect programming tasks at all?

We found that the participant by brain region stimulated random effect significantly accounted for 2.2% of the variance in the response time when controlling for other plausible effects.

Result: Yes, TMS can affect actual programming outcomes!
Talk Outline

1. Research Motivation and Overview
2. Experimental Design and Data Collection
3. Analysis and Results
4. Discussion and Summary
Why are we excited?

TMS has been used to uncover causality from suspected correlations in other psychology studies and has been used for real, positive interventions.

2.2% variance is a small, indirect effect, but for the future, TMS:

- Can be done alongside other approaches
- Doesn’t require shared language
- Only takes five minutes

This is the first TMS study for programming; we are currently investigating more!
Future research could involve varying the TMS protocol or brain regions stimulated

Could try:

- Language-related brain regions
- Working memory-related brain regions
- Using different TMS protocols
In summary:

We replicate previous results in psychology, gaining confidence we apply TMS correctly.

We find no evidence for a causal relationship between spatial reasoning-related regions and programming outcomes, suggesting that interpreting cognition in software engineering may be more complex.

We have evidence that TMS can affect programming outcomes, implying the use of it as a tool to investigate causality and directly affect outcomes in other spaces extends to software engineering.

Hammad Ahmad, Madeline Endres, Kaia Newman: kaian@cmu.edu, Priscila Santiesteban, Emma Shedden, and Westley Weimer
Replication package at: https://github.com/hammad-a/ICSE24_TMS
“Is Transcranial Magnetic Stimulation (TMS) safe?”

Thresholding: before our experiment, we assessed a tolerable level of stimulation per-person, and then applied 80% of that to other brain regions.

This was an IRB-approved protocol with professional oversight. TMS is FDA-approved and used by the Mayo Clinic as a treatment for depression.
Pictures of the TMS machine