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Abstract—Data structures permeate many aspects of software
engineering, but their associated human cognitive processes
are not thoroughly understood. We leverage medical imaging
and insights from the psychological notion of spatial ability to
decode the neural representations of several fundamental data
structures and their manipulations. In a human study involving
76 participants, we examine list, array, tree, and mental rotation
tasks using both functional near-infrared spectroscopy (fNIRS)
and functional magnetic resonance imaging (fMRI).

We find a nuanced relationship: data structure and spatial
operations use the same focal regions of the brain but to different
degrees. They are related but distinct neural tasks. In addition,
more difficult computer science problems induce higher cognitive
load than do problems of pure spatial reasoning. Finally, while
fNIRS is less expensive and more permissive, there are some
computing-relevant brain regions that only fMRI can reach.

I. INTRODUCTION

Data structures are a fundamental element in computer
science that affect the performance and cost of many sys-
tems [5], [29], [84], [90]. Data structure choice and usage
influence many aspects of software engineering, including
maintainability [60], fault tolerance [8], reliability [81], and
scalability [70]. Despite the importance of data structures in
software development, we have a limited understanding of the
subjective cognitive processes underlying their employment.
Understanding these processes is important to augment un-
reliable self-reporting [32], [45], [46] and inform pedagogy,
technology transfer, and programming expertise (Section II).
In this paper, we present the first investigation that uses med-
ical imaging to decode the neural representations of several
classes of data structures and their manipulation.

We leverage two key insights to study the neurological
bases associated with data structures. First, we investigate
the relationship between data structures and spatial ability.
Spatial ability is often measured via mental rotation tasks like
illustrated in Figure 1 [18], [25], [75]. Second, we use two
medical imaging techniques, functional magnetic resonance
imaging (fMRI) and functional near-infrared spectroscopy
(fNIRS), to provide objective measurements of active brain
function and establish a grounded understanding of mental
processes associated with data structure manipulation. By
comparing these neuroimaging modalities, we develop best
practices for imaging investigations of software engineering.

Psychology research has shown spatial ability to be a major
factor in proficiencies such as mathematics [38], [89], natural
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Fig. 1: A representation of the investigated relationship between data
structures and spatial ability. On the left, an unbalanced binary tree
is rotated about node 1 to produce the tree on the bottom left. On
the right, a three-dimensional object is rotated in space as shown in
the bottom right. We investigate how the brain represents these two
activities using medical imaging techniques.

sciences [85], [92], engineering [6], meteorology [11], and
map navigation [52]. There are many interpretations of spatial
ability, including the determination of spatial relationships
between objects and the mental manipulation of spatially-
presented information. Despite spatial ability’s influence in a
wide range of disciplines, it has rarely been studied within
software engineering. To the best of our knowledge, only one
previous study (conducted by Aharoni [4]) focused on the
relationship between software engineering tasks and spatial
ability [4]. This previous work relied on interviews with
students to understand their thought processes and suggested
that programmers use visual representations to reduce the level
of abstraction of data structures. However, no quantitative
relationship has been investigated. Drawing inspiration from
previous work, we consider spatial ability in the context of data
structures to be the capacity to mentally represent, remember
and manipulate spatial relations between elements of data.

We conducted a human study in which 76 participants
mentally manipulated lists, arrays, and trees. Participants also
completed mental rotation tasks involving the ability to de-
termine if two perspective drawings portray the same three-
dimensional shapes. In our study, we use mental rotation tasks
to provide a solid neurological basis for spatial ability against
which the cognitive processes associated with data structure
manipulation can be compared.



We carry out our study using fMRI and fNIRS, two non-
invasive in vivo neuroimaging techniques that have enabled
new and complex studies of brain function. By indirectly
measuring changes in oxygen consumption, these two imaging
modalities can be used to isolate the brain regions recruited
for specific tasks. However, they exhibit tradeoffs relevant
to studying software engineering. fMRI allows for sampling
across the whole head and offers excellent spatial resolution
while requiring a restrictive experimental environment that
limits its range of use cases. By contrast, fNIRS is significantly
less expensive and admits more freedom in the experimental
environment and participant motion. However, fNIRS provides
inferior spatial resolution and weaker penetration power below
the scalp. Both fMRI and fNIRS have been widely used in
psychological and clinical research to develop a deeper under-
standing of brain functions such as sensory, verbal, and motor
processing [2], [33], [45], [59], [67], [80]. fMRI and fNIRS
allow us to investigate the physical substrates underlying data
structure manipulation and its relationship with spatial ability.

We note that the use of medical imaging in software
engineering is still exploratory; since 2014, only nine publi-
cations have studied its associated cognitive processes with
either fMRI or fNIRS alone [15], [26], [28], [30], [41],
[54], [65], [76], [77]. Given the tradeoffs between these two
neuroimaging techniques, the community has not settled on the
best option for studying software engineering tasks. Our work
is the first to use both fMRI and fNIRS to study software
engineering, validating fNIRS as an effective neuroimaging
technique comparable to fMRI for future research in this field.

The contributions of this paper are as follows:

1) We report on a human study involving 76 participants
and two medical imaging techniques, the largest such
study we are aware of for software engineering.

2) We find that data structure and spatial operations are
related but distinct neural tasks: they use the same
focal regions of the brain but to different degrees.

3) We demonstrate that problem difficulty matters at a
neural level in computer science, with more complex
stimuli inducing a relatively higher cognitive load in data
structure tasks than in mental rotation.

4) We find that fMRI and fNIRS measurements broadly
agree for the claims in this study. However, fNIRS can-
not distinguish some activities as clearly as can fMRI.
On the other hand, fMRI may influence participant
accuracy. Care is needed when using medical imaging
for software engineering.

5) We present evidence from a qualitative investigation
showing that imaging can find connections that subjec-
tive self-perceptions may overlook.

This paper contributes to a fundamental understanding of
cognitive processes in software engineering. To the best of our
knowledge, this is the first paper to (1) study data structures
with neuroimaging, (2) study the relationship between data
structure manipulation and spatial ability, and (3) compare
fMRI and fNIRS in the context of software engineering.

II. BACKGROUND AND MOTIVATION

We summarize results and techniques related to medical
imaging and psychology for a computer science audience.
Section II-A overviews the mechanism and research use of
fMRI and fNIRS, including their relative advantages and
disadvantages for our experiment. Section II-B summarizes
the study of mental rotation in psychology, supporting our
experimental use of it as a neurological basis for spatial ability.

A. Medical Imaging

Functional neuroimaging techniques are used to study brain
activity. Over the past 30 years, non-invasive in vivo functional
neuroimaging techniques have emerged as important tools
in understanding cognitive processes. We discuss the most
popular techniques: fMRI and its counterpart, fNIRS. First, as
non-invasive tools, these two imaging modalities pose signifi-
cantly less risk and can access a wider range of brain regions
than previous invasive techniques (e.g., electrocorticography).
Second, fMRI and fNIRS provide a wider field of view and
higher spatial resolution than other functional neuroimaging
techniques (e.g., EEG, MEG), enabling characterization of a
brain region’s contribution to a specific task. Third, fMRI and
fNIRS do not use ionizing radiation or radioactive elements
common in many other neuroimaging modalities (e.g., CT,
PET). Instead, both techniques rely on the hemodynamic
response, the metabolic changes (e.g., oxygen, glucose) in
neuronal blood flow to active brain regions, using oxygen con-
sumption as an indirect measurement for brain activity [14].

As a result, fMRI and fNIRS have experienced a dramatic
rise in popularity in research. In 2010 alone, fMRI was used
in more than 1500 published articles [78]. Among other
examples, fMRI has been used to study face recognition,
decision making, resting, and vegetative states [47], [53],
[57], [78], [79], [88]. Similarly, the use of fNIRS has grown
significantly [12]. The applications of fNIRS span many fields
such as behavioral development, psychiatric conditions, and
brain injury [12], [27], [48], [56].

However, fMRI and fNIRS also share limitations. One
limitation is hemodynamic lag: the onset of changes in neu-
ronal blood flow peaks several seconds after the onset of
stimuli [1], [39]. Similarly, the hemodynamic response satu-
rates over time [46], resulting in weaker signals for sustained
tasks. Both characteristics enforce experimental restrictions
such as limited task duration (commonly 30 seconds) and
require robust mathematical analysis [10], [74]. In this study,
we follow best practices in neuroscience and psychology to
analyze hemodynamic response signals (Section IV).

1) How fMRI Works: fMRI provides indirect measurements
of brain activity by calculating the blood-oxygen level depen-
dent (BOLD) signal, defined as the ratio of oxygenated to
deoxygenated hemoglobin [58]. fMRI captures BOLD signals
via the application and removal of a series of magnetic fields.
As task-related brain activity is mapped onto an anatomical
scan of the participant’s brain in the associated mathematical
analysis, participants must lie still in the fMRI bore throughout
the experiment with minimal head movement.

2



2) How fNIRS Works: fNIRS also measures the hemody-
namic response to determine active brain regions. It relies
on differences in the absorption of chromophores, groups of
atoms that generate color through the absorption of light,
between oxygenated and deoxygenated hemoglobin. Light
is emitted and detected through devices placed at specific
locations on a scalp cap worn by the participant. fNIRS admits
relative freedom of motion and has few environmental restric-
tions. For example, participants can sit in front of a computer
and perform in a more realistic software development setting.

3) Comparison of fMRI and fNIRS: fMRI provides excel-
lent spatial resolution and penetrating power. It is a precise
neuroimaging modality that captures activations across the
whole brain. In contrast, fNIRS provides inferior spatial res-
olution and depth due to inconsistent photon paths and the
limited penetration of near-infrared light. As a result, fNIRS
also provides a noisier signal, requiring careful considerations
in experiment and analysis design. Likewise, fNIRS requires
deciding in advance on the placement of light emitter-detector
devices. The number of regions fNIRS can measure simulta-
neously is limited by physical space on the scalp.

However, fNIRS is gaining traction as a neuroimaging tech-
nique due to its portability, ease of administration, ecological
validity, and lower cost. In contrast, the high cost, restrictive
environment, and high sensitivity to participant motion of
fMRI limit its practicality for a broad spectrum of use cases.
In this paper, we present recommendations for the use of fMRI
and fNIRS to study software engineering.

4) Motivating Functional Neuroimaging: We outline the
importance of using medial imaging to understand the mental
processes associated with data structure manipulations (dis-
cussed further in previous work [30], [61], [76]):
Unreliable self-reporting. Previous software engineering [32]
and psychology studies [45], [46] demonstrate that humans’
self-reporting are often unreliable. Medical imaging can give
accurate, objective explanations of subjective processes.
Pedagogy and training. We can take advantage of visual
representations to help students learn programming [4]. Ad-
ditionally, studies have found different patterns of activation
across ages for other tasks. Knowing whether this occurs in
software engineering could guide workforce retraining.
Technology transfer. Better models of human judgments of
software tools may help improve tool design.
Programming expertise. Previous studies have shown how
brain structures change with expertise for other tasks [50]
and suggested how fMRI could be used to investigate exper-
tise [63]. Imaging may help us understand the reported pro-
ductivity gap between experienced and novice programmers.

We hope medical imaging studies can help software en-
gineering researchers to gain a better understanding and im-
provement of certain tasks.

B. Mental Rotation of Objects

Mental rotation is defined as the capacity to quickly and
accurately rotate two- or three-dimensional figures in imagi-
nation [25]. Mental rotation tasks generally involve comparing

two three-dimensional objects rotated about an axis (Figure 1
right), and are a standard paradigm for testing spatial abil-
ity [18]. Neuroimaging suggests that mental rotation involves
the right parietal lobe, a region believed to be responsible
for spatial ability [17], [21], [37]. In our experiments we use
mental rotation as a validated test case for spatial ability.

Mental rotation tasks have a natural notion of difficulty:
angle of rotation. Shepard and Metzler found that the time
required to solve mental rotation tasks is a linearly-increasing
function of the angular difference between the orientations of
the two objects [75]. Gogos et al. studied the difficulty of
mental rotation using medical imaging. They used fMRI to
examine differential activations in regions within the parietal
lobe, identifying rises in the BOLD signal with increased
angles of rotation [36]. Such findings support the use of mental
rotation as a meaningful comparison for the investigation of
difficulty in this neuroimaging study.

III. EXPERIMENTAL SETUP AND METHOD

We present our study protocol to decode the neurological
bases of data structures and their relationship with spatial
ability and difficulty. Materials (e.g., all stimuli and de-
identified data) are available at the project’s website.1

A. Overview

In this human study, participants completed three blocks of
tasks while being scanned by either fMRI or fNIRS. Stimuli
consisted of data structure (i.e., list, array, tree) and mental
rotation tasks with varying levels of difficulty. This setup
permits the controlled investigation of the relationship between
data structures and spatial ability through the lens of difficulty
and the choice of medical imaging modality.

B. Recruitment

We recruited 76 students from the University of Michigan
for this study. Email solicitations were made to a graduate
student list as well as brief presentations in four upper-
level undergraduate CS classes. Monetary compensation was
offered. After standard filtering (see Section III-C), the final
pool contained measurements from 30 fMRI participants and
40 fNIRS participants. Prior to each experiment, participants
were screened for the requisite computing background. Table I
summarizes the demographic information for all participants.
The protocol was approved by our Institutional Review Board.

C. Data Collection

Each participant completed the experiment in a single
session. Upon arriving, they provided informed consent and
completed a background questionnaire. After watching a train-
ing video, participants were prepared for scanning and began
the task activities. Participants completed three task blocks
of 30 stimuli each (90 stimuli in total). All stimuli were
presented for up to 30s and required an A or B response.
A fixation cross, a mark used to center participants’ gaze, was

1http://web.eecs.umich.edu/∼weimerw/fmri.html
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TABLE I: Demographic data of eligible participants
Demographic Variables # fMRI # fNIRS

Sex Male 16 30
Female 14 10

Degree Pursuing Undergraduate 23 31
Graduate 7 9

shown before each stimulus for 2s–10s. Both fMRI and fNIRS
experiments used the same set of 90 stimuli.

Stimuli were subdivided into three categories: (1) lists and
arrays (collectively referred to as “sequences”), (2) trees,
and (3) mental rotation. Each task block consisted of 10
stimuli from each category. The stimuli order was chosen
randomly per participant. Participants were directed to respond
as quickly and accurately as possible. After the scanning,
participants completed a post survey to provide verbal expla-
nations of their choices and actions.

Our experimental task protocol was designed to accommo-
date both fMRI and fNIRS. For the fMRI experiments, par-
ticipants lay in an fMRI machine (see Section II-A1) holding
MR-compatible buttons and remained in the machine for the
entire scan (see Figure 2). In contrast, fNIRS participants sat
in a chair wearing an fNIRS device (see Section II-A2) using
a standard keyboard and monitor (see Figure 3). Participants
were asked to remain still, but were permitted five minute
breaks between each task block. As mentioned in III-B, data
from 6 individuals were removed due to difficulties presented
when collecting fMRI data (e.g., discomfort in the machine,
incomplete dataset, or excessive head motion). In the fNIRS
analyses, data from all 40 individuals could be used.2

We now provide technical details suitable for conducting
or replicating similar research. Section III-D continues with a
discussion of the stimuli used in our experiment.

1) fMRI Acquisition: In this experiment, we used fMRI to
collect high-resolution imaging data following best practices
from neuroimaging [35], [86]. All imaging procedures were
conducted on a 3T General Electric MR750 with a 32-channel
head coil at the University of Michigan Functional MRI
Laboratory. High-resolution anatomical images were acquired
with a T1-weighted spoiled gradient recall (SPGR) sequence
(TR = 2300.80 ms, TE = 24 ms, TI = 975 ms, FA =
8◦; 208 slices, 1 mm thickness). Prior to the functional scans,
we obtained estimates of the static magnetic field using spin-
echo fieldmap sequences (TR = 7400 ms, TE = 80 ms;
2.4 mm slice thickness). Functional MRI data were then
acquired during both a resting state and during three task-
related runs. All scans employed a T2

∗-weighted multiband
echo planar imaging sequence (TR = 800 ms, TE = 30 ms,
FA = 52◦; acceleration factor: 6), with whole-brain coverage
over 60 slices (2.4 mm3 isotropic voxels).

2) fNIRS Acquisition: In this experiment, we collected data
using the TechEn Inc. CW6 fNIRS system with an above-
average number of light detection channels, allowing for a

2Although no fNIRS data were removed due to noise, fNIRS does rely on
differences in the absorption of near-infrared light, which can be obstructed
depending on properties of a participant’s hair such as color and thickness.

Fig. 2: fMRI machine used in our experiment. The participant lies
flat in the center of the bore.

(a) fNIRS cap (b) fNIRS environment
Fig. 3: The fNIRS cap on the head of a participant providing
coverage of Brodmann areas 6–9, 17–19, 21, 39, 40, 41, 44–47 is
shown on the left. On the right, a participant is shown completing
the tasks in the fNIRS experimental environment.

broader view of the brain activities than many published
fNIRS studies (cf. [41], [54]). This system contains two laser
diodes at 690 nm and 830 nm with fiber optic cables to
transmit light between the instrument and a sensor probe
on the participant’s head. We designed three head caps to
accommodate different head sizes (head circumference: 58 cm,
60 cm, 62 cm) based on the international 10–20 system [42],
[83], [91] (see Figure 3a). To fit the fNIRS cap to each
participant [42], we aligned the cap center with the 10–20
point fPZ (above the bridge of the nose, see [83]). The cap
included 16 light emitters and 32 detectors, spaced 3 cm apart,
yielding 61 data collection channels3 deployed at different
regions. Regions were chosen based on previous neuroimaging
studies of program comprehension and mental rotation [17],
[76], and consisted of 15 Brodmann4 areas. Signals were
sampled at 50 Hz and then resampled to 2 Hz for analysis.

D. Materials and Design

As described in Section III-C, participants were presented
with three categories of stimuli: (1) sequences, (2) trees, and
(3) mental rotation. Each stimulus from the first and second
categories included a starting data structure, an operation to
perform, and two answer choices (Figure 4). Answers were
either numerical values to describe the outcome of an opera-
tion or candidate data structures resulting from an operation.
A sequence appeared as either a linked list or an array. For
simplicity of modeling, we defined the difficulty of a sequence

3In theory, each emitter-detector pair could form a channel. In practice, our
fNIRS hardware throughput limited us to 61 channels.

4The Brodmann anatomical classification system divides the brain into 52
areas, each associated with specific neurological functions [34].
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(a) Sequence (List or Array) (b) Tree (c) Mental Rotation
Fig. 4: Example task stimuli, reduced for presentation space. Sequence and Tree stimuli examples shown are simplified for clarity.

or tree task to be the total number of elements present — the
N in Big-Oh notation.

The sequence tasks include merge, insert, and swap opera-
tions. The tree tasks include binary search tree (BST) rotation,
insertion, and traversal operations. In mental rotation tasks,
participants were shown a three-dimensional object and two
candidate objects, then chose the candidate that could result
from a rigid rotation of the original (Figure 4c). We adapted the
Mental Rotation Stimulus Library established by Peters and
Battista [66] with rotational angle difficulty (see Section II-B).
Figure 4 shows simplified examples. Stimuli are available at
the project’s website.

In the fMRI experiment, the stimuli were presented as im-
ages on a screen in the back of the scanner. Participants viewed
stimuli via a mirror mounted atop the head coil.5 Conversely,
in the fNIRS experiment, the stimuli were presented as images
on a computer monitor next to the fNIRS device (Figure 3b).

IV. APPROACH

In this section, we present details on the mathematical
analyses applied to fMRI and fNIRS data. Our goal is to
localize brain activations from task-related changes in the
BOLD response (fMRI) or light absorption (fNIRS). Such
analyses pose complicated statistical challenges, involving
the interpretation of hemodynamic responses across anatomi-
cally and functionally diverse participants, which themselves
are indirect metabolic proxies for underlying neuronal (i.e.,
molecular/cellular) responses. We used standard preprocessing
techniques to identify and remove artifacts, validate model
assumptions, and standardize locations of brain regions across
participants. We then used general linear models to obtain
estimates of task-related brain activations within voxels (fMRI)
or channels (fNIRS) based on the canonical hemodynamic
response function. Finally, we performed statistical tests at
both individual and group levels to test for significant brain
activations, including subsequent correction for false positives.

Notation. We use the neuroimaging notation A > B to refer
to the contrast (or difference) between two task conditions. For
example, Sequence > Tree refers to the comparison of brain
activations during sequence vs. tree manipulation. Contrasts
are directional tests: the aforementioned Sequence > Tree
contrast will specifically attempt to identify regions in which

5A helmet-like casing that surrounds the head and is essential for capturing
high-quality images [16].

average sequence task activity is greater than tree manipula-
tion. Critically, this does not imply that the inverse contrast
(Tree > Sequence) will reveal regions in which tree activity
is significantly greater than sequence activity, as differences
in the opposite direction may be too small to be statistically
meaningful (particularly with the conservative thresholds we
use to guard against false positives).

A. fMRI Analysis Approach

Preprocessing. A critical first step in the analysis of fMRI
data is preprocessing, which serves to correct systematic
sources of noise and transform individual brains into a stan-
dard space for cross-participant comparison. We employed
a number of standard preprocessing procedures using the
Statistical Parametric Mapping 12 (SPM12, Wellcome Trust
Centre for Neuroimaging, London) software in Matlab. First,
we computed voxel displacement maps (VDMs) using images
from the fieldmap sequence. We then realigned the functional
scans after accounting for head motion over time; the VDMs
were used to “unwarp” geometric distortions from motion.
Next, the anatomical scans were segmented, skull-stripped,
and spatially coregistered to the functional data. All images
were then transformed into a standard space according to
the Montreal Neurological Institute (MNI152) template [51].
Finally, we computed a brain mask using gray and white
matter segments of the anatomical scans — this was applied in
subsequent statistical analyses to prevent identification of false
positive signals within ventricles or outside of brainspace.

First-level analysis. Functional MRI analyses are multi-
level. First-level models are specified on individual participant
data — the results are then combined in a group-level model
to assess average task-related changes in brain activity. We
specified two first-level general linear models (GLMs) per par-
ticipant. Briefly, these analyses require us to predict the BOLD
response to each condition — voxels whose timeseries align
with the predicted response are “task-sensitive”. In each GLM,
we specified regressors for Sequence, Tree, and Mental stimuli
across all runs. The duration of each event was curtailed to
participant response times. These were convolved with the
canonical hemodynamic response function (HRF) and high-
pass filtered (σ = 128 s) to remove low-frequency noise. In
one model, we additionally specified a parametric modulator
for each condition to determine whether the magnitude of the
BOLD response scaled linearly with trial difficulty. All models
were fit using robust weighted least squares (rWLS) [24],
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which first obtains estimates of the error variance at each
timepoint and reweights the images by a factor of 1/variance
to reduce the influence of noisy scans (e.g., due to head
motion). This procedure homogenizes the residual timeseries
and obtains optimal parameter estimates for each condition.

Contrasts and group-level analysis. Following first-level
model estimation, we computed pairwise contrasts to deter-
mine mean differences in activity between conditions. These
were estimated on a within-participant basis (i.e., on first-level
models). We applied a 5 mm3 full-width at half maximum
(FWHM) Gaussian smoothing kernel to each contrast map and
carried them upward into group-level random effects analyses.
A GLM in this context allows us to assess average activity
across all participants, accounting for inter-individual variance
to make some population-level inference. The end result is
a statistical parametric map of t-values describing clusters
of significant activity for a given task-related comparison.
Importantly, all models and tests described here were done
voxelwise — that is, a GLM was specified and estimated
for each of nearly 73,000 voxels in brainspace. We therefore
applied a false discovery rate (FDR) threshold at q < .05 to
control for false positives as a result of multiple comparisons.

B. fNIRS Analysis Approach

Preprocessing. The raw fNIRS data are light signals trans-
mitted through the channels between emitters and adjacent
detectors on the fNIRS cap. The light signals were converted
to a measure of the optical density6 change over time that
results from hemodynamic responses.

First-level analysis. Statistical analyses for fNIRS follow
the same general principles as fMRI. We specified within-
subject, first-level GLMs to model fNIRS optical density
measurements in all the channels that were statistically related
to the timing of the hemodynamic responses (as determined
by convolving timeseries of stimulus events with the canonical
HRF). In fNIRS, systemic physiology and motion-induced
artifacts are major sources of noise and false positives. We
therefore fit our models using autoregressive-whitened robust
regression [9], which controls for such confounds and affords
optimal parameter estimation. Then, we applied t-tests to
the regression coefficients describing the task-related brain
activations modeled for every participant. We additionally
separated tasks into three difficulty levels and constructed
GLMs to analyze the effect of task difficulty on neural activity.

Contrasts and group-level analysis. As with the fMRI
analysis, we computed pairwise contrasts to determine mean
differences in activity between conditions, estimated on a
within-participant basis. Next, we conducted a group-level
analysis to summarize the first-level regression coefficients. A
mixed effects model was used to examine the average group-
level response, with individual participants treated as random
effects. Finally, we applied an FDR threshold at q < .05 to
control for false positives from multiple comparisons.

6The degree to which a refractive medium retards transmitted rays of light.

Fig. 5: Significant clusters of activity for Mental > Tree, inde-
pendent of task difficulty. “Hotter” colors indicate regions showing a
larger magnitude difference between the two tasks (i.e., more activity
during mental rotation relative to tree manipulation).

V. RESULTS AND ANALYSIS

We present quantitative and qualitative analyses to address
the following research questions:

RQ1 Do data structure manipulations involve spatial ability?
RQ2 What is the role of task difficulty?
RQ3 Do fMRI and fNIRS agree for software engineering?
RQ4 How do self-reporting and neuroimaging compare?

For simplicity of presentation, we use Code to refer to
sequence (array and list) and tree tasks collectively.

A. RQ1 (Data Structures & Spatial Ability) — fMRI

We began with a broad examination of mental rotation vs.
code tasks, independent of task difficulty: this would allow us
to determine whether there were reliable differences between
mental rotation and the two data structure tasks on average.
A group-level test of Code > Mental yielded no significant
activations after FDR thresholding (i.e., no regions showed
consistently stronger activations across both tree and sequence
tasks relative to mental rotation). However, Mental > Code
revealed robust increases in activation (FDR-corrected) of
several regions commonly associated with the brain’s “default
mode network” (DMN) [13]. Most notably, we observed bilat-
eral recruitment of wide swaths of posterior cingulate cortex
(PCC; BA 31) and medial prefrontal cortex (mPFC; BA 8),
including subgenual anterior cingulate cortex (sgACC; BA 32).
On the lateral face, there emerged a large cluster of activity
in the left angular gyrus (AG) / temporoparietal junction
(TPJ) (BA 39, 21–22), with additional clusters extending
rostrally along the superior temporal sulcus (pSTS) and middle
temporal gyrus (MTG) to the temporal pole (BA 21, 38). These
anterior temporal cortex clusters were also largely bilateral.
The DMN is heavily implicated in various types of mental
simulation, as required by the tasks performed here.

Given that mental rotation reliably activated DMN regions
more than the two code tasks, we applied more focal contrasts
to determine whether there were specific differences between
Mental > Tree and Mental > Sequence. This revealed that
the Mental > Code effect was primarily driven by Mental >
Tree (Figure 5). While Mental > Sequence yielded significant
differential activations in midline DMN regions such as the
PCC and mPFC, these clusters had relatively minimal spatial
extent. Patterns of activity related to Mental > Tree, however,
were nearly identical to those observed in the comprehensive
Mental > Code contrast (Pearson’s r = 0.97, p < .001). As
with the omnibus Code > Mental contrast above, the inverse
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contrasts (Tree > Mental and Sequence > Mental) also had
no voxels survive FDR thresholding.

fMRI results suggest that there are more similarities than
differences during mental rotation vs. software engineering
tasks. A number of DMN regions involved in mental sim-
ulation were recruited more heavily during mental rotation;
nevertheless, 95% of voxels were statistically indistinguish-
able between Mental and Tree tasks.

B. RQ1 (Data Structures & Spatial Ability) — fNIRS

Table II summarizes the fNIRS results. We first examined
brain activations comparing each task to a rest condition.
The columns Sequence, Mental and Tree show the Brodmann
Areas that are significantly activated during the task categories
(p < 0.01 and q < 0.05). The t-values range from 8 (much
stronger activation) to -8 (much weaker). We observe that the
three categories of tasks all involve significant activations in
exactly the same brain regions: BA 6–9, 17–19, 39 and 46.

In the frontal lobe, the premotor cortex and supplementary
motor cortex (BA 6), and the frontal eye field (BA 8) showed
activation. In the parietal lobe, the part which is associated
with visuomotor coordination presented activation (BA 7)
and part of Wernicke’s area showed activation (BA 39). We
also observed strong activation in the primary, secondary and
associative visual cortex (BA 17–19). Finally, regions of the
dorsolateral prefrontal cortex (BA 9, 46) showed activations
for all tasks. All the brain areas listed in the table passed FDR
correction (q < 0.05).

Having established a broad similarity in how the three tasks
each differ from a rest state, we narrowed the investigation by
examining how the tasks differ from each other. In Table II,
the column Sequence > Mental shows the brain activation
results when comparing sequence tasks and mental rotation
tasks. Areas related to vision (BA 17–19), Wernicke’s area
(BA 39) and the prefrontal cortext (BA 46) showed very
different patterns of activation between the data structure task
and mental rotation. In addition, areas related to language
processing (BA 41, 44–45, and 47, which include Broca’s
Area) strongly distinguish the two. As we observe here, an area
(e.g., BA 41) may not significantly distinguish Sequence from
a rest state or Mental from a rest state, but may significantly
distinguish them from each other.

However, the Mental > Tree and Sequence > Tree
distinctions are far less compelling. In a comparison, t-values
near to either 8 or -8 are relevant. While Sequence > Mental
features three areas that reach a magnitude of 5 or more, the
other two contrasts never reach a magnitude of 5 and involve
fewer regions and channels. In an fNIRS analysis [40], [82],
contrasts of that strength result in a conclusion that Mental
and Tree, as well as Sequence and Tree, are similar tasks.

fNIRS results demonstrate that mental rotation and data
structure tasks involve activations to the same brain regions.
However, while Sequence > Mental may be a compelling
contrast, the fNIRS evidence does not support the claim that
the other tasks are distinct.

Fig. 6: Significant clusters of activity for Sequence > Mental, ac-
counting for task difficulty. “Hotter” colors indicate regions showing a
larger magnitude difference between the two tasks (i.e., more activity
during difficult sequence manipulation trials relative to difficult
mental rotation trials).

C. RQ2 (Task Difficulty) — fMRI

When we considered the difficulty of each task, we found
a significant effect in Sequence > Mental (Figure 6). Larger
sequence tasks elicited stronger activations across a wide ex-
tent of the brain (FDR-corrected). With the exception of PCC,
there was little to no overlap with DMN regions (as seen in the
contrasts in Section V-A). Rather, the largest clusters included
bilateral postcentral gyrus (BA 40), left inferior frontal gyrus
(IFG; BA 44–45), bilateral dorsomedial PFC (dmPFC; BA
6, 8), bilateral anterior insula (BA 13), and bilateral ventral
precuneus extending into visual association cortex (BA 18).
The heavy recruitment of frontoparietal regions (particularly in
the left hemisphere) suggests an increase in cognitive load [22]
scaling with the total size of the stimuli.

That is, we found that the brain works measurably “harder”
(i.e., there is a larger magnitude BOLD response) for more
difficult problems. Because the relationship between mental
rotation difficulty and the BOLD signal is so well-established
in psychology and cognitive neuroscience [36], [75], it is
particularly compelling that we observe a significantly larger
effect (in terms of cognitive load and top-down control rising
with more complex stimuli) for sequence data structures in
software engineering than for mental rotation.

A similar analysis with our fNIRS data revealed no signifi-
cant findings for the effect of task difficulty on neural activity.
This is likely due to fNIRS lacking the penetrative depth and
spatial resolution of fMRI.

The brain works measurably harder for more difficult soft-
ware engineering problems (in terms of cognitive load).
Moreover, the regions activated suggest a greater need for
effortful, top-down cognitive control when completing chal-
lenging sequence manipulation tasks.

D. RQ3 (fMRI and fNIRS Agreement)

Our fMRI and fNIRS measurements and analyses both
support the claim that mental rotation and data structure tasks
differentially recruit a number of brain regions. However,
while fMRI evidence supports a very robust Mental > Tree
contrast, the fNIRS evidence is insufficient to support that
same claim. This is sensible when we consider the regions
yielding the largest differences in fMRI: they largely corre-
spond to structures (e.g., the medial prefrontal cortex and pos-
terior cingulate) that fNIRS cannot measure. Very informally,
the parts of the brain that distinguish mental rotation from tree
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TABLE II: Summary of fNIRS results. Each column corresponds to a particular task. Each row corresponds to a particular Brodmann
Area used during that task along with the range of t-values measured by all fNIRS channels on that BA. Positive t-values indicate stronger
activation while negative t-values indicate weaker activation. We report all t-values with p < 0.01: all reported results are significant.

Sequence Mental Tree Sequence > Mental Mental > Tree Sequence > Tree
BA t-value range BA t-value range BA t-value range BA t-value range BA t-value range BA t-value range

6 2.5 – 5.0 6 2.8 – 4.3 6 3.8 – 4.6 6 2.7 – 2.7
7 4.7 – 5.5 7 5.9 – 6.4 7 5.1 – 7.2
8 2.6 – 5.1 8 2.9 – 5.5 8 2.5 – 5.6
9 2.6 – 5.1 9 5.5 – 5.5 9 2.7 – 5.3

17 3.1 – 4.9 17 3.2 – 6.2 17 2.6 – 5.3 17 -2.4 – -2.4
18 3.8 – 5.2 18 5.3 – 6.9 18 4.2 – 5.3 18 -2.4 – -2.4 18 2.6 – 2.6
19 4.0 – 6.6 19 5.3 – 9.1 19 4.2 – 7.3 19 -4.3 – -3.2 19 2.4 – 4.3
39 3.7 – 7.1 39 4.1 – 7.9 39 4.4 – 7.9 39 -3.3 – -3.3 39 2.4 – 2.4

41 -2.3 – -2.3
44 -3.3 – -2.6 44 2.6 – 3.4
45 -5.0 – -2.4 45 3.5 – 3.5

46 3.8 – 4.1 46 3.5 – 4.6 46 4.7 – 5.6 46 -5.9 – -2.4 46 2.7 – 4.3 46 -2.6 – -2.6
47 -5.9 – -5.0 47 3.4 – 4.3

manipulations are too far “inside the skull” for fNIRS to see:
its near-infrared light cannot penetrate deeply beyond regions
near the cortical surface.

However, while fMRI is more spatially-resolved, its re-
strictive and alien environment can also be more daunting
for participants. We compared participant performance (i.e.,
whether or not they gave the correct answer and how long it
took) for fMRI and fNIRS; such information was available
for 30 fMRI and 40 fNIRS participants. Recall that the
questions were identical and the participants were drawn from
the same pool. The average accuracy of fNIRS participants,
92%, was significantly higher than the 85% accuracy of fMRI
participants (t = 4.50, p < 0.01) with no significant difference
in response time (t = 0.70, p = 0.25). This could be a very
relevant concern for medical imaging studies of productivity,
expertise, accuracy or similar software engineering issues.

fMRI and fNIRS agreed that many areas similarly activate
during data structure and mental rotation tasks. However,
there were also differences between the tasks that fNIRS
was not able to observe. In addition, the fMRI environment
had a significant effect on participant accuracy.

E. RQ4 (Self-Reporting & Neuroimaging) — Qualitative

We also conducted a qualitative analysis of survey data
focusing on the correlation between explanations provided by
participant and neuroimaging data. Data was available for 72
of our 76 participants. At a high level, we find that self-
reporting often subtly contrasts with analyses from fMRI and
fNIRS data. Complete (de-identified) survey information is
available with our other experimental materials and measure-
ments; for space we focus here on a single indicative question.

Participants were asked to compare and contrast a mental ro-
tation task with an BST rotation task. Of the 72 responses, 70%
reported no similarity between the two tasks. The following
quote is indicative: “I don’t think those two kinds of tasks were
similar. Tree rotation was an idea acquired from CS classroom
[sic], but mental rotation was an action more natural to me
and easier to perform.” However, this subjective experience
does not align with measured observation that the same brain
regions are recruited to solve both tasks. Even if mental

rotation and tree rotation feel subjectively different, changes to
brain regions and brain region connectivity have been shown to
correlate with learning rates and expertise [50], [73]. It may be,
for example, that exercises related to spatial ability can help
improve student performance on certain data structure tasks
(e.g., because mastering one changes a brain region recruited
by the other). Speculatively, this is one example of a research
avenue that is encouraged by medical imaging data but entirely
hidden if only self-reporting data is used.

These findings reinforce a considerable body of work
on unreliable self-reporting (both in psychology [49], [68]
and in computer science, including fields such as secu-
rity [69], human-computer interaction [23], and software main-
tenance [32]). As previous studies have relied on self-reporting
to study mental processes associated with data structures [3],
[4], this evidence informs future research of the importance
of neuroimaging (or similar techniques) when studying the
cognitive processes underlying software engineering tasks.

While medical imaging data found a nuanced relationship
between mental rotation and data structure tasks, including
the involvement of the same brain regions, subjective self-
report only rarely mentioned any connections.

VI. THREATS TO VALIDITY

In this section, we describe threats to internal and external
validity in our experiment.

One potential threat to internal validity concerns whether
or not our data structure tasks measure what they claim to
be measuring (i.e., data structure manipulation). The thought
processes each participant used when answering may not be
identical: indeed, there is significant inter-participant variance
in the neural representation of this task. In addition, the
particular data structures and tasks we chose are not rep-
resentative of all of software engineering (e.g., we did not
consider skip lists, tries, heaps, maps, etc.). While we mitigate
this somewhat by considering fundamental structures (linear
sequential structures and branching trees), it is important not to
generalize our results far beyond what was directly measured.

Our use of mental rotation tasks as a baseline for spatial
ability is one potential threat to external validity, as mental
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rotation and data structure manipulations differ in their rigid-
ity. Rigid transformations are those where distances between
every pair of points on an object is preserved [7]. When
studying the relationship between data structure manipulation
and spatial ability, operations such as insertion, tree rotation,
and merging may be more amenable to comparison with non-
rigid transformations. However, we believe that mental rotation
serves as a useful baseline (Section II-B) for relating data
structures to spatial ability. Mental rotation is a paradigm case
of spatial ability that has been classified by difficulty both with
and without medical imaging [17], [21], [37].

Due to the inherent limitations of fMRI and fNIRS (see
Section II-A), we explicitly used stimuli that took no longer
than 30 seconds to finish. Thus, our results may not gener-
alize to real-world software engineering tasks. We mitigate
this threat slightly by choosing stimuli from college-level
courses, which commonly focus on associated fundamental
skills. However, this emphasis on tasks that are much shorter
than many of those performed by practicing developers is a
limitation of the current use of imaging techniques in software
engineering [15], [26], [28], [30], [41], [54], [65], [76], [77].

Next, the models used in our data analysis may threaten
external validity. To the best of our knowledge, we followed
best practices in neuroscience and psychology for our analyses.

Finally, we only recruited undergraduate and graduate stu-
dents. Thus, our results may only generalize to those with
university-level programming experience and education.

VII. RELATED WORK

In this section, we discuss previous work related to com-
puter science and neuroscience, as well as studies from other
domains that have used both fMRI and fNIRS. Additionally,
we briefly discuss previous research on the cognitive processes
underlying data structures and their manipulation.

A. Computer Science and Neuroscience

Siegmund et al. introduced the study of software engineer-
ing tasks with fMRI, focusing on code comprehension [76].
Their analyses identified five brain regions with distinct acti-
vation patterns, all of which are relevant to working memory,
attention, and language processing. Their subsequent work
presented more potential analyses of fMRI data involving
software programming, finding evidence that data-flow-based
code complexity metrics (but not control-flow-based metrics)
rest on valid assumptions [64]. Floyd et al. used fMRI to study
code comprehension, code review, and prose review [30]. In
addition to identifying brain regions associated with verbal
processing, their paper focused on expertise and classifica-
tion. Newer work has explored the relationship between bug
detection and brain activities [15], [26], code comprehension
together with other techniques such as eye tracking [65]
and the effects of beacons (semantic cues) on code compre-
hension [77]. Sato et al. studied logic problem solving and
diagrams with fMRI [71]. Our study applies Siegmund et al.’s
innovative use of neuroimaging, and adopts these previously-
identified brain regions as an established basis for verbal

processing in software engineering. Unlike previous work, we
examine data structures and spatial ability.

Similar to fMRI, fNIRS has been used to study the relation-
ship between program comprehension and brain activity. NIRS
researchers found an increase in cerebral blood flow when
analyzing obfuscated code and code that requires variable
memorization [41], [54]. Subsequent work studied the effect
of code readability on cognitive load [28], [77]. The use
of fNIRS in these studies provides additional evidence for
its application in understanding the cognitive processes in
software engineering. However, the relatively small size of
these studies (<11 participants each) reinforces the need to
validate fNIRS as a viable technique in this field. Using
70 participants with two modalities, our study supports the
feasibility of using fNIRS to study software engineering.

Besides fMRI and fNIRS, researchers have tried other
medical imaging tools to study software engineering. Crk et
al. used electroencephalography (EEG) to find that the brain’s
electrical activity can indicate both prior programming expe-
rience and self-reported experience levels [19]. Lee et al. used
EEG in a similar setting [44] to Floyd et al.’s work [30]. Parnin
used electromyography (EMG) to explore the roles of subvo-
calization for different programming tasks [62]. Researchers
have linked programming tasks and cognitive load [31], [43]
using EEG, EMG, and eye tracking.

Beyond neuroimaging, Parnin examined theories of how
programmers work and the design of programming envi-
ronments from a cognitive neuroscience perspective. Parnin
proposed a model focused on how a programmer manages
task memory, specifically during multi-tasking and interrup-
tions [61]. Similar to our study, Parnin’s work investigates
computer science from a neuroscience perspective.

Of the previous studies combining neuroimaging or cog-
nitive neuroscience with software engineering, none have
investigated the effect of data structures on brain activity or
explicitly investigated the relationship between data structures
and spatial ability. In addition, no previous study has compared
fMRI to fNIRS in the domain of software engineering.

B. Combining fMRI and fNIRS in Psychology

The trade-offs presented by fMRI and fNIRS (see Sec-
tion II-A) have motivated researchers to conduct combined
fMRI and fNIRS studies.

Cui et al. were the first to compare the two modalities
through a suite of cognitive tasks [20]. Their findings align
with ours: similar conclusions can be drawn but with inferior
resolution in the NIRS data. Liu et al. measured fMRI and
fNIRS signals from the prefrontal cortex at the same time
during cognitive tasks. Their results showed fNIRS-measured
cortical signals can be used to infer deep-brain fMRI-measured
signal but with lower prediction power. Others comparing
fNIRS and fMRI report similar findings [55], [72], [87]: fMRI
and fNIRS provide highly-correlated neural responses and
fNIRS can be an appropriate substitute for fMRI. However,
fNIRS studies must be carefully designed when involving
activities in regions more distal from the scalp. Beyond raw
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signal-level correlations, we found that the resulting models of
the two modalities do not draw identical conclusions on low-
level explorations in software engineering (see Section V-D),
a relevant concern for future imaging research in this area.

C. Data Structures

There are two main papers that have considered data struc-
tures at a cognitive level. In a qualitative study involving
nine computer science majors, Aharoni investigated student
thought processes when dealing with data structures [3], [4].
Through semi-structured interviews, Aharoni found a phe-
nomenon termed the perception of a data structure as static
or dynamic. This work formally studied the notion that data
structures could be subject to mental manipulation. In a second
study applying new analyses to the same data, Aharoni found
evidence that visual representations influenced students’ per-
ceptions of the overall properties of data structures, suggesting
that programmers use visual representations to reduce levels
of abstraction. While we draw inspiration from Aharoni’s
investigation of data structure mental manipulations, we use
medical imaging to conduct a quantitative analysis that does
not focus on self-reporting or qualitative experiments.

VIII. COSTS, FMRI, FNIRS, AND RESEARCH

Medical imaging studies, while still quite rare, are becoming
more common in the software engineering literature [15], [26],
[28], [30], [41], [54], [65], [76], [77]. fMRI and fNIRS present
tradeoffs between cost, fidelity, experimental convenience, and
experimental verisimilitude. In this section, we discuss their
tangible and intangible costs, including those associated with
participant recruitment, equipment cost and time.

As discussed in Section II-A, fMRI poses higher monetary
costs than fNIRS. In our study, the cost of fMRI was $575/hour
(including the equipment and fMRI technician, etc.). By
contrast, in our institute, the use of fNIRS equipment was free.
In both cases, participants required 30 minutes for preparation,
up to 75 minutes of scanning, and two researchers present.

In addition, each approach comes with recruitment re-
strictions. For example, fMRI typically requires corrected-to-
normal vision (because of the mirror/projection setup) and is
not approved for certain populations (e.g., pregnant women or
metalworkers). In some cases, participants may not be able to
finish a fMRI scanning due to claustrophobia. On the other
hand, fNIRS may place significant practical restrictions on
the use of participants with dark, thick hair. In practice, we
found the fNIRS restrictions to be less onerous (resulting in
0 unusable applicants compared to 4 for fMRI).

Software engineering researchers must carefully weigh the
costs and benefits. At a high level, both approaches provide
broadly similar evidence. fNIRS requires the researcher to
identify relevant brain areas in advance for cap construction
(Section II-A3) and cannot penetrate some areas relevant to
software engineering (Section V-D). While fMRI is regarded
as the gold standard for imaging accuracy, it cost roughly
$20,000 more to acquire the fMRI data than the fNIRS data
for this experiment, and the environmental constraints of fMRI

may influence participant accuracy (Section V-D). As a broad
generalization, researchers investigating a computer science
topic for the first time may favor fMRI; once the relevant
brain areas have been identified, if those regions are accessible
via fNIRS, a more cost effective and ecologically-valid study
can be conducted via fNIRS. If the proposed study requires
more freedom of motion or a quiet environment, involves
more than one participant (e.g., pair programming, face-to-face
communication, etc.), or uses metal equipment (e.g., a tablet
or cellphone), fMRI is not an option without extra effort.

IX. SUMMARY

We investigated the neural representations of fundamental
data structures and their manipulations. We hypothesized that
data structures are related to spatial ability. Our two key
insights were the use of multiple medical imaging approaches
and the use of the mental rotation paradigm to serve as a
baseline for measuring spatial ability.

Our study involved 76 participants, at least two times larger
than previous studies investigating software engineering with
medical imaging and is the first to investigate the neural
representations of data structures.

We found that data structure and spatial ability oper-
ations are related: both fMRI and fNIRS evidence demon-
strates that they involve activations to the same brain regions
(e.g., Section V-A and Section V-B, p < 0.01).

However, the similarity relationship is nuanced: spatial
ability operations and tree operations admit a significant
contrast and are characterized by differentiated activation
magnitudes (e.g., Section V-A, p < 0.001).

Further, some regions relevant to data structures are not
accessible to fNIRS: fNIRS lacked the penetrating power to
uncover the full evidence reported by fMRI (Section V-D) and
was unable to distinguish between two distinct tasks.

We also found that difficulty matters for data structure
tasks: more complicated stimuli result in greater neural acti-
vation, and thus an increase in cognitive load (Section V-C).

While a neural relationship between spatial ability and data
structure manipulation may seem clear in retrospect, it was
not obvious to our participants, 70% of whom reported no
subjective experience of similarity (Section V-E).

Since our direct comparison of fMRI and fNIRS is unique
in software engineering, we elaborate on both measurement
and performance issues (Section V-D), as well as monetary,
protocol and recruitment issues (Section VIII).

Data structures are critical to many aspects of software
engineering, but no previous work has quantitatively investi-
gated their neurological underpinnings. Using medical imaging
to understand cognitive processes in software engineering is
still very new: this study is exploratory rather than definitive.
Indeed, from our perspective it may raise more questions
than it answers, as related to implications. We hope that our
concrete analysis of a lower-cost medical imaging alternative,
and our direct analysis of a computing activity beyond the
realm of code comprehension, will encourage more researchers
to investigate the cognitive aspects of software engineering.
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