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Abstract

A variety of compilers, static analyses, and testing
frameworks rely heavily on path frequency information.
Uses for such information range from optimizing transfor-
mations to bug finding. Path frequencies are typically ob-
tained through profiling, but that approach is severely re-
stricted: it requires running programs in an indicative envi-
ronment, and on indicative test inputs.

We present a descriptive statistical model of path fre-
quency based on features that can be readily obtained from
a program’s source code. Our model is over 90% accu-
rate with respect to several benchmarks, and is sufficient
for selecting the 5% of paths that account for over half of
a program’s total runtime. We demonstrate our technique’s
robustness by measuring its performance as a static branch
predictor, finding it to be more accurate than previous ap-
proaches on average. Finally, our qualitative analysis of
the model provides insight into which source-level features
indicate “hot paths.”

1 Introduction

“Amdahl’s law” is often invoked as advice to prioritize
optimization on the most common use case. In the do-
main of program analysis, this demands hot path identifica-
tion [4, 6, 12, 24]. The importance of hot paths arises from
the empirical observation that most or all of the execution
time of a typical program is spent along a small percentage
of program paths. That is, certain sequences of instructions
tend to repeat often.

This high degree of non-uniformity in program execu-
tion makes characterizing the runtime behavior of software
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artifacts an important concern for tasks far beyond code op-
timization; for propositions as diverse as maintenance [27]
and general data-flow analysis [2]. As a result, program pro-
filing remains a vibrant area of research (e.g., [6, 17, 31])
even after many years of treatment from the community.
Unfortunately, profiling is severely limited by practical con-
cerns: the frequent lack of appropriate workloads for pro-
grams, the questionable degree to which they are indicative
of actual usage, and the inability of such tools evaluate pro-
gram modules or individual paths in isolation.

In a static context, without workloads, there is no clear
notion of the relative execution frequency of control-flow
paths. The frequency with which any given block of code
will be executed is unknown. Without additional informa-
tion all paths can only be assumed equally likely. This
practice is questionable, particularly when an analysis is
designed to measure or affect performance. It is reported
that large amounts of code exists to handle “exceptional”
cases only, with 46%–66% of code related to error handling
and 8%–16% of all methods containing error handling con-
structs (see [33, p. 4] for a survey). Such error handling
code is common, but does not significantly impact real per-
formance [22]. Therefore, the assumption that all paths are
equally likely or that input space is uniform leads to inaccu-
rate or otherwise suboptimal results in program analysis.

We propose a fully static approach to the problem of hot
path identification. Our approach is based on two key in-
sights. First, we observe a relationship between the relative
frequency of a path and its effect on program state. Second,
we carefully choose the right level of abstraction for con-
sidering program paths: interprocedural for precision, but
limited to one class for scalability.

Program State. We observe that there are static source-
level characteristics that can indicate whether a program
path was “intended” to be common, or alternatively, if it
was designed to be rare or “exceptional.” We claim that in-
frequent cases in software typically take one of two forms.
The first involves error detection followed by a divergence
from the current path, such as returning an error code as a
response to an invalid argument or raising an exception af-
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ter an assertion failure. The second involves significant re-
configuration of program state, such as reorganizing a data
structure, reloading data from a file or resizing a hash table.
Conversely, common cases typically entail relatively small
state modifications, and tend to gradually increase available
context, subtly increasing system entropy. We hypothesize
that paths which exhibit only small impacts on program
state, both in terms of global variables and in terms of con-
text and stack frames, are more likely to be hot paths.

Program Paths. When predicting relative path execu-
tion frequency, the definition of “path” is critical. In their
seminal work on gprof, Graham et al. note, “to be use-
ful, an execution profiler must attribute execution time in a
way that is significant for the logical structure of a program
as well as for its textual decomposition.” [17] Flat profiles
are not as helpful to programmers or as accurate as inter-
procedural call-graph based profiles. We consider method
invocations between methods of the same class to be part of
one uninterrupted path; this choice allows us to be very pre-
cise in common object-oriented code. For the purposes of
our analysis we split paths when control flow crosses a class
boundary; this choice allows us to scale to large programs.

These two insights form the heart of our static approach
to predicting dynamic execution frequencies. In this paper
we enumerate a set of static source-level features on control
flow paths. Our features are based on structure, data flow,
and effect on program state. We employ these features to
train a machine learning algorithm to predict runtime path
frequency. Our approach reports, for each path, a numeri-
cal estimate of runtime frequency relative either to the con-
taining method, or to the entire program. We evaluate our
prototype implementation on the SPECjvm98 benchmarks,
using their supplied workloads as the ground truth. We also
discuss and evaluate the relative importance of our features.

The main contributions of this paper are:

• A technique for statically estimating the runtime fre-
quency of program paths. Our results can be used to
support or improve many types of static analyses.

• An empirical evaluation of our technique. We mea-
sure accuracy both in selecting hot paths and in rank-
ing paths by frequency. We demonstrate the flexibility
of our model by employing it to characterize the run-
ning time and dynamic branching behavior of several
benchmarks. The top 5% of paths reported account for
over half of program runtime; a static branch predictor
based on our technique has a 69% hit rate compared to
the 65% of previous work.

The structure of this paper is as follows. We discuss re-
lated work, present a motivating example, and enumerate
several potential uses of our technique in Section 2. Af-
ter describing our process for program path enumeration in

Section 3, we discuss the features that make up our model
in Section 4. We perform a direct model evaluation in Sec-
tion 5. We then perform a timing based experiment (Sec-
tion 6) and a branch prediction experiment (Section 7). Fi-
nally, we extract and discuss possible implications of our
model (Section 8) and then conclude.

2 Context and Motivation

In this section, we present key related work, review a
simple example that demonstrates the application and out-
put of our technique, and then highlight a number of tasks
and analyses that could benefit from a static prediction of
dynamic path frequencies.

The work most similar to ours is static branch predic-
tion, a problem first explored by Ball and Larus [5]. They
showed that simple heuristics are useful for predicting the
frequency at which branches are taken. The heuristics typ-
ically involve surface-level features such as, “if a branch
compares a pointer against null or compares two pointers,
predict the branch on false condition as taken.” Extensions
to this work have achieved modest performance improve-
ments by employing a larger feature set and neural network
learning [10].

We have chosen to focus on paths instead of branches
for two reasons. First, we claim that path-based frequency
can be more useful in certain static analysis tasks; see Ball
et al. [7] for an in-depth discussion. Second, paths contain
much more information than individual branches, and thus
are much more amenable to the process of formal modeling
and prediction.

Automatic workload generation is one strategy for cop-
ing with a lack of program traces. This general technique
has been adapted to many domains [21, 23, 26]. While
workload generation is useful for stress testing software and
for achieving high path coverage, it has not been shown suit-
able for the creation of indicative workloads. In contrast, we
attempt to model indicative execution frequencies.

More recent work in concolic testing [29, 30] explores
all execution paths of a program with systematically se-
lected inputs to find subtle bugs. The technique interleaves
static symbolic execution to generate test inputs and con-
crete execution on those inputs. Symbolic values that are
too complex for the static analysis to handle are replaced by
concrete values from the execution. Our approach makes
static predictions about dynamic path execution frequency,
but does not focus on bug-finding.

2.1 Motivating Example

We hypothesize that information about the expected run-
time behavior of imperative programs, including their rel-
ative path execution frequency, is often embedded into
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1 /**
2 * Maps the specified key to the specified
3 * value in this hashtable ...
4 */
5 public synchronized V put(K key, V value) {
6
7 // Make sure the value is not null
8 if (value == null) {
9 throw new NullPointerException();

10 }
11
12 ...
13
14 modCount++;
15 if (count >= threshold) {
16 // Rehash the table if the
17 // threshold is exceeded
18 rehash();
19
20 tab = table;
21 index = (hash & 0x7FFFFFFF) % tab.len;
22 }
23
24 // Creates the new entry.
25 Entry<K,V> e = tab[index];
26 tab[index] =
27 new Entry<K,V>(hash, key, value, e);
28 count++;
29 return null;
30 }

Figure 1. The put method from the Java SDK ver-
sion 1.6’s java.util.Hashtable class. Some code
has been omitted for illustrative simplicity.

source code by developers in an implicit, but nonetheless
predictable, way. We now present an intuition for how this
information is manifested.

Figure 1 shows a typical example of the problem of hot
path identification in a real-world algorithm implementa-
tions. In this case there are three paths of interest. The
path corresponding to insertion of the new entry on lines
26–27 is presumably the “common case.” However, there
is also the case in which the value parameter is null and
the function terminates abruptly on line 9, as well as the
case where the rehash method is invoked on line 18, an
operation likely to be computationally expensive.

This example helps to motivate our decision to follow
paths within class boundaries. We leverage the object-
oriented system paradigm whereby code and state infor-
mation are encapsulated together. Following paths within
classes enables our technique to discover that rehash mod-
ifies a large amount of program state. Not tracing all exter-
nal method invocations allows it to scale.

Our technique identifies path features, such as “throws
an exception” or “reads many class fields”, that we find
are indicative of runtime path frequency. The algorithm we
present successfully discovers that the path that merely cre-
ates a new entry is more common than the rehash path or
the exceptional path. We now describe some applications
that might make use of such information.

2.2 Example Client Applications

Profile-guided optimization refers to the practice of op-
timizing a compiled binary subsequent to observing its run-
time behavior on some workload (e.g., [3, 8, 18]). Our
technique has the potential to make classes of such opti-
mization more accessible; first, by eliminating the need for
workloads, and second by removing the time required to
run them and record profile information. A static model
of relative path frequency could help make profile-guided
compiler optimizations more mainstream.

Current work in computational complexity estimation
has been limited to run-time analyses [16]. At a high level,
the task of estimating the complexity of the put procedure
in Figure 1 requires identifying the paths that represent the
common case and thus dominate the long-run runtime be-
havior. This is critical, because mistakenly assuming that
the path along which rehash is invoked is common, will
result in a significant over-estimate of the cost of put. Sim-
ilarly, focusing on the path corresponding to the error con-
dition on line 9 will underestimate the cost.

Static specification mining [1, 32], which seeks to in-
fer formal descriptions of correct program behavior, can be
viewed as the problem of distinguishing correct paths from
erroneous ones in programs that contain both. Behavior that
occurs on many paths is assumed to be correct, and devia-
tions may indicate bugs [14]. In practice, static specification
miners use static path counts as a proxy for actual execution
behavior; a static model of path frequency would improve
the precision of such techniques.

Many static analyses produce false alarms, and statistical
ranking is often used to sort error reports by placing likely
bugs at the top [20]. These orderings often use static pro-
portion counts and z-rankings based on the assumption that
all static paths are equally likely. A static prediction of path
frequency would allow bug reports on infrequent paths, for
example, to be filtered to the bottom of the list.

In general any program analysis or transformation that
combines static and dynamic information could benefit
from a model of path frequency. Areas as disparate as
program specialization [28], where frequency predictions
could reduce the annotation and analysis burden for indicat-
ing what to specialize, and memory bank conflict detection
in GPU programs [9], where frequency predictions could
reduce the heavy simulation and deployment costs of static
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analysis, are potential clients. In the next sections we de-
scribe the details of our analysis.

3 Path Enumeration

In an imperative language, a method is comprised of a set
of control flow paths, only one of which will be executed on
any actual invocation. Our goal is to statically quantify the
relative runtime frequency with which each path through
a method will be taken. Our analysis works by analyzing
features along each path.

Our algorithm operates on a per-class-declaration basis.
This enables it to consider interactions between the meth-
ods of a single class that are likely to assist in indicating
path frequencies, but avoids the large explosion of paths that
would result if it were fully context sensitive.

Central to our technique is static path enumeration,
whereby we enumerate all acyclic intra-class paths in a tar-
get program. To experimentally validate our technique, we
also require a process for dynamic path enumeration that
counts the number of times each path in a program is exe-
cuted during an actual program run.

3.1 Static Path Enumeration

Static intra-class path enumeration begins at each mem-
ber function of each concrete program class. A static intra-
class path is a flat, acyclic whole-program path that starts at
a public method of a class T and contains only statements
within T and only method invocations to methods outside of
T . We first enumerate the paths in each method separately;
we then combine them to obtain intra-class paths.

For a given method, we construct the control flow graph
and consider possible paths in turn. A method with loops
may have an unbounded number of potential paths; we do
not follow back edges to ensure that the path count is finite.
For the purposes of our analysis, a path through a loop rep-
resents all paths that take the loop one or more times. We
find that this level of description is adequate for many client
analyses, but higher bounds on the number of loop itera-
tions are also possible. Our path definition is similar to the
one used in efficient path profiling [6], but richer in that we
consider certain interprocedural paths. We process, record
and store information about each path as we enumerate it.

Once all intra-method paths are enumerated they can be
merged, or “flattened”, into intra-class paths. We use a fix-
point worklist algorithm. We iterate though each path, and
at intra-class invocation sites we “splice-in” the paths corre-
sponding to the invoked method, cloning the caller path for
each invoked callee path. The process terminates when all
such invocation sites in all paths have been resolved. Since
we do not allow a statement to appear more than once on

Input: Concrete Class T .
Output: Mapping P : method→ static intra-class path set

1: for all methods meth in T do
2: P (meth)← acyclic paths in meth
3: end for
4: let Worklist ← methods in T
5: while Worklist is not empty do
6: let meth ← remove next from Worklist
7: for all paths path in P (meth) do
8: let changed ← false
9: for all method invocations callee() in path do

10: if callee ∈ T then
11: for all paths pathc in P (callee) do
12: let path ′ ← copy of path
13: path ′ ← path ′[callee() 7→ pathc]
14: P (meth)← P (meth)∪{path ′}−{path}
15: changed ← true
16: end for
17: end if
18: end for
19: if changed then
20: Worklist ←Worklist ∪ {meth}
21: end if
22: end for
23: end while

Figure 2. High-level pseudocode for enumerating
static intra-class paths for a concrete class T .

any single path and the number of invocation sites is finite,
this process always terminates.

Figure 2 shows the pseudocode for our static path enu-
meration algorithm. While our static intra-class path def-
inition is intuitive, we show the enumeration process be-
cause our path frequency estimates are given only for static
paths we enumerate and our rankings of path frequencies
are given only relative to other static paths. Our intra-class
path definition thus influences the results of our analysis.

3.2 Dynamic Path Enumeration

To train and evaluate our model of path execution fre-
quency we require “ground truth” for how often a given
static path is actually executed on a typical program run.
Our dynamic path enumeration approach involves two
steps. First, we record each statement visited on a program
run; before executing a statement we record its unique iden-
tifier, including the enclosing class and method. One run of
the program will yield one single list of statements.

Second, we partition that list into static paths by process-
ing it in order while simulating the run-time call stack. We
split out intra-class paths when the flow of control leaves
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the currently enclosing class or when the same statement is
revisited in a loop. Once the list of statements has been par-
titioned into static intra-class paths, we count the number of
times each path occurs. This dynamic count is our ground
truth and the prediction target for our static analysis.

4 Static Path Description Model

We hypothesize that there is sufficient information em-
bedded in the code of a path to estimate the relative fre-
quency with which it will be taken at runtime. We charac-
terize paths using a set of features that can be used to render
this estimate. With respect to this feature set, each path can
be viewed as a vector of numeric entries: the feature values
for that path. Our path frequency estimation model takes
as input a feature vector representing a path and outputs the
predicted frequency of that path.

In choosing a set of features we have two primary con-
cerns: predictive power and efficiency. For power, we
base our feature set on our earlier intuition of the role that
program state transformations play in software engineering
practice. To scale to large programs, we choose features
that can be efficiently computed in linear time.

The features we consider for this study are enumerated
in Figure 3; they are largely designed to capture the state-
changing behavior that we hypothesize is related to path fre-
quency. We formulate these features for Java, but note that
they could easily be extended to other object-oriented lan-
guages. Many of our features consist of a static count of
some source-level feature, such as the number of if state-
ments. Others measure the percentage of some possible oc-
currences that appear along the path. For example, “field
coverage” is the percentage of the total class fields that ap-
pear along the path, while “fields written coverage” is the
percentage of the non-final fields of that class that are
updated along the path. “Invoked method statements” refers
to statements only from the method where the path origi-
nates. Our count features are discrete, non-negative and un-
bounded; our coverage features are continuous in the closed
interval [0, 1].

Given vectors of numeric features, we can use any num-
ber of machine learning algorithms to model and estimate
path frequency. In our experiments, accurate estimates of
path frequency arise from a complex interaction of features.
We view the choice of features, the hypothesis behind them,
and the final performance of a model based on them as more
important than the particular machine learning technique
used. In fact, we view it as an advantage that multiple learn-
ing techniques that make use of our features perform sim-
ilarly. In our experiments, for example, Bayesian and Per-
ceptron techniques performed almost equally well; this sug-
gests that the features, and not some quirk of the learning
algorithm, are responsible for accurate predictions. In the

Count Coverage Feature
X ==
X new
X this
X all variables
X assignments
X dereferences
X X fields
X X fields written
X X invoked method statements
X goto stmts
X if stmts
X local invocations
X X local variables
X non-local invocations
X X parameters
X return stmts
X statements
X throw stmts

Figure 3. The set of features we consider. A “Count”
is a raw static tally of feature occurrences. A “Cov-
erage” is a percentage measuring the fraction of the
possible activity that occurs along the path.

experiments in this paper we use logistic regression because
its accuracy was among the best we tried, and because the
probability estimates it produced showed a high degree of
numerical separation (i.e., the probability estimates showed
few collisions). This property proved important in creating
a ranked output for a large number of paths.

5 Model Evaluation

We performed two experiments to evaluate the predictive
power of our model with respect to the SPECjvm98 bench-
marks. The first experiment evaluates our model as a binary
classifier, labeling paths as either “high frequency” or “low
frequency.” The second experiment evaluates the ability of
our model to correctly sort lists of paths by frequency.

5.1 Experimental Setup

We have implemented a prototype version of the algo-
rithm described in Section 4 for the Java language. We use
the SOOT [15] toolkit for parsing and instrumenting. We use
the Weka [19] toolkit for machine learning. We character-
ize our set of benchmarks in Figure 4. Note that the javac
program is significantly larger and, in our view, more realis-
tic than the other benchmarks; we see it as a more indicative
test of our model in terms of program structure. However,
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Name Description LOC Class Meth
check check VM features 1627 14 107
compress file compression 778 12 44
db data management 779 3 34
jack parser generator 7329a 52 304
javac java compiler 56645 174 1183
jess expert system shell 8885 5 44
mtrt ray tracer 3295 25 174
Total 79338 275 1620

ano source code was given for jack; we report lines from a decompiled
version. Our analysis runs on Java bytecode.

Figure 4. The set of SPECjvm98 benchmark pro-
grams used. “Class” counts the number of classes,
“Meth” counts the number of methods.

Name Paths Paths/Method Runtime
check 1269 11.9 4.2s
compress 491 11.2 2.91s
db 807 23.7 2.8s
jack 8692 28.6 16.9s
javac 13136 11.1 21.4s
jess 147 3.3 3.12s
mtrt 1573 9.04 6.17s
Total or Avg 26131 12.6 59s

Figure 5. Static intra-class path enumeration.

all of the benchmarks have been specifically designed to be
indicative of real programs in terms of runtime behavior.

Figure 5 details the behavior of our static path enumer-
ation algorithm (see Section 3.1) on our benchmarks. The
javac and jack benchmarks had the largest number of
static paths. Despite its relatively large size in lines of code,
jess actually had very few static intra-class paths because
of its relatively sparse call graph. The jack and db bench-
marks had the highest number of static paths per method
because of their more complicated object structures. In to-
tal we were able to enumerate over 26,000 static paths in
under a minute on a 2GHz dual-core architecture; the pro-
cess was largely disk bound to 150 MBytes/sec.

5.2 Classifier Training

We formulate the problem of hot-path identification as a
classification task: given a path, does it belong to the set of
“high frequency” or “low frequency” paths? We can phrase
the problem alternatively as: with what probability is this a
“high frequency” path?

Machine learning algorithms designed for this purpose
take the form of classifiers which operate on instances, or

object descriptions [25]. In our case, each instance is a fea-
ture vector of numerical values describing a specific static
path, and the classifier used is based on logistic regression.

Such classifiers are supervised learning algorithms that
involve two phases: training and evaluation. The training
phase generates a classifier from a set of instances along
with a labeled correct answer derived from the path counts
obtained by dynamic path enumeration (Section 3.2). This
answer is a binary judgment partitioning the paths into low
frequency and high frequency. We consider two ways of
distinguishing between these categories: an “intra-method”
approach and an “inter-method” approach. The preferred
scheme necessarily depends on the client application.

In an intra-method experiment we first normalize path
counts for each method so that the sum of all path counts
for that method becomes 1.0. We label paths as high fre-
quency if they have a normalized intra-method frequency
greater than 0.5 (i.e., they have a frequency greater than all
other paths in the method combined). In an inter-method
experiment, we consider a path as high frequency if it was
taken more than 10 times. Our approach is largely insensi-
tive to the threshold chosen; we achieve very similar results
for thresholds between two and twenty.

After training, we apply the classifier to an instance it has
not seen before, obtaining an estimate of the probability that
it belongs in the high frequency class. This is our estimate
for the runtime frequency of the path.

To help mitigate the danger of over-fitting (i.e., of con-
structing a model that fits only because it is very complex
in comparison to the amount of data), we always evaluate
on one benchmark at a time, using the other benchmarks
as training data. We thus avoid training and testing on the
same dataset.

5.3 F-score Analysis

First, we quantify the accuracy of our approach as an
information retrieval task. In doing so we evaluate only dis-
crete (nominal) classifier output. Two relevant success met-
rics in an experiment of this type are recall and precision.
Here, recall is the percentage of high frequency paths that
were correctly classified as high frequency by the model.
Precision is the fraction of the paths classified as high fre-
quency by the model that were actually high frequency ac-
cording to our dynamic path count. When considered inde-
pendently, each of these metrics can be made perfect triv-
ially (e.g., a degenerate model that always returns high fre-
quency has perfect recall). We thus weight them together
using the F -score statistic, the harmonic mean of precision
and recall [11]. This reflects the accuracy of the classifier
with respect to the high frequency paths.

For each benchmark X , we first train on the dynamic
paths from all of the other benchmarks. We then consider
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Figure 6. F -score of our performance at classifying
high frequency paths. 0.67 is baseline; 1.0 is perfect.

all of the high frequency paths in X , as determined by dy-
namic path count. We also consider an equal number of
low frequency paths from X , chosen at random. We then
use our model to classify each of the selected paths. Using
an equal number of high- and low-frequency paths during
evaluation allows us to compare accuracy in a uniform way
across benchmarks. The F -scores for each benchmark, as
well as the overall average, are shown in Figure 6.

In our case, an F -score of 0.67 serves as a baseline, cor-
responding to a uniform classification (e.g., predicting all
paths to be high frequency). Perfect classification yields an
F -score of 1.0, which our model achieves in 3 cases. On
average we obtain an F -score of 0.8 for intra-method hot
paths and 0.9 for inter-method ones.

Our model is thus accurate at classifying hot paths. One
example of an application that would benefit from such
a classifier is static specification mining. A specification
miner might treat frequent and infrequent paths differently,
in the same way that previous miners have treated error
paths and normal paths differently for greater accuracy [32].
However, for other analysis tasks it is important to be able
to discriminately rank or sort paths based on predicted fre-
quency. Our next experiment extends our model beyond
binary classification to do so.

5.4 Weighted Rank Analysis

In this experiment we evaluate our model’s ability
to rank, sort and compare relative execution frequencies
among paths. Rather than a binary judgment of “high fre-
quency” or “low frequency”, we use the classifier probabil-
ity estimates for high frequency to induce an ordering on

Figure 7. Kendall’s tau performance of our model
when used to rank order paths based on predicted dy-
namic frequency. 0.0 is perfect; 0.25 is a strong cor-
relation; 0.5 is random chance.

paths that estimates the real ordering given by the dynamic
path counts.

We use the same method for data set construction, train-
ing and testing as before, but evaluation requires a new met-
ric. Intuitively, if the dynamic path counts indicate that four
paths occur in frequency order A > B > C > D, then
the prediction A > B > D > C is more accurate than the
prediction D > C > B > A. Kendall’s tau [13] is dis-
tance metric between ranked orderings that formalizes this
intuition; we use it as our evaluation criterion.

Kendall’s tau is equivalent to the number of bubble sort
operations or swaps needed to put one list in the same order
as a second normalized to the size of the lists. Kendall’s
tau is a distance metric for ordered lists, and smaller num-
bers indicate a stronger correlation. We use a normalized
Kendall’s tau to facilitate comparison between lists of dif-
ferent sizes. Lists in reverse order (i.e., exactly wrong)
would score 1.0, a random permutation would score 0.5 on
average, and perfect agreement (i.e., the same order) yields
0.0.

Figure 7 shows the Kendall’s tau values for each bench-
mark individually as well as the overall average. For the
particular case of inter-method hot paths on the jess
benchmark we obtain a perfect score of 0.0 (i.e., exactly
predicting the real relative order). On average, our model
yields a tau value of 0.30 for intra-method and 0.23 for
inter-method paths. We view numbers in this range as in-
dicative of a strong correlation. Note that small perturba-
tions to the ordering, especially among the low frequency
paths, are not likely to represent a significant concern for
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most clients. Static branch prediction [5], program special-
ization [28], and error report ranking [20] are examples of
client analyses that could make use of ranked paths. In the
next section we show how selecting “top paths” from this
ranking is sufficient to quickly characterize a large percent-
age of run time program behavior.

6 Path Frequency and Running Time

We have shown that our static model can accurately pre-
dict runtime path frequency. In this section, we use our
model for hot paths to characterize program behavior in
terms of actual running time. In essence, we evaluate our
model as a “temporal coverage metric.”

To acquire timing data we re-instrument each benchmark
to record entry and exit time stamps for each method to
nanosecond resolution. This adds an average of 19.1% over-
head to benchmark run time, as compared to over 1000%
for our full dynamic path enumeration. We combine tim-
ing data with path enumeration and calculate the total time
spent executing each path.

We again use our model to sort static program paths by
predicted frequency. We then select the X most highly
ranked paths and calculate the percentage of the total run-
time spent along the selected paths. We experiment with
selecting X paths from each method in Figure 8, and X
paths from the entire program in Figure 9.

Our results indicate a strong correlation between our
static model for path frequency and run time program
behavior. In the intra-method case, selecting the single
“hottest path” from each method is sufficient to capture
nearly 95% of program run time. Recall that, on average,
these benchmarks have over 12 paths per method. Further-
more, in the inter-method case selecting 5% of program
paths is sufficient for over 50% temporal coverage on av-
erage. This analysis indicates that our model is capable of
characterizing real program run time behavior, with accu-
racy that is likely to be sufficient for improving or enabling
many types of program analyses. For example, a feedback-
directed compiler optimization that is too expensive to be
applied to all paths could be applied to the single hottest
path predicted by our model and have a high probability of
improving common-case performance.

7 Path Frequency for Branch Prediction

In this section we demonstrate the robustness of our
approach by coercing our static path frequency prediction
model into a static branch predictor. A static branch pre-
dictor is one that formulates all predictions prior to running
the program. Intuitively, to make a branch prediction, we
ask our model to rank the paths corresponding to the branch

Figure 8. Percentage of total run time covered by
examining the top paths in each method.

Figure 9. Percentage of the total run time covered by
examining the top paths of the entire program.

targets and we choose the one with the greatest frequency
estimate.

To achieve this comparison, we start by constructing the
control flow graph for each method. At the method entry
node, we enumerate the list of paths for the method and sort
that list according to our intra-method frequency estimate.
We then traverse the control flow graph (CFG) top-down, at
every node maintaining a set of static paths that could pass
through that node.

Consider, for example, the code fragment below:

1 a = b;
2 c = d;
3 if (a < c) { /* choice point */
4 e = f;
5 } else {
6 g = h;
7 }

If execution is currently at the node corresponding to line 2,
the future execution might proceed along the path 1-2-3-4 or
along the path 1-2-3-6. At each branching node we perform
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Figure 10. Static branch prediction hit rate. BTFNT is a baseline heuristic; Ball/Larus represents the state-of-the-art;
Hottest Path corresponds to using our static path frequency prediction to predict branches.

two actions. First, we partition the path set entering the
node into two sets corresponding to the paths that conform
to each side of the branch. Second, we record the prediction
for that branch to be the side with the highest frequency path
available. In the code fragment above, we will query our
model about the relative ordering of 1-2-3-4 and 1-2-3-6;
if 1-2-3-6 were ranked higher we would record the predic-
tion “not taken” for the branch at line 3. Finally, because
our path model is acyclic, at branches with back edges we
follow the standard “backward taken / forward not taken”
(BTFNT) heuristic, always predicting the back edge will be
followed. This scheme is based on the observation that back
edges often indicate loops, which are typically taken more
than once.

We compare our branch prediction strategy to a base-
line BTFNT scheme and to an approach proposed by Ball
and Larus [5] based on a set of nine heuristics such as “if a
branch checks an integer for less than zero... predict the
branch on false condition.” We compare the predictions
from these three strategies against the ground truth of run-
ning each benchmark. We measure success in terms of the
branch “hit rate” (i.e., the fraction of time the static predic-
tion was correct). Figure 10 reports the hit rate for each
benchmark individually as well as the overall average.

Static branch prediction is a difficult task. Even with an
optimal strategy a 90% hit rate is typically maximal [5],
and no one strategy is perfect for all cases. For exam-
ple, Ball and Larus perform well on jack because their
heuristics can be frequently employed. Our technique per-
forms quite well on compress because of its relatively
large number of branches with two forward targets. On av-
erage, however, a static branch predictor based on our static

model of path frequencies outperforms common heuristics
and previously-published algorithms by about 3%. This re-
sult serves to indicate that our frequency model can be ro-
bust to multiple use cases.

8 Model Implications

We have shown that our model is useful for estimating
the runtime frequency of program paths based solely on a
set of static features. In this section we present a brief quali-
tative analysis of our model and discuss some of its possible
implications. We conduct a singleton feature power analy-
sis to evaluate individual feature importance as well as a
principle component analysis (PCA) to access the degree of
feature overlap.

8.1 Feature Power Analysis

In Figure 11 we rank the relative predictive power of
each feature and indicate the direction of correlation with
runtime frequency. For example, the single most predictive
feature in our set is the number of statements in a path. On
average, more statements imply the path is less likely to be
taken.

This data is gathered by re-running our F -score anal-
ysis on each benchmark as before, but training on only a
single feature and measuring the predictive power of the
resulting model. We then normalize the data between 0
and 1. For correlation direction, we compare the average
value of a feature in the high and low frequency classes.
We prefer a singleton analysis to a “leave-one-out” analysis
(where feature power is measured by the amount of perfor-
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Figure 11. Relative predictive power of features as
established with a singleton analysis.

mance degradation resulting from omitting the feature from
the feature set) due to the high degree of feature overlap in-
dicated by a PCA, where we find that 92% of the variance
can be explained by 5 principle components.

The singleton feature power analysis, while not a perfect
indicator of the importance of each feature, does offer some
qualitative insight into our model. For example, the rela-
tively high predictive power of statement counts, particu-
larly assignment statements, would seem to support our hy-
pothesis that paths with large changes to program state are
uncommon at runtime. We observe much weaker predictive
power when training only on class field metrics, suggesting
that updates to local variables are also important for uncom-
mon paths. On the other hand, local variable coverage cor-
relates with frequent paths: since variable updates correlate
with uncommon paths, our model bears out our intuition
that common paths read many local variables but do not
update them. Features characterizing path structure, such
as “if” and “return” count, show modest predictive power

compared to features about state updates.

8.2 Threats To Validity

One threat to the validity of these experiments is overfit-
ting — the potential to learn a model that is very compli-
cated with respect to the data and thus fails to generalize.
We mitigate that threat by never testing and training on the
same data; to test one program we train on all others. Our
results may fail to generalize beyond the benchmarks that
we presented; we chose the SPEC benchmarks as indica-
tive examples. Finally, our results may not be useful if our
notion of a static intra-class path does not capture enough
essential program behavior. Since our output in formulated
on these static paths, a client analysis must make queries
in terms of them. Our success at building a branch predic-
tor on top of our path frequency analysis helps to mitigate
that danger; while some program behavior is not captured
by our notion of static paths, in general they form a natural
interface.

9 Conclusion

We have presented a descriptive statistical model of path
frequency based on features that can be readily obtained
from program source code. Our static model eliminates
some of the need for profiling by predicting runtime behav-
ior without requiring indicative workloads or testcases. Our
model is over 90% accurate with respect to our benchmarks,
and is sufficient to select the 5% of paths that account for
over half of the total runtime of a program. We also demon-
strate our technique’s robustness by measuring its perfor-
mance as a static branch predictor, finding it to be more
accurate on average than previous approaches. Finally, the
qualitative analysis of our model supports our original hy-
pothesis: that the number of modifications to program state
described by a path is indicative of its runtime frequency.
We believe that there are many program analyses and trans-
formations that could directly benefit from a static model of
dynamic execution frequencies, and this work represents a
first step in that direction.
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