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Abstract—Dataflow programming languages are used in a
variety of settings, and defects in their programs can have serious
consequences. However, prior work in automated program repair
(APR) emphasizes control flow over dataflow languages. We
identify three impediments to the use of APR in dataflow
programming—parallelism, state, and evaluation—and highlight
opportunities for overcoming them.

Index Terms—Automated program repair, dataflow program-
ming languages, parallelism

I. INTRODUCTION

Unlike control flow programming languages (e.g., imper-
ative languages, such as C/C++, Java, or Python), where a
program is modeled as a series of operations occurring in a
specific order, dataflow programming languages (also called
datastream languages), model a program as a directed graph
of the data flowing between operations. Originally designed
to exploit parallelism, modern dataflow languages have since
been applied to many different application domains. For ex-
ample, Verilog (absorbed into the SystemVerilog Standard in
2009) and VHDL are hardware description languages (HDLs)
in the dataflow language paradigm that are widely used in both
academia and industry for circuit design. Another example is
Lustre, an earlier dataflow language for programming reactive
systems, which is now used for critical control software in
aircraft and nuclear power plants. Meanwhile, graphical and
visual data flow languages, such as LabView and Simulink,
have been developed to support system design and simulation.
These languages and tools are particularly exploited in non-
IT industries and have been adopted by engineers without
professional computer science or programming backgrounds.
Dataflow programming also plays an increasingly important
role with the growth of machine learning and artificial intelli-
gence: the popular TensorFlow library for neural networks is
based on dataflow programming.

Although dataflow programming has been deployed to
support a global market worth billions of dollars (e.g., the
global integrated circuits market alone was $412.3 billion
in 2019 [1]), and defects in dataflow-based software sys-
tems can cause severe consequences (e.g., the Pentium FDIV
bug [2]), automated and evolutionary approaches to support
this category of software are understudied. By contrast, a
significant amount of research has shown how genetic im-
provement (GI) based techniques, such as automated program
repair (APR), can repair bugs [3] in real-world imperative
programs, scaling to millions of lines of code and thousands
of test cases. Fortunately, dataflow programming shares some

Fig. 1. Non-blocking assignments in the Verilog dataflow language are
denoted with <= and are executed in parallel.

common characteristics with control flow programming. For
instance, testing and debugging are critical processes for both
paradigms. Sequential statements can appear in both dataflow
(e.g., Verilog) and control flow programming, suggesting the
possibility of repurposing GI techniques developed for control
flow programs for dataflow programs. However, the special
structure of dataflow languages also raises a number of novel
challenges and opportunities.

In this paper, we propose to apply the insights developed for
control flow GI to the problems of testing, repairing and im-
proving dataflow programs. We anticipate that GI techniques
can reduce the maintenance costs of, and improve the quality
and efficiency of the design and maintenance process for,
dataflow programming. We highlight the similarities and dif-
ferences between imperative languages and several commonly-
used dataflow languages, and outline potential benefits, chal-
lenges, and solutions arising from our comparison.

II. CHALLENGES AND OPPORTUNITIES

We identify and discuss three key challenges for automat-
ically repairing bugs in dataflow programs: parallelism, state,
and evaluation. We conclude with initial solution directions.

A. Parallelism

In control flow programming, instructions and branches are
typically executed sequentially. Many approaches to pinpoint-
ing the region of the program implicated in a defect (fault
localization [4]), are predicated on contrasting the instructions
executed on conforming executions with those executed on
failing ones. GI methods search the space of edits and patches
near that region to produce program variants, and then evaluate
each variant with respect to a test suite until one is found that
meets all requirements. However, in dataflow programming,
statements are often executed in parallel. Examples of such
parallelism are concurrent statements in Verilog (e.g., non-
blocking assignments, as shown in Figure 1 [5]), and nodes



in TensorFlow representing operations (together with edges
representing the dependencies of nodes) that can be executed
simultaneously. Traditional fault localization is much less pre-
cise in the face of massive parallelism and thus less applicable
to dataflow languages (e.g., informally, if all parts of a circuit
described in Verilog execute at all times, comparisons between
executed lines are unrevealing).

B. State

In control flow languages, imperative formalisms are used to
describe program states and explicit transitions between states.
However, dataflow programming may abstract state or transi-
tions. For example, in Lustre, programs can be described using
state variables and the strongest invariant property of each
state variable. These asserted invariants then primarily direct
the compiled order of operations, rather than being checked
for correctness per se [6, Sec. II-B]. Traditional program
repair approaches to leverage assert statements may not
apply directly. Another example of the difference in describing
program states can be seen in the programming model used in
LabView, where execution is based on data availability [7]. In
these settings, traditional imperative analyses (e.g., constraint
solving [8]) may not be directly relevant, complicating the
adaptation of concepts from current APR techniques.

C. Evaluation

Test suites are commonly used to assess control flow pro-
grams, and APR methods often use them to assess candidate
repairs. Testing is also important for dataflow programming,
but the testing process, or model, is often quite different from
control flow programming. For instance, Verilog applies a
testbench-based process, more historically related to hardware,
where the device under test (DUT) is tested in a separate
environment. In this testing environment, multiple inputs are
typically combined sequentially to check the functionality of
the DUT, which generates sequential outputs. In this case,
HDL engineers visualize the timeseries signals in waveforms
to manually check the correctness of the design. This process
can be both time-consuming and error-prone. To apply APR
techniques to dataflow languages, we must adapt either the
algorithms or the testing process (i.e., the fitness function).

Another challenge for applying APR to dataflow is effi-
ciency. Many dataflow programs include scientific computa-
tions (e.g., physical calculations in Verilog, mathematics in
TensorFlow, etc.) that may strain search budgets.

D. Discussion

Although parallelism complicates fault localization, it may
provide the opportunity to reduce the search space by exploit-
ing certain characteristics of control flow programming. For
example, there is potential to leverage the flow of information
of faulty data or signals and narrow down candidate buggy
statements or components based on data dependencies (e.g.,
“netlist” in Verilog). This feature of dataflow languages also
lends itself to other techniques, such as retrograde analysis [9],
for bug localization.

Earlier research on using GI for parallelization, albeit not
directly focusing on dataflow languages, has shown some
promise (e.g., GB-GP-Parallelisation reduces the execution
time of software on a GPU by 2.60% on average [10]), sug-
gesting that exploration of GI-based techniques for dataflow
is warranted. Further, although still expensive to evaluate,
many dataflow programs (e.g., HDLs, LabView) do not face
an infinite input space. Instead, the design requirements of
such systems often imply a limited set of inputs, which may
admit techniques like model checking [11] to reduce the
testing and state space problems. Supporting tools exist to
apply imperative-style analyses to dataflow languages (e.g.,
Pyverilog for Verilog descriptions). Open source dataflow
programs are also available in both general repositories (e.g.,
GitHub) and domain-specific forums (e.g., OpenCores for
hardware designs).

These advances in bug localization and program analysis
suggest that new testing or model checking processes can be
combined with existing APR methods to bring GI to the world
of dataflow languages. If successful, these new methods can
improve development efficiency and effectiveness in the many
other industries driven by dataflow programming.

III. CONCLUSION

Dataflow programming languages are widely deployed in
many industries and domains, but we currently lack GI meth-
ods to support and improve their design efficiency and effec-
tiveness. In this paper, we highlight the potential of applying
program repair to dataflow programming by presenting and
discussing the similarities and differences between control
flow and dataflow languages, the challenges of this domain,
and possible solutions or directions for forward progress.
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