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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
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e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%
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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%

Delete the equal mark in case the array is like
{X,x,X...(n),y,y,y..(n+1)}

2 mm algorithms/cpp/majorityElement/majorityElement.cpp

3 5
cnt++;
Jelse(
majority == num[i] ? cnt++ : cnt --;
if (cnt >= num.size()/2) return majority;

+ if (cnt > num.size()/2) return majority;

rn majority;

b2 34

Yu Huang @ FSE 2020

COMPUTER SCIENCE
& ENGINEERING
UNIVERSITY OF MICHIGAN



Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%

Delete the equal mark in case the array is like
X, X,X...(n), Y,y (n+1)}

2 mm algorithms/cpp/majorityElement/majorityElement.cpp

b3 24

cnt++;
Jelse(
Code Changes majority == num[i] ? cnt++ : cnt --;

if (cnt >= num.size()/2) return majority;

+ if (cnt > num.size()/2) return majority;

rn majority;

b2 34
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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%

Delete the equal mark in case the array is like
{X,X,X...(n), Yy, y,y..(n+1)}

Commit message

2 mm algorithms/cpp/majorityElement/majorityElement.cpp

b3 24

cnt++;
Code changes majority == num[i] ? cnt++ : cnt --;

if (cnt >= num.size()/2) return majority;

+ if (cnt > num.size()/2) return majority;

eturn majority;
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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%
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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%
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Motivation

e Code review is critical for software development
(

Systematic inspection, analysis, evaluation, and revision of code.
(

Latent defect discovery rate of formal code review can be 60%-65%

é FACEBOOK :
'm' 'SapFix'
Al DEBUGS
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YOUR CODE
8 8 AUTOMATICALLY
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Motivation
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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%
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High-level Question

e Is there bias on gender and identities in code review?
How do we characterize the bias?
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How do we characterize the bias?
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[ Behavioral Differences ]
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High-level Question

e Is there bias on gender and identities in code review?
How do we characterize the bias?

e Systematically e Objectively e Rigorously

[ Behavioral Differences ] [ Visual Differences ]
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High-level Question

e Is there bias on gender and identities in code review?
How do we characterize the bias?

e Systematically e Objectively e Rigorously

[ Behavioral Differences] [ Visual Differences ] [Neurological Differences]
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Outline

e Experimental design
e Results
e Conclusions
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Experimental Design: Code Review Tasks

Code
Reviews
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Experimental Design: Code Review Tasks

Code
Reviews

O
ﬁ [ Behavioral Differences ] — [ Decision, Response Time ]

Visual Differences

[ Neurological Differences ]
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Experimental Design: Code Review Tasks

Code
Reviews
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W [ Behavioral Differences ] — [ Decision, Response Time ]
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Experimental Design: Code Review Tasks

Code
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Experimental Design: Code Review Tasks

e How to control the variables of authors except for genders?
o Race
o Age
o Attractiveness
o Facial expressions
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Experimental Design: Code Review Tasks

e How to control the variables of authors except for genders?
o Race
o Age
o Attractiveness
o Facial expressions

o How to fit everything with the constraints of the experimental environment?

o Limited time
o Requirements for different measures
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Experimental Design: Code Review Tasks

e How to control the variables of authors except for genders?
o Race
o Age
o Attractiveness
o Facial expressions
o How to fit everything with the constraints of the experimental environment?
o Limited time
o Requirements for different measures

e How to control code quality?
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Experimental Design: Code Review Tasks

e 60 C/C++ pull requests from GitHub
e 20 adopted from a previous study
e 40 from the top 60 starred C/C++ projects

Delete the equal mark in case the array is like
{X,X,X...(n),y,y,y,y...(n+1)}

2 mm algorithms/cpp/majorityElement/majorityElement.cpp

£ 5

cnt++;

Yelse{
majority == num[i] ? cnt++ : cnt --;
if (cnt >= num.size()/2) return majority;
if (cnt > num.size()/2) return majority;

}

}

majority;

GitHub
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Experimental Design: Code Review Tasks

e 60 C/C++ pull requests from GitHub .
e 20 adopted from a previous study Q GItHUb

e 40 from the top 60 starred C/C++ projects
e Author images: Relabel the author information ‘ I

o Chicago Face Database (CFD)
e Age, race, attractiveness, facial expression

e Human: man, woman
Yu Huang @ FSE 2020 33
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Experimental Design: Code Review Tasks

e 60 C/C++ pull requests from GitHub .
e 20 adopted from a previous study Q GItHUb

e 40 from the top 60 starred C/C++ projects
e Author images: Relabel the author information ‘ I

o Chicago Face Database (CFD)

17 o5 ‘Q S.

L

e Human: man, woman
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e 40 from the top 60 starred C/C++ projects
e Author images: Relabel the author information ‘ I

e Machine (APR Tools) 4! ‘
> \‘%’”f\

Experimental Design: Code Review Tasks
® Human: man, woman
===

-
.

e 60 C/C++ pull requests from GitHub .
e 20 adopted from a previous study Q GItHUb
o Chicago Face Database (CFD)
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Experimental Design: Code Review Tasks

e 60 C/C++ pull requests from GitHub
e Author images: Relabel the author information
e Construction of code review stimuli

20 Women e
A
60 Pull Requests g 20 Men mf - ‘ 60 Stimuli
A
20 Machine @

[ ===}
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Experimental Design: Code Review Tasks

e 60 C/C++ pull requests from GitHub
e Author images: Relabel the author information
e Construction of code review stimuli: fwo versions

20 Women e
A
60 Pull Requests | = 20 Men mf - ‘ 60 Stimuli
-
20 Machine @

[ ===}
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Experimental Design: Code Review Tasks

e 60 C/C++ pull requests from GitHub
e Author images: Relabel the author information
e Construction of code review stimuli

60 Stimuli: V1

60 Stimuli: V2

Delete the equal mark in case the array
is like {x,x,X...(n),y,y,y,y...(n+1)}

2 mm algorithms/cpp/majorityElement/majorityElement.cpp

cnt++
Jelse{
majority == num[i] ? cnt++ : cnt --;
(cnt size()/2) return majority;
(cnt .size()/2) return majority;
}
}
et jority;

)

&y

Ownetr:

Y

Accept Reject
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Experimental Design: Code Review Tasks

e 60 C/C++ pull requests from GitHub
e Author images: Relabel the author information
e Construction of code review stimuli

Please wait for the next pull request submitted by | |pelete the equal mark in case the array
this programmer: is like {X,X,X...(N),y,Y,Y,y-..(n+1)} £

2 mm algorithms/cpp/majorityElement/majorityElement.cpp

=
7 .
Name: G (\i

i S cnt++;
Affiliation: Jelse( owner-
= S majority == num[i] ? cnt++ : cnt --;
Tltle' - if (cnt >= num.size()/2) return majority;
if (cnt > num.size()/2) return majority;
}
}
eturn majority;
Next pull request is loading ...

Accept Reject
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Experimental Design

Code
Reviews

Social desirability bias
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Experimental Design: Deception

Deception Code
P Reviews

“This study is to investigate how software developers conduct code reviews.”

“All of the pull requests are from real-world software projects and development teams.”

“Some of the pull requests are generated by computer programs.”

Yu Huang @ FSE 2020
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Experimental Design: Deception

: Code e
[ Deception ] [ Reviews ] [ Debriefing ]

“Actually, this study is to check biases on genders and identities of authors in code review.”

“Sor”y. 7

“All of the pull requests are made by human developers. None is generated by machines.”

“All the profile pictures are randomly assigned.”
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Experimental Design: Recruitment

[Recruitment] [ Deception ] [ Co_de ] [ Debriefing ]
Reviews

e 37 participants

Demographic Number of Participants
o Native English speakers Total VersionI Version II
o Left-handed Men o1 1 10
Women 16 7 9
Undergraduate 26 11 15
Graduate 11 7 +4
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Experimental Design: Post Survey

[Recruitment] [ Deception ] [ Co_de ] [Post Survey] [ Debriefing ]
Reviews

e How would you compare the machine-generated code changes(i.e., by automated repair
tools) with the human-generated changes?
e Do you think there are any difference between code written by men and women?
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Research Questions

e RQ1: How do the identities of code reviewers and authors change
or bias the code review process behaviorally?

e RQ2: Can we differentiate the gender identities of code reviewers
based on their visual attention patterns?

e RQ3: Can we classify the gender identities of code reviewers based
on patterns of brain activity?

e RQ4: How do self-reports of the role of identity in code review align
with reality?

Yu Huang @ FSE 2020 45
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o

Results: ﬁ’

e RQ1: How do the identities of code reviewers and authors change or
bias the code review process behaviorally?

O Behaviorally, men and women conduct code reviews differently

e | MM, statistical tests
o All participants spend less time evaluating the Pull Requests of women (p<0.01)
o All participants are less likely to accept the Pull Requests of machines (p<0.05)
o Women reviewers spent less time on all Pull Requests than men (p<0.0001)
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Results

e RQ2: Can we differentiate the gender identities of code reviewers
based on their visual attention patterns?

O Men and women participants employ Eye-tracking: Fixation Time Distribution
different high'level prObIem'SOIVing Women Reviewers [l Men Reviewers
strategies in code review. 80.00%

® Men fixated more frequently 57.30%

60.00%
(p<0.001), while women spent

significantly more time analyzing  40.00% 25.94%

Pull Requests messages and 16.40%
. 20.00% 12.60% . 12.50%
author pictures. fie0% e
Author Pic Code PR Message Indicator Image
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Results

e RQ2: Can we differentiate the gender identities of code reviewers
based on their visual attention patterns?

fix when adding the extra top blob in softmax with loss Add myagl stemt mmm
If MySQL connection & loss ﬁ statument uxecution snd
Add cemake sappart for latest varsions of protosut bedor /dunngcwm;m sult. s Fambs

~ e S ek a bl oomn apo !

ey ks e ,..'Mm..m” . -r

clientside memary Leage 3
=y

N > - -

SOWE S L SOE IS o Owner: I—

Man Participant

el Accept  Reject Accept et

fix when ackfing the extra top blob in softrie ¥ Joss A9 cmake support for [atest versions of pretobul TR et 1 toet atver siatementasifion and
=1 5’!";",’;‘..(:..'.::?& .“2: it evancs ATl happening -
a ) it n:rmwvmn RE oo i =
Q- S ' %,
T el [ L3 o o
5 2 Oviror: I ' I e S S Over: IR ) - Tatare ST e Qwner: I
n_‘ »la
= S - 5 b
=) Accept  Reject
(a) A stimulus with a machine author (b) A stimulus with a woman author (¢) A stimulus with a man author
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Results

e RQ3: Can we classify the gender identities of code reviewers based
on patterns of brain activity?

O Relative to women reviewers, men show less consistent differences in
their responses to woman- vs. man-authored Pull Requests.

® Gaussian Process Classification

O Itis possible to distinguish women and men conducting code review at a
neurological level (BAC=68.59%,p=0.016).
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Results

e RQ4: How do self-reports of the role of identity in code review align
with reality?

O  Although humans exhibit biases in their acceptance rates of identical code labeled as

written by women vs men vs. machines , participant self-reports only acknowledge
the bias against machines(23 : 8) but do not acknowledge a gender bias.

O  When Pull Request author information changes, participants report seeing quality
differences where none exist (reported: machines-generated code has lower quality).

“Machine-generated changes are IMO less readable, a little worse in quality, capable in
fewer scopes’

Yu Huang @ FSE 2020
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o

Summary 'y e

We present a controlled experiment using both medical imaging and eye-tracking to investigate
biases and differences in code review.
e Genders, humans, machines

We find universal biases in how all participants treat code reviews as a function of the
reviewers’ gender and apparent author:

e Behavioral difference

e Visual difference

e Neurological difference

We find participants’ self-reported perception of decision making in code review do not align
with the objective observations.

e Bias against machines exists

e Do not realize the existence of difference on gender

COMPUTER SCIENCE
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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%

Decoding the representation of code in the brain:
An fMRI study of code review and expertise

Benjamin Floyd Tyler Santander Westley Weimer
University of Virginia University of Virginia University of Virginia
bef2cj@ virginia.edu ts7ar@ virginia.edu weimer@ virginia.edu
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Motivation

e Code review is critical for software development
e Systematic inspection, analysis, evaluation, and revision of code.
e Latent defect discovery rate of formal code review can be 60%-65%

The study revealed that the conditions of a cat's teeth,
eyes, and fur are good ndiees-indexes of the cat's health.
ImpertanthyzNote that the study only considered male
avoid potential memory leakage. cats, so these results are not necessarily generalizable.
However, another independent study shows that females
with these characteristics live longer like-than the males

If not packing '\@' into the message then maybe
we should be careful when strcpy() between
strings. Current implementation may cause memory do.
leakage somehow?

(b) Code Review (c) Prose Review

Yu Huang @ FSE 2020

COMPUTER SCIENCE
& ENGINEERING

UNIVERSITY OF MICHIGAN



Results

e RQ1: How do the identities of code reviewers and authors
change or bias the code review process? Behavioral

Difference
@ Behaviorally, mena omen conduct cc»deFEewews dlfferwtm
eviewer’s oman Man
Auth;g I\/I\Mog{aﬂsi lic t%@ts Machlne Gender
Response = 20.8 @ 217 217 Response 205 | 2241
Time (S) Tlme (S)
Author Label | Woman Man Machine

Acceptance | 84.36% @ 79.68% 78.03%
Rate
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Results

e RQ2: Can we classify the gender identities of code reviewers
based on patterns of brain activity? Neurological Difference
O Relative to women reviewers, men show less consistent differences in their
responses to woman- vs. man-authored Pull Requests.
® Gaussian Process Classification

O ltis possible to distinguish women and men conducting code review at a
neurological level (BAC=68.59%,p=0.016). Men and women conduct code
reviews differently in terms of associated cognitive processes and patterns of
neural activation
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