
Nighthawk: Transparent System
Introspection from Ring -3

Lei Zhou1,2, Jidong Xiao3, Kevin Leach4, Westley Weimer4,
Fengwei Zhang2,5(B), and Guojun Wang6

1 Central South University, Changsha, China
2 Wayne State University, Detroit, USA

{gn6392,fengwei}@wayne.edu
3 Boise State University, Boise, USA

jidongxiao@boisestate.edu
4 University of Michigan, Ann Arbor, USA

{kjleach,weimerw}@umich.edu
5 SUSTech, Shenzhen, China

6 Guangzhou University, Guangzhou, China
csgjwang@gzhu.edu.cn

Abstract. During the past decade, virtualization-based (e.g., virtual
machine introspection) and hardware-assisted approaches (e.g., x86
SMM and ARM TrustZone) have been used to defend against low-level
malware such as rootkits. However, these approaches either require a
large Trusted Computing Base (TCB) or they must share CPU time
with the operating system, disrupting normal execution. In this paper,
we propose an introspection framework called Nighthawk that trans-
parently checks system integrity at runtime. Nighthawk leverages the
Intel Management Engine (IME), a co-processor that runs in isolation
from the main CPU. By using the IME, our approach has a minimal TCB
and incurs negligible overhead on the host system on a suite of indicative
benchmarks. We use Nighthawk to check the integrity of the system
software and firmware of a host system at runtime. The experimental
results show that Nighthawk can detect real-world attacks against the
OS, hypervisors, and System Management Mode while mitigating several
classes of evasive attacks.

1 Introduction

Security vulnerabilities [28] that enable unauthorized access to computer systems
are discovered and reported on a regular basis. Upon gaining access, attack-
ers frequently install various low-level malware or rootkits [2] on the system to
retain control and hide malicious activities. While many solutions target differ-
ent specific threats, the key ideas are similar: the defensive technique or analysis

L. Zhou—Work was done while visiting COMPASS lab at Wayne State University.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11736, pp. 217–238, 2019.
https://doi.org/10.1007/978-3-030-29962-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29962-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-29962-0_11

218 L. Zhou et al.

gains an advantage over the attacker by executing in a more privileged con-
text. More specifically, to detect low-level malware, virtualization-based defen-
sive approaches [20,21] and hardware-assisted defensive approaches [5,27,32,46]
have been proposed. However, both approaches come with inherent limitations.

Limitations in Virtualization. Virtualization-based approaches require an
additional software layer (i.e., the hypervisor) to be introduced into the system,
resulting in two problems. First, virtualization can incur significant performance
overhead. While CPU vendors and hypervisor developers have worked to improve
the performance of CPU and memory virtualization, the cost of I/O virtualiza-
tion remains high [25]. Second, and more importantly, mainstream hypervisors
have a large trusted computing base (TCB). Hypervisors such as Xen or KVM
contain many thousands of lines of code in addition to the millions of lines
present in the control domain. Thus, while virtualization has facilitated signifi-
cant defensive advances in monitoring the integrity of a target operating system,
attackers in such systems can target the hypervisor itself. By exploiting vulner-
abilities in the large TCB of the hypervisor, attackers can escape the virtualized
environment and wreak havoc on the underlying system.

Limitations in Hardware. Hardware-assisted approaches are not burdened
by large TCBs. However, to provide a trustworthy execution environment,
hardware-assisted approaches typically require either (1) an external monitoring
device or (2) specialized CPU support for examining state such as Intel Sys-
tem Management Mode (SMM). The former, seen in Copilot [32], Vigilare [27],
and LO-PHI [37], typically use a co-processor (on a PCI card or an SoC) that
runs outside of the main CPU. Such a requirement increases costs and precludes
large-scale deployment. The latter, seen in HyperSentry [5], HyperCheck [48]
runs code in SMM and monitors the target host system. While it does not
require any external devices, code running in SMM can disrupt the flow of exe-
cution in the system. Running code in SMM requires the CPU to perform an
expensive context switch from the OS environment to SMM. This switch sus-
pends the OS and application execution until the SMM code completes, that is
benefit for static analyzing the current host running state. But this suspension
of execution results in abnormalities (e.g., lost clock cycles) that are detectable
from the OS context. Attackers can measure and exploit such abnormalities so
as to escape detection or hide malicious activities.

To address the limitations of current approaches, we present Nighthawk,
a framework leveraging the Intel Management Engine (IME). While the IME is
intended as an advanced system management feature (e.g., for remote system
administration of power and state), in this work, we leverage the IME to con-
struct a system introspection framework which is capable of efficiently checking
the integrity of critical kernel and hypervisor structures and system firmware.
To the best of our knowledge, this is the first paper to consider using the IME
for such application. Our proposed framework offers the following advantages in
comparison to previous work:

Nighthawk: Transparent System Introspection from Ring -3 219

– No extra hardware required. The IME has been integrated in virtually
every Intel processor chipset since 2008. Therefore, the proposed framework
can be deployed in most current commercially-available Intel-based computer
systems without requiring external peripheral support.

– High privilege. As a co-processor running independently from the main
CPU, the IME has a high privilege level in a computer system.1 The IME
has unrestricted access to the host system’s resources, making it suitable for
analyzing the integrity of the underlying operating system, hypervisor, or
firmware.

– Small TCB. The IME runs a small independent Minix 3 OS distribution. As
Minix 3 uses a microkernel architecture, it contains only thousands of lines of
kernel code (cf. millions of lines of code in modern hybrid architecture systems
like Linux or Windows). The reduced size of code results in a decreased trusted
code base.

– Low overhead. Since the IME runs in an isolated co-processor, executing
code in the IME does not disrupt the normally-executing tasks on the main
CPU and does not compete for resources with the underlying OS. Thus, code
executing in the IME incurs very little overhead on the target system.2

– Transparency. In addition to low overhead, the isolation of the IME means
that the host OS are not aware of code executing in the IME. This allows
transparent analysis of the host system from the IME.

We apply our prototype to several indicative experiments in which we verify
the integrity of (1) kernel code, (2) virtualization system core code, and (3)
System Management RAM. Our experimental results show that Nighthawk
is able to detect real-world rootkits, including kernel-level rootkits and SMM
rootkits, and incurs minimum performance overhead on the target system. Our
main contributions are:

– We present Nighthawk, a novel introspection framework that transparently
checks the integrity of the host system at runtime. We leverage the Intel
Management Engine, an extant co-processor that runs alongside the main
CPU, enabling a minimal TCB and detection of low-level system software
attacks while incurring negligible overhead.

– We demonstrate a prototype of Nighthawk that can detect real-world
attacks against operating system kernels, Xen and KVM hypervisors, and
System Management RAM. Furthermore, Nighthawk is robust against page
table manipulation attacks and transient attacks.

– Nighthawk causes low latency to verify the integrity of critical data struc-
tures. Our results show that Nighthawk takes 0.502 s to verify the integrity
of the system call table (4 KB) of the host operating system. This low latency
results in a small system overhead on the host.

1 Expanding on Intel’s privilege rings, userspace applications are said to have ring
3 privilege while the kernel has ring 0 privilege. The IME is said to have ring -3
privilege [12,40].

2 Cache contention and bus bandwidth limits may incur overhead.

220 L. Zhou et al.

2 Background

We introduce the Intel Management Engine and System Management Mode.

Intel Management Engine: The Intel Management Engine is a subsystem
which includes a separate microprocessor, its own memory, and an isolated oper-
ating system [13]. The IME has been integrated into Intel x86 motherboards since
2008 and was frequently used for remote system administration. Once the sys-
tem is powered on, the IME runs in isolation, and its execution is not influenced
by the host system on the same physical machine. To contact with isolated IME
from host system, Intel designed the Host Embedded Controller Interface (HECI,
also called Management Engine Interface) to secure exchange data between host
memory and IME. Note that some other chipsets integrated co-processors, like
the Intel Innovation Engine [16], also have the similar features, but are designed
for special platforms (e.g., Data Center Servers) rather than for ordinary com-
puters. Thus, in this paper, we build our introspection framework based on the
IME rather than the Innovation Engine.

System Management Mode: System Management Mode (SMM) is a highly
privileged execution mode included in all current x86 devices since the 386. It
is used to handle system-wide functions such as power management or vendor-
specific system control. SMM is used by the system firmware, but not by applica-
tions or normal system software. The code and data used in SMM are stored in
a hardware-protected memory region named SMRAM. Under normal operation,
SMRAM is inaccessible from outside of SMM unless configured otherwise (i.e.,
if SMRAM is unlocked). SMM code is executed by the CPU upon receiving a
system management interrupt (SMI), causing the CPU to switch modes to SMM
(e.g., from protected mode). The hardware automatically saves the CPU state,
including control registers like CR3, in a dedicated region in SMRAM. After
executing SMM code, the CPU state is restored and it resumes execution as
normal. We use SMM in tandem with the IME to transparently gather accurate
data from a system, even when it is compromised.

3 Threat Model and Assumptions

In this work, we assume the operating system, the hypervisor, and even SMM are
not trusted. In contrast, due to its isolation and small TCB, we favor deploying
security-critical software in the IME. We use this environment to run our code
and introspect activities occurring in the operating system, the hypervisor, and
SMM. Additionally, we assume an attacker does not have physical access to
the machine. We assume that we start with a trustworthy firmware image (i.e.,
BIOS) so that we can reliably insert our IME introspection code. We assume
the booting process of the Intel TXT [18] is trusted. We assume SMM could be
compromised via a software vulnerability at runtime. However, attacks against
SMM due to architectural bugs like cache poisoning [44] are out of scope because
such attacks can be mitigated with official patch [45]. We assume the hardware
can be trusted to function normally (e.g., hardware trojans are out of scope).

Nighthawk: Transparent System Introspection from Ring -3 221

Introspection
Client

Memory
Forensics

Introspection
Server

NIC Driver

Kernel Integrity Checking

Hypervisor Integrity Checking

SMM Integrity Checking

Other Modules

µDMA Driver /
HECI Driver

Physical
Memory

Application

OS Kernel

Hypervisor

SMM

Agent
Request/Response

IME OS-level

IME Application-level

DMA/

HECI

m
ap

Remote Machine
IME Target Host

Target Machine

Fig. 1. High level architecture of the Nighthawk. The user operates a Remote Machine
to interact with the Target Machine. We place custom IME code on the Target Machine,
consisting of an Introspection server and several Integrity Checking Modules. When the
user invokes an integrity checking command, the server dispatches the corresponding
Integrity Checking Module, which in turn creates a communication channel with the
Target Host’s physical memory using either μDMA or HECI. We place custom SMM
“Agent” code on the Target Host. The SMM Agent is capable of basic introspection to
recover critical data structures, which can be transmitted to the IME using the same
μDMA/HECI channel. The Introspection Server can transmit the resulting data back
to the Remote Machine for analysis or forensics.

4 System Architecture

In Nighthawk, we leverage the IME to transparently monitor the integrity
of the target system’s memory (i.e., code and data) belonging to the kernel,
any hypervisor present, and SMRAM. When an integrity violation is detected,
our IME code asserts that an attack has occurred. Our system consists of a
Target Machine, which we seek to protect, and a Remote Machine, which is used
to interact with the Target Machine. An overview of Nighthawk is shown in
Fig. 1, we then describe those key roles in more detail.

Target Machine: It represents the potentially vulnerable system we want
to analyze and protect. The Target Machine contains both the IME and an
underlying Target Host (e.g., operating system or hypervisor). We use the IME
as the key component in Nighthawk to transparently introspect the Target
Machine’s physical memory. An Introspection Client, which is deployed on the
Remote Machine, allows the user to send introspection commands to the Tar-
get Machine’s IME. An Introspection Server on the Target Machine’s IME then
processes these commands. The Introspection Server invokes an analysis module
on behalf of the Remote Machine. In this paper, we implemented three integrity
checking modules: (1) kernel, (2) hypervisor, and (3) SMM. Each module corre-
sponds to a particular class of attack that may occur against the Target Machine.

When the Introspection Server processes a command from the Client, we ini-
tialize the corresponding module and acquire the Target Host’s memory. We use
µDMA to access the host’s memory. By design, µDMA only understands physi-
cal addresses, so we bridge the semantic gap to understand the Host’s high-level
abstractions (i.e., virtual memory addresses). We perform some initial recon-
naissance on the Target Host’s memory—we collect virtual memory addresses of

222 L. Zhou et al.

some critical kernel/hypervisor data structures to derive a mapping to physical
addresses. In SMM, we first build a SMRAM static configuration map for com-
parison at runtime. This map allows us to retrieve virtual memory addresses
from the physical memory regions we acquire via µDMA. Next, we create a
communication channel between the Target Machine’s physical memory space
and the IME’s external memory space by using µDMA and HECI. This channel
enables transferring critical data structures (e.g., the system call table, a hyper-
visor’s kernel text, and saved architectural state) to the IME. Afterwards, each
integrity checking module is able to locate relevant data structures in the IME’s
external memory space and perform integrity checking.

Remote Machine: It serves as a way for a user to remotely access the Tar-
get Machine and assess its integrity transparently. More specifically, the Remote
Machine implements a simple Introspection Client that allows access to the Tar-
get Machine’s IME remotely. Users can issue commands using the Introspection
Client, and receive results from the Target Machine’s IME. We implement several
commands that are usable by the Introspection Client, including fetching seg-
ments of kernel memory for verification. We also implement a Memory Forensics
Helper for dumping memory images to the Remote Machine for offline analysis.
Due to the resource-constrained nature of the IME processor, it is more efficient
to dump memory from the Target Machine and use the Remote Machine to per-
form more computationally-expensive analyses. Users can develop more complex
memory forensic analysis helper based on their needs.

Both the Introspection Client and the Memory Forensics Helper work in tan-
dem to communicate with the IME on the Target Machine. Rather than devel-
oping a custom communication protocol, we rely on the existing IME remote
management protocol [42], which is a RESTful HTTPS protocol for remote man-
agement tasks. We reverse-engineered the protocol to augment it with custom
commands used by our integrity checking code.

Integration: To summarize, we seek to protect a Target Machine from malicious
attacks using the IME. We use custom IME code to implement integrity checking
for the Target Machine’s kernel, hypervisor, and SMM code and data. A user can
interact with an Introspection Client to perform various integrity checking tasks.
Because the IME enables transparent and low-overhead access to the Target
Machine’s physical memory, we can detect the presence of advanced attacks by
leveraging a combination of integrity checks and introspection.

5 Implementation

In this section, we describe implementation details pertinent to our prototype
of Nighthawk. We embedded custom IME firmware on the Target Machine to
transparently acquire the Target Host memory with low overhead. Loosely, there
are two main parts of the implementation: (1) preparing the Target Machine
with custom IME firmware, and (2) interacting with the Target Machine’s IME
at runtime (Fig. 2).

Nighthawk: Transparent System Introspection from Ring -3 223

Remote Machine

User Command

Verify Result

Memory Forensics

Target Machine

Management Engine

SMRAM

Kernel

Hypervisor

DRAM

ME RAM

Target Host

Message
Parsing

Target Host
Fetching

Data Trans-
mission

Memory
Comparison

1 ©
In

je
ct

cu
st

om
M

E
co

de
.

3© Command

2© Memory Reconnaissance.

4© Trigger.

6©a dump
5© fetch

6©b verify

7© Report

8©a Response

8©b mem dump

Fig. 2. High-level overview of the implementation. Following the numbered arrows, we
(1) inject custom code into the IME on the Target Machine, and (2) acquire phys-
ical addresses of critical data structures. Next, the user (3) issues commands to the
Introspection Server, which (4) triggers the corresponding command. (5) the IME uses
μDMA and a modified HECI channel to fetch the target data from the Target Host
and SMM memory. Depending on the command, the resulting memory is either (6a)
dumped to the Remote Machine or (6b) checked locally for integrity. If applicable, (7)
the integrity is checked with respect to a clean version of memory. Finally, the result
is (8) transmitted back to the Remote Machine.

IME External
Memory

Available
Memory

System DRAM

Modify registers:
TOUUD,
REMAP BASE,
REMAP LIMIT

1

remap memory
(mmap2)

2 write custom code
to memory

3

restore configuration
registers

4

Entry
func cmd identity()
func dma fetch()
...
func data transmit()

TOUUD default

Remap IME
space to
accessible address

Fig. 3. Custom IME code injection. First, we configure system registers (TOUUD, top
of upper usable memory, REMAP BASE, and REMAP LIMIT in step 1) to map the IME
external memory to a userspace-accessible region of memory (step 2). We write custom
instructions to that region (step 3), then restore the configuration registers (step 4).

5.1 Preparing the Target Machine

The Intel Management Engine is a secret system developed by Intel, one except
vendors expanding IME functions should be a hard challenge. With several pre-
vious ME related research works [12,31,40], we adopt the memory-remapping
approach taken by Tereshkin and Wojtczuk [40]: essentially, the external IME
RAM is configured to be accessible by the Target Host by configuring several sys-
tem registers that influence memory mapping. The workflow is shown in Fig. 3.
In practice, developers can work with vendors to deploy custom IME code that
does not require such a workaround. SMM can be protected in a similar way.

Since we directly get the runtime IME memory data but not open-source
of IME code, we first reverse engineer the ME code with assembly instruction
set (chipset-dependent, and ARCompact [39] in testbed). Next, we trigger the

224 L. Zhou et al.

remote command to run related thread in the target machine’s IME, we then
debug each corresponding functions and analyze the branch instructions (i.e.,
bl) to address the suitable functions and positions for introspection. Finally, we
insert introspection code while maintaining the original functions.

However, with kernel-level access, it is possible to reuse those memory control
registers to remap and subsequently alter the IME-reserved memory region and
SMRAM. This could potentially allow attackers to compromise the Nighthawk.
To close the injection vector after we insert the introspection code into the IME
and SMRAM, we implement a lock mechanism on those memory control register
by leveraging Intel TXT [18] with the follow operations.

1. We pre-install Trusted Boot [41] (TBoot), a booting module based on Intel
TXT Technology to perform a measured and verified launch of an OS ker-
nel/VMM. We can configure the TBoot to lock the memory control registers.

2. We configure the bootloader to use TBoot to boot the Linux kernel, then
restart the target machine from remote server with an IME based remotely
reboot instruction.

After rebooting, the custom IME and SMM code remains intact because
booting into TXT mode prevents memory control registers from being modified.

5.2 Target Host Reconnaissance

In this subsection, we describe challenges associated with verifying the integrity
of kernel, hypervisor, and SMM code and data, the solutions we chose, and how
these solutions mitigate certain attacks.

Static Kernel Integrity Checking. The static kernel segments include both
OS and Hypervisor kernel code and data. Typically, kernel code and several
key data structures such as the system call table and the interrupt descriptor
table do not change during runtime, but attackers might modify these structures,
violating the kernel’s integrity. To monitor kernel integrity, we use the system
symbol table like System.map to gather crucial virtual addresses. System.map is a
map from kernel symbols to virtual addresses. We can then obtain that symbol’s
physical address, which resides at a fixed offset away from its virtual address.3

We use this approach to find physical addresses of several critical structures,
including the system call table, the interrupt descriptor table, the kernel code
and data segments, and (when applicable) hypervisor modules.

SMM Integrity Checking. Unlike the kernel or the hypervisor, accessing
SMM memory is less straightforward. SMM code is stored in and executes from
the System Management RAM (SMRAM), which is an isolated address space.
This isolation feature can be locked or unlocked through configuring special reg-
ister in the BIOS to protect access after booting. If SMRAM is unlocked, we can
measure the integrity directly via the µDMA channel. However, even if SMRAM
3 While this offset can be system-dependent, in most Linux setups, kernel virtual

addresses are 0xc0000000 bytes from the corresponding physical address.

Nighthawk: Transparent System Introspection from Ring -3 225

is locked, we implement a secure communication channel between the IME and
SMM. Since HECI is an unique interface designed to communicate between the
IME and host, we reuse the related HECI registers to create a channel between
the IME and SMM. Atop this channel, we add code to check the integrity of
both SMM-related code and register values. We can communicate this infor-
mation from SMM over the HECI channel, at which point we can verify results
within the IME. This approach enables transparent and rapid evaluation of SMM
code and data even when the target machine is compromised.

Mitigating Attacks. Nighthawk is co-processor based approach that suf-
fers from the address translation redirection attack (ATRA) [19] and transient
attacks [27,48]. However, Nighthawk is able to detect these attacks. For ATRA
attacks, first, we store a clean copy of kernel page table by accessing the symbol
swapper pg dir at kernel initialization stage. Second, we obtain the CR3 regis-
ter value by leveraging SMM (SMRAM is protected by SMM integrity checking).
Thus, the binding between the virtual and physical memory addresses can be
verified in the IME subsystem. For transient attacks, Nighthawk works in
an independently environment with little introspecting trace. Compared to the
SMM-based monitoring approaches like HyperCheck [48] and HyperSentry [5],
introspection interval of Nighthawk becomes more harder to be gleaned by
attackers. Moreover, the code in the IME can run continuously without halting
the target OS, and thus attackers cannot predict when a memory page will be
checked.

5.3 Measuring Integrity via Custom IME

Next, we discuss the introspection workflow in Nighthawk. As the IME is
intended for remote administration, it contains basic networking code. We
reverse-engineered our IME firmware to find these networking functions that
could be reused by our injected IME code. The injected code is composed with
list of introspected object structures and checking functions. Essentially, we mod-
ified the IME code to perform introspection activities in response to requests sent
from the Introspection Client on the remote machine. The workflow consists of
four steps, shown in Fig. 4.

1. When the target machine receives a network command, it is received by the
remote machine in the recv cmd() function. Then, msg parse() determines
which integrity checking operation it needs to perform.

2. Next, we fetch the specified target data. We use a µDMA channel between
the Target Host and the IME to fetch the specified data from memory. If the
target data is from locked SMRAM, data fetch() creates the HECI channel
between the IME and SMM.

3. After fetching, Nighthawk compares the hash value of the fetched memory
with the original version established during boot in the IME system.

4. After comparison, data transmit() transfer the results to the remote
machine for continue analyzing.

Next, we discuss key aspects of the introspection workflow.

226 L. Zhou et al.

CMD structure
Command Feature

F Object
C Offset
T Size
... ...

header parse()

get cmd()

Transmission
HTTP digest
command
size
payload offset
...

mem copy()

payload replace()

Runtime workflow
in Nighthawk

recv cmd()

msg parse()

data fetch()

comparison()

data transmit()

µDMA Structure
src data
dst addr
dma size
dma ctl reg
dma state reg
...

start DMA()

finish DMA()

Comparison
Original signature
Newly-fetched data

hash verify()

signature match()

HECI structure
write buf
request type
read buf
...
event listen()

data analysis()

st blink, sp
...
filter()
match()
report()
...
mov r1 r18
mov r2 r13
jl 0x14E4F8C

mov r1 r18
mov r2 r13

0x1182000

0x14E4F84

Introspection
in the IME

jl 0x1182000

Hooked
function entry

DRAM

Target Host
memory

SMRAM

µDMA channel

HECI
channel

Fig. 4. The introspection workflow in the IME. We reverse-engineered the locations
of several network-related functions in the existing IME code on our Target Machine.
We added code to include custom commands to support our main goal of checking the
integrity of the Target Host.

µDMA based Memory Fetching. Nighthawk uses the µDMA engine to
access the Target Host’s physical memory from the IME. Our prototype’s
chipset [17] supports configuration of four µDMA channels (i.e., we can have
four memory requests in-flight simultaneously). We use a number of auxiliary
registers to control the size, direction, and other properties of the µDMA request.
First, we write certain structures (e.g., the source and destination addresses) to
auxiliary registers so as to engage the µDMA engine to automatically retrieve
portions of the Target Host’s physical memory. Then, the µDMA engine auto-
matically stores the requested memory content in an IME-designated location.
Once the function has acquired the specified amount of data, the µDMA request
stops. Note that, in some special case like ATRA attack defense, we get the CR3
value first by leveraging SMM, and then fetch the corresponding memory page.

Checking Runtime SMRAM. For unlocked SMRAM, we directly access the
memory through µDMA and check the integrity in the IME. For locked SMRAM,
Nighthawk introspects the SMRAM through the cooperative HECI channel. In
the IME, we add a static SMRAM configuration during the initialization stage,
which includes the SMM code and the original value for each SMM register
(e.g., SMBASE – 0xa0000). In SMM, we add two main functions: First, we use
the SDBM hash algorithm [29] to calculate the integrity of SMRAM code, and
we check the values of SMM-related registers at runtime. This helps us defend
against attacks that attempt to change the SMM configuration or otherwise alter
SMRAM. Second, we establish a communication channel between the IME and
SMM by configuring a number of HECI Host registers: H CBRW (Host Circular
Buffer Read Window), H IG (Host Interrupt Generate), and H CSR (Host Control
Status). In particular, writing to H IG generates an interrupt to the IME. This
HECI-based communication channel can pass data from SMM to the IME to
check SMM code and data.

Nighthawk: Transparent System Introspection from Ring -3 227

5.4 Remote Machine

We discuss how the Introspection Client interacts with the Target Host. There
are two main functions implemented on the remote machine: information collec-
tion and transparent introspection of Target Host. The remote machine initiates
a request over the network to begin introspecting the Target Host. Once the Tar-
get Host is initialized, a communication channel is established to collect memory
address information, including symbol names, addresses, sizes, etc. from the tar-
get machine. The collected information is transmitted to the remote machine for
later use. After this initiation, the introspection session can begin. The remote
machine interacts with the target machine in three scenarios:

– First, system administrators set the IME username and password for secure
login. The remote machine supplies credentials for user authentication to
create a secure channel with target machine.

– Second, remote machine sends the introspection command following the devel-
oped small custom protocol, shown in Table 6 in Appendix. Moreover, the
communication is encrypted via a session key established at runtime.

– Third, the remote machine receives responses to commands from the target
machine. There are two types of response: integrity verification and foren-
sic analyses. Integrity verification is processed in the IME system, thus the
response would be a Boolean result indicating whether the integrity was vio-
lated. Memory forensic analyses are offloaded to the remote machine, so the
response contains a large memory dump.

6 Evaluation

Our experimental environment consists of two physical machines: the target
machine, with a 3.0 GHz Intel E8400 CPU, ICH9D0 I/O Controller Hub, and
2 GB RAM. An Intel e1000e Gigabit network card is integrated in the Intel
DQ35JO motherboard. The BIOS version is JOQ3510J.86A.0933. For kernel
integrity testing, the target machine runs Ubuntu with Linux kernel versions
2.6.x to 4.x. For hypervisor integrity testing, both Xen 4.4 and KVM 2.0 are used.
The remote machine runs Microsoft Windows 10 with WireShark [7] installed
for network packet monitoring. In this section, we evaluate Nighthawk from
two aspects: effectiveness (i.e., does our system detect the presence of real-world
threats?) and efficiency (i.e., does our system incur a low overhead?).

6.1 Effectiveness

We measure effectiveness by introspecting the Linux kernel, hypervisor, and
SMM, as well as detecting ATRA and transient attacks.

Kernel Integrity Verification. We consider 5 real-world kernel rootkits,
shown in Table 1, which fall into two categories:

228 L. Zhou et al.

Table 1. The effectiveness of Nighthawk introspection.

Type Attacked object Attacks [1,2,9] Detected

OS kernel system call table
kernel text
kernel data

IDT table
page directory entry
page table entry

benign ✗

pusezk �
Diamorphine �
kbeast �
amark �
adore-ng �
manual modification �

Hypervisor kvm.ko
kvm intel.ko
Xen kernel text

stext etext
hypercall page
IDT table
page directory entry
page table entry

benign ✗

pusezk �
Diamorphine �
kbeast �
amark �
adore-ng �
manual modification �

SMM SMRAM benign ✗

SMM reloaded �
manual modification �

– System call table modification. Rootkits with kernel-level privilege can write
to this table by manipulating the control register CR0. 4 of our 5 rootkits
belong to this category: Pusezk, Diamorphine, amark, and Kbeast [2].

– Function pointer modification. For this category, we choose adore-ng [1].
adore-ng hooks the virtual file system interface to subvert normal detection.
For example, to hide a malicious process, it redirects the iterate pointer in
a kernel data structure proc root operations so that the malicious process
will not be displayed in the /proc file system.

In addition to these real-world kernel rootkits, we also manually and ran-
domly modify kernel memory pages in the kernel text and data segments.

Hypervisor Integrity Verification. In addition to installing our 5 rootkits
in a Xen system, we also emulate hypervisor attacks in two ways. First, we
modify the IDT, hypercall, and exception tables in a Xen system to represent
a compromised Xen hypervisor. Second, we manually modify bytes in system
memory of a KVM guest. In particular, we identify base addresses of KVM
modules (kvm.ko and kvm-intel.ko), then randomly modify 5 bytes in these
regions. These two approaches allow us to simulate an attacker that compromises
the integrity of a Xen or KVM hypervisor.

SMM Integrity Verification. To demonstrate SMM integrity verification, we
employ existing SMM attacks (i.e., the SMM Reload program [9]) to maliciously
modify the SMI handler. We statically identify the RSM instruction that ends the
SMI handler, and insert malicious instructions (e.g., mov $x, %addr) to simulate

Nighthawk: Transparent System Introspection from Ring -3 229

an attack that can modify arbitrary memory addresses. To detect these attacks,
we verify memory pages in SMRAM (see Sect. 5.2 for details on acquiring this
memory). We then compare their runtime states with their clean states, and
we consider any discrepancy as an integrity violation. We can thus detect the
existing and simulated SMM attacks described above.

ATRA Detection. We keep a clean copy of the kernel page table at system
initialization stage through searching the swapper pg dir symbol. We use the
CR3 value (acquired relying on SMM) to search for the corresponding physical
page directory entry and page table entry via physical memory. In addition, we
test the experiment when Page Global Directory and CR3 changed under Kernel
Page Table Isolation (KPTI) mechanism and IDT based attack [19]. Finally, we
compare the search data to determine if a change has been made. Our comparison
results show that Nighthawk can detect the trace of ATRA.

Transient Attack Detection. To detect transient attacks, we continuously
scan kernel pages in the IME system. We install a rootkit based on toorkit [15],
the rootkit is able to timing change the pointer address of the system call table
which leads to attacker-controller system calls. The rootkit emulates a transient
attack by quickly invoking insmod and rmmod in the Linux OS. We also modify
the code to parameterize the attack time (i.e., the time elapsed between insmod
and rmmod). We sweep the attack time from 3 ms to 700 ms, and run each con-
figuration 20 times. Our results in Table 2 show that Nighthawk can detect
transient attacks if the attacking time is more than 700 ms. However, if the
attacking time is less than 400 ms, the detection rate decreases linearly because
Nighthawk requires a certain amount of execution time. That said, our app-
roach can detect many real transient system attacks [24,43], which remain in
memory for seconds at a time. While attacks such as bus snooping [23] are fast
enough to evade detection, they require physical access to the machine and are
thus out of scope.

Table 1 shows our experimental results for kernel-, hypervisor-, and SMM-
level attacks. The results indicate that the rootkits as well as our manual mod-
ification are detected by Nighthawk. This demonstrates that Nighthawk is
effective in monitoring the integrity of the OS kernel, the hypervisor, and SMM
code. In addition, our experimental results also show that Nighthawk detects
ATRA and transient attacks.

6.2 Efficiency

The efficiency of Nighthawk is mainly determined by the time cost of three
logical operations: (1) data fetching, (2) integrity checking, and (3) data trans-
mission. We measure the time consumed by each operation. For data fetching, we
also measure its memory overhead, so that we can ascertain that Nighthawk
does not have noticeable impact on the target system.

230 L. Zhou et al.

Table 2. Transient attack detection.

Execution
time (ms)

Attacks
detected rate

< 8 <2.5%

12 7.5%

63 8.3%

123 22.5%

218 33.3%

437 68.3%

515 81.4%

643 92.1%

>700 100%

Table 3. Time consumed by DMA.

Object Size (KB) Time (s)

(General data) 1 0.258± 0.010

4 0.261± 0.010

64 0.267± 0.010

256 0.387± 0.120

2,048 3.06± 0.350

3,096 4.67± 0.430

System call table 4 0.261± 0.010

Linux kernel 6,466 9.75± 1.300

Hypervisor 336 1.31± 0.130

IDT 1 0.258± 0.010

Swapper pg dir 4 0.263± 0.010

SMRAM (unlocked) 128 0.383± 0.120

Random 10,240 15.4± 3.920

6.2.1 DMA Fetching Overhead
We first measure the DMA data fetching operation. Regardless of whether intro-
spection is performed on the IME or on the remote machine, each Target Host
memory segment must first be fetched into the IME space via µDMA.

Table 3 illustrates the time consumed by using DMA fetching. When the
size of DMA-transmitted memory is smaller than 64 KB, the time consumed is
approximately 0.26 s. This is due to the DMA channel using 16 lines to access the
DRAM in parallel, allowing 216 bytes of data each time. When the size is larger
than 64 KB, the time consumed is linear to the amount of DMA operations. To
improve the DMA effectiveness, we enable 4 µDMA channels to parallelly fetch
at most 256 KB target physical memory one time. The bottom half of Table 3
shows the time consumed retrieving specific segments.

Figure 5 shows the wall clock time to perform different memory dump fetch-
ing. While system call table, PDE, and PTE pages are all 4 KB blocks
of memory, the overhead is lower for system call table analysis because it
requires only one fixed-address request. In contrast, the overhead is higher for
page table analysis because acquiring page tables requires resolving additional
indirection (i.e., fetching CR3 and separate requests to follow PDEs and PTEs)
which needs multiple µDMA operations. In our tests, we found that it took
0.815 s to fetch the PTE entries and 1.28 s to verify the page table.

Since the DMA operations from the IME and the Target Host share the
same RAM, concurrent RAM accesses are inevitable in our system. During DMA
transfer, the CPU is idle and has no control of the memory buses. We use the
STREAM benchmark [26] to measure the performance degradation imposed on
the target machine. We use the memcpy function in an infinite loop to keep the
DMA fetching operation running. Figure 6 shows there are minimum differences
in memory bandwidth with and without Nighthawk introspection: most of the

Nighthawk: Transparent System Introspection from Ring -3 231

Fig. 5. Time consumed by fetching
data. * represents the number of PTEs.
α represents accessing times.

Fig. 6. Memory throughput degradation
due to introspection.

time, the performance degradation is less than 0.2%, and even in the worst case
(i.e., in the Add function test), the degradation is only 1.47%.

6.2.2 Integrity Checking Overhead
The second operation we measure is integrity checking. For each memory segment
in question, we compute a hash value, and compare it with a pre-computed value
supplied by the remote machine representing the clean state. Therefore, the time
cost depends on the hash algorithm we choose. Recall for simplicity we chose to
implement SDBM hashing [29]. Our test result shows that, to compute a hash
value for a 4 KB memory page, the algorithm takes 7.3 ms. To verify the page
table address, we simply compare each entry item in the table by value.

We only check the kernel page table, and at most 257 4 KB-size pages we
need to compare—however, in practice about 10 pages suffice. Thus, compared
to the fetching stage, the overhead for comparison is much lower—less than 2 ms
each time.

6.2.3 Transmission Overhead
The third operation we measure is data transmission. In general, we send an
introspection command from the remote machine and receive the verification
result. We use one small message to pass the data (< 1KB), taking 228 ms
on average. When considering a memory dump (i.e., > 64KB) to the remote
machine, we divide the data into multiple packets and transmit them into mul-
tiple messages. We find that transmitting 64 KB data takes 4.9 s and that this
duration grows linearly with the transmit size.

6.2.4 Efficiency Evaluation Summary
Overall, a typical introspection cycle contains the above three logical operations.
Table 4 summarizes the time spent in each operation and in total. For instance,
the system call table or the SMRAM (unlocked4), the introspection takes less
than 1.5 s to acquire the integrity status.
4 Even when SMRAM is locked, using our HECI-based communication channel, we

incur roughly 17 ms to perform end-to-end integrity checking.

232 L. Zhou et al.

Table 4. The performance of the complete introspection about Nighthawk.

Object Size (KB) Data
fetching
time (s)

Comparison
time (s)

Data
transmission
time (s)

Total time
(s)

System call table 4 0.26± 0.010 0.007± 0.001 0.224± 0.030 0.50± 0.030

kvm intel.ko 336 1.31± 0.130 0.601± 0.010 0.231± 0.030 2.14± 0.150

PDE 4 0.52± 0.010 0.007± 0.001 0.230± 0.030 0.76± 0.040

SMRAM (unlocked) 128 0.39± 0.150 0.320± 0.005 0.228± 0.030 0.94± 0.200

7 Related Work

In this section, we survey the related work. Our research is mainly related to
two categories of work: trusted execution environments, Intel ME.

Trusted Execution Environment. Trusted execution environments (TEEs)
are intended to provide a safe haven for programs to execute sensitive tasks. We
can use software- or hardware-based approaches to create TEEs.

Typically, software-based approaches leverage virtualization. Terra [14] runs
applications with diverse security requirements in different virtual machines
managed by a trusted Virtual Machine Monitor so that compromised appli-
cations do not interfere with others. Some hypervisor-based introspection
approaches like SecVisor [34] can also provide a small TCB, but still incurs sig-
nificant overhead, whereas Nighthawk does not. In contrast, hardware-based
approaches rely on different hardware features. KI-Mon [23] is a hardware-based
DMA module and hash accelerator on the external SoC component used as an
event-triggered kernel integrity monitor. GRIM [22] uses GPUs to check the ker-
nel’s integrity at high speed. TZ-RKP [4] is the representative work using ARM
TrustZone to construct a TEE for OS kernel protection. HyperCheck [48] and
HyperSentry [5] both employs Intel SMM to build a TEE and monitor hypervisor
integrity. Chevalier et al. [6] proposed using a co-processor to monitor SMM code
behavior, but it requires modifying the SMM code for instrumentation which is
implemented with QEMU and simulation. In this paper, we build our TEE using
the IME, and use it to monitor the host system.
Works on Intel ME. By design [33], the IME has full access to the system’s
memory, peripheral devices, and networks. Because of this high privilege, the
IME has attracted attention from security researchers [35,36,38]. For example,
to analyze the code in the IME, Sklyarov [35] proposed an SPI-based approach to
fetch the IME firmware from the storage flash chip. In other work, Sklyarov [36]
presented a static analysis approach in which he was able to distinguish the
different functions in the IME via matching the signature of each code module.
In addition, security vulnerabilities in the IME were also discovered [12,40].
Tereshkin et al. [40] proposed a memory remapping approach which enables
the host CPU to access the IME memory. Ermolov et al. [12] revealed multiple
buffer overflow vulnerabilities in the IME, which allows local users to perform
a privilege-escalation attack and run arbitrary code. Due to the powerful but

Nighthawk: Transparent System Introspection from Ring -3 233

uncontrolled function in IME, some researchers [8,10,11,31] tried to disable the
IME or confine its ability to interact with the host system, yet do not cause
any disruption to the normal operation in the host system. In this paper, we
demonstrate that defenders can leverage IME to introspect the host system.

8 Discussion

Security Issues: In our prototype, we implement Nighthawk via code injec-
tion into the IME. It is possible to be compromised by new attacks despite
mitigating the interface for code injection. The security arms race will persist,
however the IME has a reasonably small TCB. Nighthawk is able to defense
the SMM attacks which intend to access the locked SMRAM by reconfigur-
ing the SMM related registers. However, if the SMM code can be manipulated
directly by attackers, SMM based functions like CR3 reading operation may not
be trusted but we can defense it by integrating the work [6].

Other Kernel-Level Attacks: In our evaluation, if an attacker operates faster
than the checking time required by Nighthawk, we may not be able to detect it.
To reduce the risk of transient attacks, we can reduce the integrity checking time.
There are several optimizations we could make with additional engineering effort.
Other kernel-level attacks like Direct Kernel Object Manipulation (DKOM) can
also be detected by Nighthawk by using similar approaches like Perkins et
al. [30] with additional effort.

DMA Access: The introspection workflow in Nighthawk leverages µDMA
to fetch host memory. If the µDMA channel from the IME is blocked (e.g., by
I/OMMU [3]), it will prevent Nighthawk from reading the Target Host mem-
ory. Fortunately, I/OMMU can be configured to allow this access in the BIOS.
Moreover, Nighthawk is able to check the I/OMMU configuration similar to
IOCheck [47]. Note that the IME accessing reserved 16MB memory at the top
of DRAM does not go through the Intel VT-d remapping (i.e., I/OMMU imple-
mentation of Intel) [17], thus, I/OMMU cannot block IME from accessing its
inner memory.

Performance: The performance of Nighthawk heavily depends on the hard-
ware design of the IME. In this paper, our testbed’s IME suffered from low
performance (Sect. 6.2) mainly due to a slow ME processor speed. However,
this situation can be improved with a powerful chipset [12]. In addition, we
reverse engineered our testbed’s IME to inject code. This approach may not have
resulted in the best performance (i.e., there may have been a higher-performance
method of customizing IME code).

9 Conclusions

In this paper, we presented Nighthawk, a transparent introspection framework
for verifying the memory integrity of a Target Machine. It leverages Intel ME,

234 L. Zhou et al.

an existing co-processor running aside with the main CPU with ring -3 privilege,
so that our approach has a minimal TCB, is capable to detect low-level system
software attacks, and introduces minimal overhead. To demonstrate the effec-
tiveness of our system, we implemented a prototype of Nighthawk with two
physical machines. The experimental results show that Nighthawk is able to
detect real-world attacks against OS kernels, Xen- and KVM-based hypervisors,
and System Management RAM. The experimental results show Nighthawk
verifies the integrity of target host system with a low performance overhead.

Acknowledgments. Lei Zhou was supported by the China Scholarship Council at
Wayne State University. This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant Number 61632009, the Guangdong Provincial
Natural Science Foundation under Grant Number 2017A030308006.

A Appendix: Intel ME

An overview of system components and the IME is shown in Fig. 7.

PCH System DRAM

NIC

Flash

Management Engine
SRAM
ROM
Timer

Firmware Update

ARC Core
DMA Engine
HECI Engine
Crypto Engine

ME
RAM

Memory
Space

Wired Wireless

BIOSME
Firmware

ME Architecture ME External Memory Layout

0x1AA3610 ASF CM
0x198CD10 AMT CM
0x188EE40 ADMIN CM
0x12A79F0 OS
0x128DE00 QST
0x12897A0 PMHWSEQ
0x10122C0 Kernel
0x1000000 Loader

Fig. 7. Overview of the IME. We use its isolation features to provide transparent
system introspection capabilities. The left shows the IME in relation to other parts of
a host system. The right shows the IME’s memory layout on our prototype. Adapted
from Ruan [33]

B Appendix: Code added in Intel IME

Properties of our custom IME added code are shown in Table 5. All told, we
wrote 400 lines of new C code and 270 lines of new assembly code, all of which
fit in an IME firmware image less than 2 KB in size.

C Appendix: Remote Communication Protocol

Here we present the details about remote communication protocol between
remote server and IME in target machine.

Nighthawk: Transparent System Introspection from Ring -3 235

Table 5. Introspection code added in custom IME firmware

Code section Language Size (# lines)

DMA fetching C 210

Integrity checking C 70

Introspection Server C 120

IME injection ASM 270

Table 6. Communication commands in Nighthawk, each consisting of an operation
and corresponding object. Any Command can be combined with any Object.

Command Description Object Description

F Fetch the physical memory
from Target Host to the IME

SCT The information about
System Call Table

C Compare the Target Host
memory in the IME system

LK The information about
Linux Kernel

T Transmit the introspection
results from the IME to
Remote Machine

HYP The information about
Hypervisor

D Dump the Target Host
memory from the IME to
Remote Machine

SMM The information about
SMRAM

D Appendix: Performance of the IME Core

We run experiments to investigate the computational capabilities of the IME. In
particular, we develop a CPU speed testing benchmark, which we inject into the
memcpy function in the IME. That is, this benchmark executes every time memcpy
is invoked. The testing program is a nested-loop (inner loop: n, outer loop: m)
function with 15 instructions in the inner loop such that n × m = 106. We
read the time stamp counter at the beginning and the end of the benchmark—
denoted as T1 and T2, and thus approximate the average speed of the IME
CPU using the formula v ≈ 15×106×(n×m)

(T2−T1)
. We sweep n = 100, 200, ..., 10000 and

m = 100, 200, 1000; the experimental result shows that the IME CPU executes
approximately 15 million instructions each second. Compared to the target sys-
tem’s main CPU (which can execute billions of instructions per second), the
IME CPU has a significantly lower performance.

References

1. Adore-ng (2018). https://github.com/trimpsyw/adore-ng/
2. RootKits List (2018). https://github.com/d30sa1/RootKits-List-Download
3. Abramson, D., et al.: Intel virtualization technology for directed I/O. Intel Technol.

J. 10(3), 179–192 (2006)

https://github.com/trimpsyw/adore-ng/
https://github.com/d30sa1/RootKits-List-Download

236 L. Zhou et al.

4. Azab, A.M., et al.: Hypervision across worlds: real-time kernel protection from the
arm trustzone secure world. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2014)

5. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry:
enabling stealthy in-context measurement of hypervisor integrity. In: Proceedings
of the 17th ACM Conference on Computer and Communications Security (CCS)
(2010)

6. Chevalier, R., Villatel, M., Plaquin, D., Hiet, G.: Co-processor-based behavior
monitoring: application to the detection of attacks against the system manage-
ment mode. In: Proceedings of the 33rd Annual Computer Security Applications
Conference (2017)

7. Combs, G.: Wireshark (2019). https://www.wireshark.org
8. Corna, N.: ME cleaner: tool for partial deblobbing of Intel ME/TXE firmware

images (2017). https://github.com/corna/me cleaner
9. Duflot, L., Levillain, O., Morin, B., Grumelard, O.: Getting into the SMRAM:

SMM Reloaded. CanSecWest (2009)
10. Erica, P., Peter, E.: Intel’s Management Engine is a security hazard, and users

need a way to disable it (2017). https://www.eff.org/deeplinks/2017/05/intels-
management-engine-security-hazard-and-users-need-way-disable-it

11. Ermolov, M., Goryachy, M.: Disabling Intel ME 11 via undocumented mode (2017).
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html

12. Ermolov, M., Goryachy, M.: How to Hack a Turned-Off Computer, or Running
Unsigned Code in Intel Management Engine. Black Hat Europe (2017)

13. Gael, H.I.: Intel AMT and the Intel ME (2009). https://intel.com/en-us/blogs/
2011/12/14/intelr-amt-and-the-intelr-me

14. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: ACM SIGOPS Operating Sys-
tems Review (2003)

15. Github: ToorKit (2015). https://github.com/deb0ch/toorkit
16. Intel: Innovation Engine (2015). https://en.wikichip.org/wiki/intel/innovation

engine
17. Intel Corporation: Intel 3 Series Express Chipset Family (2007). https://www.intel.

com/Assets/PDF/datasheet/316966.pdf
18. Intel Corporation: Intel Trusted Execution Technology (Intel TXT): Software

Development Guide (2017). https://www.intel.com/content/dam/www/public/
us/en/documents/guides/intel-txt-software-development-guide.pdf

19. Jang, D., Lee, H., Kim, M., Kim, D., et al.: Atra: address translation redirection
attack against hardware-based external monitors. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (2014)

20. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based
out-of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM
conference on Computer and Communications Security (CCS) (2007)

21. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden pro-
cess detection and identification using Lycosid. In: Proceedings of the fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE) (2008)

22. Koromilas, L., Vasiliadis, G., Athanasopoulos, E., Ioannidis, S.: GRIM: leveraging
GPUs for kernel integrity monitoring. In: Monrose, F., Dacier, M., Blanc, G.,
Garcia-Alfaro, J. (eds.) RAID 2016. LNCS, vol. 9854, pp. 3–23. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45719-2 1

https://www.wireshark.org
https://github.com/corna/me_cleaner
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
https://intel.com/en-us/blogs/2011/12/14/intelr-amt-and-the-intelr-me
https://intel.com/en-us/blogs/2011/12/14/intelr-amt-and-the-intelr-me
https://github.com/deb0ch/toorkit
https://en.wikichip.org/wiki/intel/innovation_engine
https://en.wikichip.org/wiki/intel/innovation_engine
https://www.intel.com/Assets/PDF/datasheet/316966.pdf
https://www.intel.com/Assets/PDF/datasheet/316966.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://doi.org/10.1007/978-3-319-45719-2_1

Nighthawk: Transparent System Introspection from Ring -3 237

23. Lee, H., et al.: KI-Mon: a hardware-assisted event-triggered monitoring platform
for mutable kernel object. In: USENIX Security Symposium (2013)

24. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., et al.: Melt-
down: reading kernel memory from user space. In: Proceedings of the 27th Con-
ference on USENIX Security Symposium (2018)

25. Malka, M., Amit, N., Ben-Yehuda, M., Tsafrir, D.: rIOMMU: efficient IOMMU for
I/O devices that employ ring buffers. In: ACM SIGPLAN Notices (2015)

26. McCalpin, J.D.: STREAM (2018). http://www.cs.virginia.edu/stream/ref.html
27. Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., Kang, B.B.: Vigilare: toward snoop-

based kernel integrity monitor. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS) (2012)

28. National Institute of Standards, NIST: National Vulnerability Database (2018).
http://nvd.nist.gov

29. Partow, A.: General Purpose Hash Function Algorithms (2018). http://www.
partow.net/programming/hashfunctions

30. Perkins, J.H., et al.: Automatically patching errors in deployed software. In: Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(2009)

31. Persmule: Neutralize ME firmware on SandyBridge and IvyBridge plat-
forms (2016). https://hardenedlinux.github.io/firmware/2016/11/17/neutralize
ME firmware on sandybridge and ivybridge.html

32. Petroni Jr, N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot-a Coprocessor-
based Kernel Runtime Integrity Monitor. In: USENIX Security Symposium (2004)

33. Ruan, X.: Platform Embedded Security Technology Revealed: Safeguarding the
Future of Computing with Intel Embedded Security and Management Engine.
Apress (2014)

34. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP) (2007)

35. Sklyarov, D.: Intel ME: flash file system explained. Black Hat Europe (2017)
36. Sklyarov, D.O.: ME: The Way of the Static Analysis. TROOPERS17 (2017)
37. Spensky, C., Hu, H., Leach, K.: LO-PHI: low-observable physical host instrumen-

tation for malware analysis. In: NDSS (2016)
38. Stewin, P., Bystrov, I.: Understanding DMA malware. In: Flegel, U., Markatos,

E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37300-8 2

39. Synopsys: embARC (2019). https://embarc.org/embarc osp/doc/build/html/arc/
arc.html

40. Tereshkin, A., Wojtczuk, R.: Introducing ring-3 rootkits. Black Hat USA (2009)
41. The Fedora Project: TBoot (2018). https://sourceforge.net/projects/tboot
42. UPnP Forum: MeshCommander (2018). http://www.meshcommander.com/
43. Wei, J., Payne, B.D., Giffin, J., Pu, C.: Soft-timer driven transient kernel con-

trol flow attacks and defense. In: 2008 Annual Computer Security Applications
Conference (ACSAC) (2008)

44. Wojtczuk, R., Rutkowska, J.: Attacking SMM memory via Intel CPU cache poi-
soning. Invisible Things Lab (2009)

45. Yao, J.: SMM Protection in EDK II (2017). https://uefi.org/sites/default/files/
resources/Jiewen

46. Zhang, F., Leach, K., Stavrou, A., Wang, H., Sun, K.: Using hardware features
for increased debugging transparency. In: 2015 IEEE Symposium on Security and
Privacy (SP) (2015)

http://www.cs.virginia.edu/stream/ref.html
http://nvd.nist.gov
http://www.partow.net/programming/hashfunctions
http://www.partow.net/programming/hashfunctions
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://doi.org/10.1007/978-3-642-37300-8_2
https://embarc.org/embarc_osp/doc/build/html/arc/arc.html
https://embarc.org/embarc_osp/doc/build/html/arc/arc.html
https://sourceforge.net/projects/tboot
http://www.meshcommander.com/
https://uefi.org/sites/default/files/resources/Jiewen
https://uefi.org/sites/default/files/resources/Jiewen

238 L. Zhou et al.

47. Zhang, F., Wang, H., Leach, K., Stavrou, A.: A framework to secure peripherals at
runtime. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp.
219–238. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 13

48. Zhang, F., Wang, J., Sun, K., Stavrou, A.: Hypercheck: A hardware-
assistedintegrity monitor (2014)

https://doi.org/10.1007/978-3-319-11203-9_13

	Nighthawk: Transparent System Introspection from Ring -3
	1 Introduction
	2 Background
	3 Threat Model and Assumptions
	4 System Architecture
	5 Implementation
	5.1 Preparing the Target Machine
	5.2 Target Host Reconnaissance
	5.3 Measuring Integrity via Custom IME
	5.4 Remote Machine

	6 Evaluation
	6.1 Effectiveness
	6.2 Efficiency

	7 Related Work
	8 Discussion
	9 Conclusions
	A Appendix: Intel ME
	B Appendix: Code added in Intel IME
	C Appendix: Remote Communication Protocol
	D Appendix: Performance of the IME Core
	References

