
Abstract

In previous work, we introduced Echo, a new
approach to the formal verification of the functional
correctness of software. Part of what makes Echo prac-
tical is a technique called verification refactoring. The
program to be verified is mechanically refactored spe-
cifically to facilitate verification. After refactoring, the
program is documented with low-level annotations,
and a specification is extracted mechanically. Proofs
that the semantics of the refactored program are equiv-
alent to those of the original program, that the code
conforms to the annotations, and that the extracted
specification implies the program’s original specifica-
tion constitute the verification argument. In this paper,
we discuss verification refactoring and illustrate it with
a case study of the verification of an optimized imple-
mentation of the Advanced Encryption Standard (AES)
against its official specification. We compare the prac-
ticality of verification using refactoring with tradi-
tional correctness proofs and refinement, and we
assess its efficacy using seeded defects.

1. Introduction

Developing software that is sufficiently depend-
able for critical applications is a difficult challenge. A
desirable technology for helping to meet that challenge
is formal verification. Unfortunately, although formal
verification has proven effective, it is not widely used.
In part, this is because of pragmatic difficulties.

In previous work, we introduced the Echo
approach to formal verification [14, 17]. The goal that
we have for Echo is to make formal verification of
software more practical. We seek an approach that
works seamlessly with existing software development
techniques, that can be applied routinely and with rea-
sonable effort, and that requires only average skill.

By formal verification we mean the establishment
of a proof based on logical inference (as opposed to
model checking) that a given program is a correct
implementation of a given specification. Different

aspects of a specification are sometimes dealt with sep-
arately in formal verification. For example, verification
of functionality is often separated from verification of
timing in real-time software. Our focus in this paper is
on verification of functionality.

A factor that frequently limits formal verification
of functionality is the complexity of the subject soft-
ware. Efforts to build software that is compact, effi-
cient, and highly functional tend to produce software
systems that, in principle, could be verified, but for
which the human effort involved and the detail man-
agement required make formal verification either unat-
tractive or infeasible.

To deal with this problem, Echo includes a mecha-
nism that we refer to as verification refactoring. The
concept is to refactor software that was developed by
conventional means using semantics-preserving trans-
formations to produce a functionally equivalent ver-
sion for which formal verification is practical. The
transformations that are applied are selected solely to
facilitate the major verification proofs and each is
proven to be semantics preserving.

In this paper, we discuss the concept and mecha-
nism of verification refactoring. As part of the refactor-
ing process, we introduce the use of software
complexity metrics as a tool for guiding the refactoring
process. We present preliminary assessment data from
a case study of the verification of an optimized imple-
mentation of the Advanced Encryption Standard (AES)
against its official specification. We also present the
results of an experiment in which we seeded defects
into the implementation to determine the difficulty
developers might face when locating defects that cause
formal verification to fail.

2. Existing Approaches to Verification

Existing approaches to verification fall basically
into three categories: correctness proofs, refinement,
and model checking and static analysis. 

Correctness proof, for example the weakest pre-
condition approach, tries to establish the theorem that

Exploiting Refactoring in Formal Verification

Xiang Yin, John Knight, Westley Weimer
Department of Computer Science, University of Virginia

{xyin,knight,weimer}@cs.virginia.edu



when a program’s precondition is satisfied, its postcon-
dition will be satisfied after execution. The main diffi-
culty that arises with it is complexity. Although
machine assistance has been developed, the details can
easily overwhelm whatever machine resources are
available, even for relatively small programs. The issue
is not just the cumulative detail for the program, but
also the complexity of individual predicates associated
with elaborate or intricate source statements.

Refinement based approaches such as the B
Method [1] have been created in response to practical
difficulties with correctness proofs. Software develop-
ment by refinement involves the transformation of an
abstract specification to a concrete implementation by
a series of refinement transformations. The output of
each transformation is proved to imply the input.

Creating a proof along with the program to which
it applies is a laudable goal. However, the goal restricts
the exploration of alternatives during software devel-
opment and leads to the following limitations:
• Many existing software development techniques

cannot be used because software development is
constrained by the simultaneous proof development.

• If changes to an existing program are required to
meet performance goals, the whole refinement path
needs to be revisited so as to update the proof.

These limitations essentially make refinement
approaches either impractical or undesirable for the
vast majority of software developments.

To achieve necessary levels of assurance for cru-
cial applications, testing is usually not feasible, and so
mechanical analysis, where possible, is an attractive
alternative. In addition to correctness proof and refine-
ment, several other verification techniques have been
developed, such as model checking and static analysis,
to try to facilitate mechanical verification. Although
such techniques scale quite well and have been applied
successfully, their analysis targets only certain proper-
ties. For crucial applications, functional verification is
highly desirable.

3. The Echo Verification Approach

We present a brief summary of the Echo approach.
Further details are available elsewhere [14, 17].

At the heart of Echo verification is a process that
we refer to as reverse synthesis in which a high-level,
abstract specification (that we refer to as the extracted
specification) is synthesized from a low-level, detailed
specification of a system. Verification then involves
two proofs: (1) the implementation proof, a proof that
the source code implements the low-level specification

correctly; and (2) the implication proof, a proof that
the extracted specification implies the original system
specification from which the software was built. Each
of these proofs is either generated automatically or
mechanically checked, and each can be tackled with
separate specialized techniques and notations.

The Echo approach imposes no restrictions on
how software is built except that development has to
start with a formal system specification, and develop-
ers have to create the low-level specification docu-
menting the source code. There are no limitations on
design or implementation techniques nor on notations
that can be used. The present instantiation of Echo
uses: (1) PVS [12] to document the system specifica-
tion and the extracted specification; (2) the SPARK
subset of Ada [3] for the source program; and (3) the
SPARK Ada annotation language to document the low-
level specification. In the current instantiation, the
proof that the extracted specification implies the sys-
tem specification is created using the PVS theorem
prover, and the proof that the low-level specification is
implemented by the source code is created by the
SPARK Ada tools. The extracted specification is cre-
ated by custom tools.

4. Motivation for Verification Refactoring

Informally, by verification refactoring we mean
the transformation of a program in such a way that the
functional semantics of the program (but not necessar-
ily the temporal semantics) are preserved and verifica-
tion is facilitated. The reverse synthesis process in
Echo makes extensive use of verification refactoring,
and it is a critical part of the way in which Echo is
made more broadly applicable. In this section, we dis-
cuss the motivation for verification refactoring in terms
of the difficulties that it helps to circumvent in the two
Echo proofs.

Significant effort in software development goes
into making sure that the software is adequately effi-
cient. The result of this effort is careful treatment of
special cases, compact data structures and efficient
algorithms, with the inevitable introduction of com-
plexity into the control- and data-flow graphs. Much of
the difficulty in formal verification results from the
complexity of the source program. One of the reasons
for the use of verification refactoring is to reduce this
complexity.

A second reason for the use of verification refac-
toring is to align the structure of the extracted specifi-
cation with the structure of the system specification.
This alignment permits the implication proof to be
structured as a series of lemmas and allows an efficient



overall proof structure.
The transformations used and the mechanism of

their selection is different for the two proofs, and so we
discuss each separately in this section.

4.1. Support For The Implication Proof

The implication proof is the proof that the
extracted specification implies the original specifica-
tion from which the program was written. In principle,
if the software is indeed a correct implementation of
the specification, then it is always possible to construct
such a proof. The challenge in Echo, however, is to
make the construction of the proof relatively routine.

The feasibility of this proof rests in large measure
on the form, content and structure of the extracted
specification. Echo uses several techniques to synthe-
size this specification [17], but the key in Echo to mak-
ing the proof practical lies in a technique that we refer
to as architectural and direct mapping. This technique
rests on the hypothesis that the high-level architectural
information in a specification is frequently retained in
the implementation. We have no experimental evi-
dence to support this hypothesis, but our rationale for
believing it is discussed in an earlier paper [17].

Architectural and direct mapping provides the
basis of the implication proof. The structure of the
proof is based on the specification architecture. The
basic approach that we use is to try to match the static
function structure of the extracted specification to the
original specification, and to organize the proof as a
series of lemmas about the specification architecture.

With this approach to proof, the closer the
extracted specification’s architecture comes to that of
the original specification, the higher the chance of the
proof being completed successfully and in a reasonable
time. The transformations that are selected to apply to
the source program are those which will align the
extracted specification’s architecture more closely with
that of the original specification.

4.2. Support For The Implementation Proof

The implementation proof is the proof that the
implementation implies the low-level specification. In
the prototype Echo system, the implementation proof is
carried out using the SPARK Ada toolset. The pre-
ferred approach to developing SPARK Ada software is
to use correctness by construction [6]. In correctness
by construction, the SPARK Ada tools are often able to
complete proofs with either no or minimal human
intervention. The proof process is repeated as the soft-
ware is constructed thereby ensuring that each refine-

ment leaves the software amenable to proof.
By contrast in Echo, since there are no restrictions

on development techniques, the SPARK Ada tools fre-
quently fail when they are applied to software after
development is complete. The low-level design of soft-
ware that is not developed using correctness by con-
struction is unlikely to be in a form suitable for proof.
The reasons are many but, as with the implication
proof, they typically fall under the heading of complex-
ity introduced to achieve some specific design or per-
formance goals.

The difficulties with the SPARK proof system take
one of three forms: (1) the required annotations for
function pre- and post-conditions can be many dozens
of lines long, lengths that are impractically complex for
humans to write; (2) the implementation proof
exhausts available resources, usually memory, even
though the SPARK tools are quite efficient and typi-
cally adequate for proofs that are needed for correct-
ness by construction; and (3) the verification
conditions sometimes are sufficiently complex that
they cannot be discharged automatically, and human
guidance becomes necessary.

Verification refactoring addresses all three of these
difficulties without limiting the development process.
Because verification refactoring does not need to main-
tain any aspect of efficiency, any transformation that
addresses the three types of difficulty can be used.

5. The Refactoring Process

5.1. Definition of Refactoring

The Echo verification argument relies upon refac-
toring, and so it is essential that there be a precise defi-
nition of refactoring and a mechanism for ensuring that
refactoring complies with this definition in practice.
Since Echo is verifying functional behavior, we make
the following three simplifying assumptions: (1) the
source program terminates; (2) refactoring does not
preserve the execution time of the program; and (3)
refactoring need not preserve the exact sequence of
intermediate program states as long as the initial state
and final state are unchanged. Assumption (3) also
implies that floating-point arithmetic accuracy is not
guaranteed to be preserved and that the semantics of
non-thread-safe programs are not preserved. The trans-
formation from program P to program P’ is semantics
preserving if, given the same initial state, both P and
P’ will terminate and generate the same final state.

We need to be able to prove that any given trans-
formation is semantics preserving, and, in order to do
so for the general case, we define the semantics of the



elements we need to model the transformation in PVS.
For example, systems states are modeled as mappings
between identifiers and values, statement blocks and
subprograms are modeled as transitions between states,
and pre- and post-conditions are predicates over states.
For each generalized transformation, we use the PVS
theorem prover to discharge the following theorem:

init_state(P) = init_state(P’)
=> final_state(P) = final_state(P’)

We have developed a preliminary library of trans-
formations for which the necessary properties have
been proved. Similar libraries of semantics preserving
transformations exist in the domains of compilation,
software maintenance, and reverse engineering. We
have included some common transformations in our
library, but few existing transformations can be
adapted because they have different goals. Compilation
transformations, for example, are usually targeted at
performance improvement. Ours are designed to
reduce the complexity and size of verification condi-
tions, and so frequently reduce software’s efficiency.

Here we itemize some of the refactorings that we
have developed and discuss how each affects the goal
of verification. Due to space limitation, we do not
include examples for each of them.
Rerolling loops. A sequence of repeated statement
blocks that can be differentiated by a certain parameter
can be converted into a loop based on that parameter.
For example, if the parameter is an integer taking
sequential values, we can turn the statements into a
simple for-loop:
S1; S2; …; Sn; Ü
for i in range 1..n loop S(i) end loop;

Rerolling unrolled loops allows generated verifi-
cation conditions to be simplified by recovering the
loop structure and permitting the introduction of loop
invariants, especially when the repeated statement
block is large. 
Moving statements into or out of conditionals. Mov-
ing statement blocks into or out of conditional state-
ments provided no side effects will result can help to
simplify execution paths and to reveal certain proper-
ties. An example would be the following if statement
block. S1 has no effect on conditional B:
S1; if B then S2 else S3 end if; Ü
if B then S1; S2 else S1; S3 end if;

Splitting procedures. Long procedures usually result
in verbose and complex verification conditions. By
splitting a procedure into a set of smaller sub-proce-
dures, the verification conditions become vastly sim-
pler and easier to manage.

Adjusting loop forms. Loops are frequently defined
to promote efficiency and ease of use. Adjustment of
the loop parameters can facilitate verification by, for
example, allowing loop invariants to be inserted more
easily thereby simplifying verification conditions.
Reversing inlined functions or cloned code. Revers-
ing inlined functions involves identifying cloned code
fragments and replacing them with function definitions
and calls. Function definitions can be provided by the
user or be derived from the code. This transformation
aligns the code structures with the specification and
removes replicated or similar verification conditions so
as to facilitate proof. Furthermore, by reversing the
inlining of functions, if an error is identified in a partic-
ular inlined function, only that function needs to be re-
verified rather than all of the inlined instances.
Separating loops. Loops that combine operations can
be split so as to simplify the associated loop invariants.
Modifying redundant or intermediate computations
or storage. These transformations modify the program
by adding or removing redundant or intermediate stor-
age or computation. This can facilitate proof by: (a)
storing extra but useful information; (b) shortening the
verification condition by removing redundant or inter-
mediate variables; or (c) merely tidying the code so as
to facilitate understanding and annotation of the code.

All the above refactorings and associated proofs
are for general programs. We discuss the use of these
refactorings and the results of applying them in our
case study in section 6.

5.2. Applying Refactoring

Our process for applying verification refactoring
in practice is shown in Figure 1. A semantics-preserv-
ing transformation from the library is selected by the
user (or suggested automatically), and the transformer
then checks the applicability of the selected transfor-
mation mechanically and applies it mechanically if it is
applicable. When all of the selected transformations
have been applied, a metrics analyzer collects and ana-
lyzes the code properties of the transformed code, and
presents the complexity metrics to the user. If the met-
ric results are not acceptable, or if they are acceptable
but later verification proofs cannot be established, the
process goes back to refactoring and more transforma-
tion are performed.

The role of the source-code metrics is to give the
user insight into the likely success of the two Echo
proofs. We hypothesize that the metrics we use are an
indication of relative complexity and therefore of
likely verification difficulty, and we present some sup-
port for this hypothesis in the case study.



Verification refactoring cannot be fully automatic
in the general case, because recognizing effective
transformations requires human insight except in spe-
cial cases. Furthermore, some software, especially
domain-specific applications, might require transfor-
mations that do not exist in the library. In such circum-
stance, the user can specify and prove a new semantics-
preserving transformation using the proof template we
provide and add it to the library.

To facilitate exploration with transformations, if
the user has confidence in a new transformation, the
semantics-preserving proof can be postponed until the
transformation has been shown to be useful or even
until the remainder of the verification is complete.

In most cases, the order in which transformations
are applied does not matter. Clearly, however, when
two transformations are interdependent, they have to
be applied in order. A general heuristic is that those
transformations that change the program structure and
those that can vastly reduce the code size should be
applied earlier.

We are not aware of any circumstances of their
application in which a transformation would have to be
removed, and we make no explicit provision for
removal in the current tools and process. In the event
that it becomes necessary, removing a transformation is
made possible by recording the software’s state prior to
the application of each transformation.

All the user activities, especially the design and
selection of transformations, have to be mechanically
checked, and these two activities need to be supported
by automation to the extent possible. The transformer
is implemented using the Stratego/XT toolset [4].
Stratego checks the applicability of the selected trans-
formation, and carries it out mechanically using term
rewriting. We use the PVS theorem prover as the trans-
formation proof checker and provide a proof template.
When the user specifies a new transformation, an
equivalence theorem will be generated automatically,

and the user can discharge it interactively in the theo-
rem prover.

To our knowledge, there is no verification com-
plexity metric available that could guide the user in
selection of transformations, and so we present a
hybrid of metrics to the user for review using a com-
mercial metric tool [2], the SPARK Examiner, and our
own analyzer. The metrics include:
Element metrics. Lines of code, number of declara-
tions, statements, and subprograms, average size of
subprograms, logical SLOC, unit nesting level, and
construct nesting level.
Complexity metrics. McCabe cyclomatic complexity,
essential complexity, statement complexity, short-cir-
cuit complexity, and loop nesting level.
Verification condition metrics. The number and size
of verification conditions, maximum length of verifica-
tion conditions, and the time that the SPARK tools take
to analyze the verification conditions.
Specification structure metrics. A summary and
comparison of the architectures of the original and the
extracted specifications to suggest an initial impression
of the likely difficulty of the implication proof.

Interpretation of the metrics is subjective, and we
do not have specific values that would give confidence
in the ability of the PVS theorem prover to complete
the implication proof.

We developed the following heuristics to both
select transformations and determine the order of
application: (1) transformations that depend on each
other are applied in order; (2) transformations that
impact the major sources of difficulty, such as code
and VC size, are applied first; (3) transformations that
affect global structure are applied earlier and those that
affect local structure are applied later; and (4) refactor-
ing proceeds until all proofs are possible.

In practice, if specification extraction or either of
the proofs fails to complete, or if either proof is unrea-

Transformation 
Library

Transformer

Transformation 
Proof Checker

Specify & prove 
new transformation

Add new 
transformation 

to library

Apply 
transformation

CodeTransformed 
Code

Metric 
Analyzer

Mechanically check & 
apply transformation

No
YesYes

No

Implementation Proof
Specification Extraction

Implication Proof

Original 
Specification

Select 
transformation

Metric
met?Verified?

Statically collect & 
analyze code propertiesLater verification proofs

Analyzed 
Transformed 

Code

User
Guidance

Figure. 1. The verification refactoring process.



sonably difficult, the user returns to refactoring and
applies additional transformations.

6. Evaluation of Refactoring

In order to obtain an initial assessment of the effi-
cacy and utility of verification refactoring, we under-
took the verification of a non-trivial program that we
did not develop. The issues that affect the efficacy and
utility of verification refactoring include: (1) the ease
with which developers can select transformations; (2)
the ease with which developers can add domain spe-
cific transformations and prove them to be semantics
preserving; (3) whether selected transforms do facili-
tate the necessary proofs; and (4) whether refactoring
impedes development in some way.

Issues 1, 2, and 3 are tied closely to our use of met-
rics, since we anticipate the values of metrics being the
basis for developers’ decisions. We sought to deter-
mine: (1) the impact on metrics of individual types of
refactoring and of series of refactorings; and (2) the
values of the metrics for software that was amenable to
proof and refactorings that were suggested by the val-
ues of metrics. Our experience with refactoring in the
verification of the subject application is the focus of
this section and provides information about the first
three issues. In section 7, we address the fourth issue.

6.1. The Advanced Encryption Standard

The subject of study was the Advanced Encryption
Standard, and we used artifacts from the National Insti-
tute of Standards and Technology (NIST). In previous
work [17], we conducted a study of the general feasi-
bility of an earlier version of Echo in which we verified
only part of AES. In the work described here, we veri-
fied the functional correctness of the complete AES
implementation. The AES artifacts that we used were:
FIPS 197 specification. The Federal Information
Processing Standards Publication 197 [8] specifies the
AES algorithm, a symmetric, iterated block cipher. The
specification is mostly in natural language with mathe-
matical statements and pseudo code for some algorith-
mic elements.
ANSI C implementation. Developed by Rijmen et
al. [7], this optimized implementation is written in
ANSI C. It is 1258 lines of code and contains several
optimizations to enhance its performance.

These two artifacts were written independently of
this project by others, and so there were no constraints
on the development process imposed by the subsequent
application of Echo.

6.2. AES Verification

We developed a formal version of the FIPS 197
specification in PVS and translated the ANSI C imple-
mentation into SPARK Ada, the notations used in the
current Echo instantiation. The PVS specification is
811 lines long, excluding boilerplate constant defini-
tions. The SPARK Ada implementation (1365 lines
without annotations) was created by translation of the
C statements into corresponding Ada statements.

The verification of AES employed the complete
Echo process: (1) a series of refactoring transforma-
tions were applied; (2) the final refactored version was
documented using the SPARK Ada annotation lan-
guage; (3) the code was shown to be compliant with
the annotations; (4) a high-level specification was
extracted from the refactored, annotated code; and (5)
the extracted specification was shown to imply the
original specification.

6.2.1. Verification Refactoring. The AES implemen-
tation employs various optimizations (including imple-
menting functions using table lookups, fully or
partially unrolling loops, and packing four 8-bit bytes
into a 32-bit word) that improved performance but also
created difficulties for verification. For instance, the
SPARK tools ran out of resources on the original pro-
gram because the unrolled loops created verification
conditions that were too large.

We applied 50 refactoring transformations in eight
categories. Of those 50, the following 38 transforma-
tions from six categories were selected from the proto-
type Echo refactoring library (the number after the
category name is the number of transformations
applied in that category): rerolling loops (5); reversing
inlined functions or cloned code (11); splitting proce-
dures (2); moving statements into or out of condition-
als (3); adjusting loop forms (4); modifying redundant
or intermediate computations (2); and modifying
redundant or intermediate storage (11). The rationale
and use of these transformations are discussed in the
next section. In addition to these transformations, we
also added two new transformation categories for AES:
Adjusting data structures (2). 32-bit words were
replaced by arrays of four bytes, and sets of four words
were packed into states as defined by the specification.
Constants and operators on those types were also rede-
fined accordingly to reflect the transformations.
Reversing table lookups (10). Ten table lookups were
replaced with explicit computations based on the docu-
mentation and the precomputed tables removed.

Both of these two added transformation types were
driven by the goal of reversing documented optimiza-



tions and matching the extracted specification to the
original specification. The final refactored AES pro-
gram contained 25 functions and was 506 lines long.

6.2.2. Complexity Metrics Analysis. Using the heu-
ristics mentioned earlier, we selected and ordered
transformations to use with AES. Rather than examin-
ing the effects of each transformation separately, we
grouped the transformations into the following 14
blocks: (1) loop rerolling for major loops in the encryp-
tion and decryption functions; (2) reversal of word
packing to use four-byte arrays; (3) reversal of table
lookups; (4) packing four words into a state; (5) rever-
sal of the inlining of the major encryption and decryp-
tion functions; (6) reversal of the inlining of the key
expansion functions; (7) moving statements into condi-
tionals to reveal three distinct execution paths followed
by procedure splitting; (8) adjustment of loop forms;
(9) reversal of additional inlined functions; (10) loop
rerolling for sequential state updates; (11) procedure
splitting; (12) adjustment of intermediate variables;
(13) adjustment of loop forms; and (14) additional pro-
cedure splitting.

Blocks 7-11 were for the subprogram that set up
the key schedule for encryption, and blocks 12-14 were
for the subprogram that modified the key schedule for
decryption. As well as the main transformations, each
block of transformations involved smaller transforma-
tions that modified redundant or intermediate computa-
tions and storage.

As part of determining whether further refactoring
was required, we periodically attempted the proofs and
determined the source-code metrics. Some of the
results of the effect of applying the transformations on
the values of the metrics are shown in Figure 2. The
histograms show the values of different metrics after

the application of the 14 blocks of transformations
where block 0 is the original code. 

As the transformations were applied, the primary
element metric, code size, dropped from over 1365 to
412. The average McCabe cyclomatic complexity also
declined, dropping from 2.4 to 1.48. Statement com-
plexity, essential complexity, etc. also declined. There
is no evidence that these complexity metrics are related
to verification difficulty, but their reduction suggests
that the refactored program might generate less ver-
bose VCs and be easier to analyse.

Since we would not undertake full annotation until
refactoring was complete, we had no way to assess the
feasibility of the proofs. To gain some insight, we set
the postconditions for all subprograms to true for each
version of the refactored code, generated verification
conditions (VCs) using the SPARK examiner, and sim-
plified the generated VCs using the SPARK simplifier.
We measured the number of VCs, the size of VCs, the
maximum length of VCs, and the time that the SPARK
tools took to analyze the code. These data did not nec-
essarily represent the actual proof effort needed for the
implementation proof, but they were an indication.

The times required for analysis with the SPARK
tools after the various refactorings are shown as Figure
2(c). Some blocks are shown with no value because the
VCs were too complicated to be handled by the
SPARK tools. After the first loop rerolling at block 1,
the tools completed the analysis but took 7 hours and
23 minutes on a 2.0 GHz machine. At block 2 with
word packing reversed, the analysis again became
infeasible. Analysis by the SPARK tools became feasi-
ble again by block 8 after we had adjusted the loop
forms. The required analysis reached 1 minute 42 sec-
onds for the final refactored program.

Figure. 2. Metric analysis with AES verification refactorings

(a) Lines of code

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) Average McCabe cyclomatic complexity

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(c) SPARK analysis time

0:00:00

0:01:00

0:02:00

0:03:00

0:04:00

0:05:00

0:06:00

0:07:00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7:23:55

(d) Size of generated VCs

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

51.16 MB
MB

(e) Size of simplified VCs

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.59 MB
MB

(f) Specification structure match ratio

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14



In block 1, 51.16 MB VCs were generated and
2.59 MB were left after simplification. For the final
refactored code, 1.90 MB VCs were generated and 86
KB were left after simplification (Figs 2(d) and 2(e)).

The simplified VCs were those that needed human
intervention to prove. After block 1, the maximum VC
length was over 10,000 lines. In the final refactored
code, the maximum was 68 lines. When the implemen-
tation annotation was complete, the maximum length
of VCs needing human intervention was 126 lines.

We extracted a skeleton specification from the
code after applying each block of transformations.
These specifications were skeletons because they were
obtained before the code had been annotated. We com-
pared the structure of the skeleton extracted specifica-
tion with that of the original specification by visually
inspection and evaluated a match-ratio metric. This is
defined as the percentage of key structural elements—
data types, operators, functions and tables—in the orig-
inal specification that had direct counterparts in the
extracted specification. We hypothesize that this mea-
sure is an indication of the likelihood of successfully
establishing the implication proof.

The values of the match ratio are shown in Figure
2(f). The ratio increased gradually from 25.9% to
96.3% as the transformation blocks were applied.
There is only a small increase in its value after the
block 8 transformations were applied, and the implica-
tion proof could have been attempted at that point.
However, since the time required for the SPARK anal-
ysis was still declining, we chose to continue refactor-
ing until all metrics stabilized.

6.2.3. Implementation Proof. After refactoring, the
code was examined and annotated manually. The
actual numbers of annotations are shown in Table 1:

The implementation proof was carried out using
the SPARK Ada toolset. A total of 306 VCs were gen-
erated, of which 86.6% were discharged automatically
in 145 seconds on a 2.0 GHz machine. 15 out of 25
functions had all VCs discharged automatically. The
remaining VCs required quite straightforward manual
intervention, usually involving either the application of
preconditions or induction on loop invariants. The
interactive proof process for each remaining VC was

finished within a few minutes by a single individual
who has a good level of SPARK Ada experience.

Throughout the proof process, the length of the
VCs remained completely manageable. No difficulties
were encountered in reading or understanding them, or
in manipulation of them with the SPARK tools.

6.2.4. Implication Proof. The extracted specification
(in PVS) produced by the Echo specification extraction
tool was 1685 lines long. It was much larger than the
original specification because the implementation con-
tained tables for multiplication in the GF(28) field
which were not present in the original specification.

When typechecking the extracted specification,
the PVS theorem prover generated 147 Type Correct-
ness Conditions (TCCs), of which 79 were discharged
automatically by the theorem prover in 23.5 seconds on
a dual 1.0 GHz machine and the remaining 68 were all
subsumed by the proved ones.

As a result of verification refactoring, the architec-
ture of the extracted specification was sufficiently sim-
ilar to the architecture of the original specification that
we were able to identify the matching elements easily.
To prove the extracted specification implied the origi-
nal one, we created an implication theorem using a
general process that is part of Echo [17].

There were 32 major lemmas in the implication
theorem. Type checking of the implication theorem
resulted in 54 TCCs, 29 of which were discharged
automatically in 4.2 seconds on a dual 1.0 GHz
machine and 25 were subsumed by the proved ones.

In most cases, the PVS theorem prover could not
prove the lemmas completely automatically. However,
the human guidance required was short and straightfor-
ward, typically including expansion of function defini-
tions, introduction of predicates over types, or
application of extensionality. In some cases, introduc-
ing other previously proved supporting lemmas and
structuring the proof as cases were required. Each lem-
mas was established and proved interactively in a few
minutes (thus the implication theorem discharged). 

7. Refactoring and Defect Detection

When using formal verification, defects in the sub-
ject programs are revealed by a failure to complete the
proof. Proof failures always present the dilemma that
either the program or the proof could be wrong. This
dilemma is present with any method, including testing.

Verification refactoring might make the dilemma
worse or introduce other forms of difficulty in identify-
ing defects. In order to investigate this issue, we seeded
defects into the original AES implementation and then

Table 1: Annotations in implementation proof

Type Lines
Preconditions 8
Postconditions 123
Loop Invariants & Assertions 54
Proof Functions, Proof Rules, & Other 32



determined the effect of each defect on verification. We
present the results of that experiment in this section.

7.1. The Seeding Process

The seeding process was done by randomly choos-
ing a line number and performing a change in the code.
Each defect in the program was a change in either: (a) a
numeric value; (b) an array index; (c) an operator (for
computation or predicate); (d) a variable or table refer-
ence; or (e) a statement or function call.

These types of defect are not equivalent to those
introduced by programmers. However, they do reflect
common errors that might be introduced, and there is
some evidence that simple seeded defects share impor-
tant properties with actual defects [9].

Code and therefore the defects are closely tied into
the annotations that document the low-level specifica-
tion. The defective code could be annotated so as to
either describe its desired behavior rather than its
actual behavior, or vice versa. We used both scenarios
in this experiment and evaluated them separately.

7.2. Defect Location

There are three stages in the proof process that
could expose defects in the code:
Verification refactoring. A defect could change the
code such that it did not match a particular transforma-
tion template and the transformation could not be
applied. For example, a defect in only one iteration of
an unrolled loop rather than in all interactions would
make loop rerolling inapplicable.
Implementation proof. Any inconsistency between
the code and the annotations would be detected by the
SPARK Ada tools. An inconsistency could arise
because of a defect in either or both.
Implication proof. Defects in the code but with con-
sistent annotations, or postcondition annotations that
are not strong enough, would cause the implication the-
orems to be unprovable and so would be detected by
the implication proof.

7.3. Experimental Results

We seeded 15 defects, three defects of each basic
type, one at a time into the AES implementation, and
then we ran the Echo verification process twice for
each defect. In the first (setup 1), we assumed that the
defects were caused by misunderstandings of the speci-
fication when implementing the code, and the annota-
tions corresponded to the functional behavior of the
code. In the second (setup 2), we assumed that the

defects were introduced by implementation errors, and
the annotations corresponded to the high-level specifi-
cation. The results are shown in tables 2 and 3.

For setup 1, most defects were caught during the
implication proof since the annotation matched the
code. The two defects that were caught in the imple-
mentation proof were found during the proof of excep-
tion freedom because they caused possible out-of-
bound array references. The remaining defect that was
not caught at any stage was benign. We discuss it later.

For setup 2, most defects were caught during the
implementation proof since the annotation did not
match defective code. The remaining defect was the
same benign defect.

In both setups, verification caught the same 14
seeded defects. The remaining (benign) defect changed
an array of keys. The length of the array had been set to
accommodate the maximum number of rounds in the
case of a 256-bit key length. However for key lengths
of 128 bits or 192 bits, the last several entries in the
array were not used in the computation. This was
purely an implementation decision, and the specifica-
tion did not impose any restrictions. Thus, for shorter
key lengths these entries could be allowed to have arbi-
trary values without affecting functional correctness.

Echo does require that the developer annotate the
code, and, whenever there is an unprovable proof obli-
gation, the user has to determine whether it is the result
of a defect in the code or the annotations. However, the
use of architectural and direct mapping in the creation
of the extracted specification means that the location of
defects can be restricted to the function that cannot be
proved. In the AES case, each function is quite small
and manageable after verification refactoring, making
defect location quite simple.

Table 2: Defect detection for setup 1

Verification Stage Defects 
Caught

Defects 
Left

Initial state 15
Verification refactoring 4 11
Implementation proof in SPARK 2 9
Implication proof in PVS 8 1

Table 3: Defect detection for setup 2

Verification Stage Defects 
Caught

Defects 
Left

Initial state 15
Verification refactoring 4 11
Implementation proof in SPARK 10 1
Implication proof in PVS 0 1



8. Related Work

Retrieval of abstract specifications from source
code through formal transformations has been reported
in the reverse-engineering domain [5, 16]. The goal is
to improve the structure of poorly-engineered code and
to facilitate further analyses.

Paul et al. [13] are developing an approach to the
determination of how refactorings affect the verifiabil-
ity of a program. Their focus is object-oriented design,
and the goal is to see whether a syntactic change can
make more properties amenable to analysis.

Smith et al. [15] have developed an infrastructure
for verifying properties of block ciphers, including
AES, and they have verified AES implementations in
Java byte code. They noted different representations
between the specification and the implementation, and
provided transformation functions between the two. 

Kuehlmann1 et al. [10] have developed an
approach called transformation-based verification for
sequential verification of circuit-based designs. The
approach uses structural transformation that relocates
registers in a circuit-based design representation with-
out changing its actual input-output behavior, to
increase the capacity of symbolic state traversal. Verifi-
cation refactoring adopts similar idea to transform the
target being verified, but for software.

9. Conclusion

Refactoring deals with many of the issues that
limit the applicability of formal verification including
unworkably large verification conditions and the rigid
development process necessary for refinement.

We have demonstrated the efficacy and utility of
refactoring by verifying a moderate-sized program
written by others and not designed for verification. The
refactoring process was guided by a set of complexity
metrics that helped both select transformations and
determine when the program was likely to be amenable
to proof. Off-the-shelf verification was impossible
using conventional tools, but the addition of refactor-
ing made the task both feasible and straightforward. In
an experiment using seeded defects, we have also dem-
onstrated that locating defects in software for which
verification is being attempted is fairly straightforward,
even when verification refactoring is being applied.

10. Acknowledgements

Work funded in part by NASA grants NAG-1-
02103 & NAG-1-2290, and NSF grant CCR-0205447.

11. References

[1] Abrial, J.R., The B-Book: Assigning Programs to Mean-
ings, Cambridge University Press, 1996.

[2] Adacore, GNAT Metric Tool, http://www.adacore.com

[3] Barnes, J., High Integrity Software: The SPARK
Approach to Safety and Security, Addison-Wesley, 2003.

[4] Bravenboer, M., K.T. Kalleberg, R. Vermaas, and E.
Visser, “Stratego/XT 0.16. A Language and Toolset for Pro-
gram Transformation”, Science of Comp. Progr., 2007.

[5] Chung, B. and G.C. Gannod, “Abstraction of Formal
Specifications from Program Code”, IEEE 3rd Int. Confer-
ence on Tools for Artificial Intelligence, 1991, pp. 125-128.

[6] Croxford, M., and R. Chapman, “Correctness by con-
struction: A manifesto for high-integrity software”,
CrossTalk, The Journal of Defense Soft. Engr, 2005, pp. 5-8.

[7] Daemen, J. and V. Rijmen, “AES Proposal: Rijndael.
AES Algorithm Submission”, 1999.

[8] FIPS PUB 197, “Advanced Encryption Standard”,
National Institute of Standards and Technology, 2001.

[9] Knight J.C., and P.E. Ammann, “An Experimental Eval-
uation of Simple Methods For Seeding Program Errors”,
ICSE-8: Eighth Int. Conf. on Soft. Engr, London, UK, 1985.

[10] Kuehlmann, A., and J. Baumgartner, “Transformation-
based verification using generalized retiming”, Computer
Aided Verification, Paris, France, 2001, pp. 104-117.

[11] Liskov, B. and J. Wing, “A Behavioral Notion of Sub-
typing”, ACM Transactions on Programming Languages and
Systems, 16(6):1811--1841, 1994.

[12] Owre, S., N. Shankar, and J. Rushby, “PVS: A Prototype
Verification System”, CADE 11, Saratoga Springs, NY, 1992.

[13] Paul, J., N. Kuzmina, R. Gamboa, and J. Caldwell,
“Toward a Formal Evaluation of Refactorings”, Proc. of The
Sixth NASA Langley Formal Methods Workshop, 2008.

[14] Strunk, E.A., X. Yin, and J.C. Knight, “Echo: A Practi-
cal Approach to Formal Verification”, FMICS05, Lisbon,
Portugal, 2005.

[15] Smith, E., and D. Dill, “Formal Verification of Block
Ciphers, A Case Study: The Advanced Encryption Standard
(AES)”, Stanford University.

[16] Ward, M., “Reverse Engineering through Formal Trans-
formation”, The Computer Journal, 37(9):795-813, 1994.

[17] Yin, X., J.C. Knight, E.A. Nguyen, and W. Weimer,
“Formal Verification By Reverse Synthesis”, the 27th SAFE-
COMP, Newcastle, UK, September 2008.


