
Automated Duplicate Detection for Bug Tracking Systems

Nicholas Jalbert
University of Virginia

Charlottesville, Virginia 22904
jalbert@virginia.edu

Westley Weimer
University of Virginia

Charlottesville, Virginia 22904
weimer@cs.virginia.edu

Abstract

Bug tracking systems are important tools that guide the
maintenance activities of software developers. The utility of
these systems is hampered by an excessive number of dupli-
cate bug reports–in some projects as many as a quarter of
all reports are duplicates. Developers must manually iden-
tify duplicate bug reports, but this identification process is
time-consuming and exacerbates the already high cost of
software maintenance. We propose a system that automati-
cally classifies duplicate bug reports as they arrive to save
developer time. This system uses surface features, textual
semantics, and graph clustering to predict duplicate sta-
tus. Using a dataset of 29,000 bug reports from the Mozilla
project, we perform experiments that include a simulation
of a real-time bug reporting environment. Our system is
able to reduce development cost by filtering out 8% of du-
plicate bug reports while allowing at least one report for
each real defect to reach developers.

1. Introduction

As software projects become increasingly large and
complex, it becomes more difficult to properly verify code
before shipping. Maintenance activities [12] account for
over two thirds of the life cycle cost of a software sys-
tem [3], summing up to a total of $70 billion per year in the
United States [16]. Software maintenance is critical to soft-
ware dependability, and defect reporting is critical to mod-
ern software maintenance.

Many software projects rely on bug reports to direct cor-
rective maintenance activity [1]. In open source software
projects, bug reports are often submitted by software users
or developers and collected in a database by one of sev-
eral bug tracking tools. Allowing users to report and poten-
tially help fix bugs is assumed to improve software quality
overall [13]. Bug tracking systems allow users to report,
describe, track, classify and comment on bug reports and
feature requests. Bugzilla is a particularly popular open

source bug tracking software system [14] that is used by
large projects such as Mozilla and Eclipse. Bugzilla bug re-
ports come with a number of pre-defined fields, including
categorical information such as the relevant product, ver-
sion, operating system and self-reported incident severity,
as well as free-form text fields such as defect title and de-
scription. In addition, users and developers can leave com-
ments and submit attachments, such as patches or screen-
shots.

The number of defect reports typically exceeds the re-
sources available to address them. Mature software projects
are forced to ship with both known and unknown bugs; they
lack the development resources to deal with every defect.
For example, in 2005, one Mozilla developer claimed that,
“everyday, almost 300 bugs appear that need triaging. This
is far too much for only the Mozilla programmers to han-
dle” [2, p. 363].

A significant fraction of submitted bug reports are spuri-
ous duplicates that describe already-reported defects. Pre-
vious studies report that as many as 36% of bug reports
were duplicates or otherwise invalid [2]. Of the 29,000 bug
reports used in the experiments in this paper, 25.9% were
identified as duplicates by the project developers.

Developer time and effort are consumed by the triage
work required to evaluate bug reports [14], and the time
spent fixing bugs has been reported as a useful software
quality metric [8]. Modern software engineering for large
projects includes bug report triage and duplicate identifica-
tion as a major component.

We propose a technique to reduce bug report triage cost
by detecting duplicate bug reports as they are reported. We
build a classifier for incoming bug reports that combines
the surface features of the report [6], textual similarity met-
rics [15], and graph clustering algorithms [10] to identify
duplicates. We attempt to predict whether manual triage
efforts would eventually resolve the defect report as a du-
plicate or not. This prediction can serve as a filter between
developers and arriving defect reports: a report predicted
to be a duplicate is filed, for future reference, with the bug
reports it is likely to be a duplicate of, but is not otherwise

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 52 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

presented to developers. As a result, no direct triage effort is
spent on it. Our classifier is based on a model that takes into
account easily-gathered surface features of a report as well
as historical context information about previous reports.

In our experiments we apply our technique to over
29,000 bug reports from the Mozilla project and experi-
mentally validate its predictive power. We measure our ap-
proach’s efficacy as a filter, its ability to locate the likely
original for a duplicate bug report, and the relative power of
the key features it uses to make decisions.

The Mozilla project already has over 407,000 existing
reports, so naı̈ve approaches that explicitly compare each
incoming bug report to all previous ones will not scale. We
train our model on historical information in long (e.g., four-
month) batches, periodically regenerating it to ensure it re-
mains accurate.

The main contributions of this paper are:

• A classifier that predicts bug report duplicate status
based on an underlying model of surface features and
textual similarity. This classifier has reasonable pre-
dictive power over our dataset, correctly identifying
8% of the duplicate reports while allowing at least one
report for each real defect to reach developers.

• A discussion of the relative predictive power of the fea-
tures in the model and an explanation of why certain
measures of word frequency are not helpful in this do-
main.

The structure of this paper is as follows. Section 2
presents a motivating example that traces the history of sev-
eral duplicate bug reports. We compare our approach to oth-
ers in Section 3. In Section 4, we formalize our model, pay-
ing careful attention to textual semantics in Section 4.1 and
surface features in Section 4.2. We present our experimen-
tal framework and our experimental results in Section 5. We
conclude in Section 6.

2. Motivating Example

Duplicate bug reports are such a problem in practice that
many projects have special guidelines and websites devoted
to them. The “Most Frequently Reported Bugs” page of the
Mozilla Project’s Bugzilla bug tracking system is one such
example. This webpage tracks the number of bug reports
with known duplicates and displays the most commonly re-
ported bugs. Ten bug equivalence classes have over 100
known duplicates and over 900 other equivalence classes
have more than 10 known duplicates each. All of these du-
plicates had to be identified by hand and represent time de-
velopers spent administering the bug report database and
performing triage rather than actually addressing defects.

Bug report #340535 is indicative of the problems in-
volved; we will consider it and three of its duplicates.

The body of bug report #340535, submitted on June 6,
2006, includes the text, “when I click OK the updater starts
again and tries to do the same thing again and again. It
never stops. So I have to kill the task.” It was reported with
severity “normal” on Windows XP and included a logfile.

Bug report #344134 was submitted on July 10, 2006 and
includes the description, “I got a software update of Mine-
field, but it failed and I got in an endless loop.” It was
also reported with severity “normal” on Windows XP, but
included no screenshots or logfiles. On August 29, 2006
the report was identified as a duplicate of #340535.

Later, on September 17, 2006, bug report #353052 was
submitted: “...[Thunderbird] says that the previous update
failed to complete, try again get the same message cannot
start thunderbird at all, continous loop.” This report had a
severity of “critical” on Windows XP, and included no at-
tachments. Thirteen hours later, it was marked as a dupli-
cate in same equivalence class as #340535.

A fourth report, #372699, was filed on March 5, 2007. It
included the title, “autoupdate runs...and keeps doing this in
an infinite loop until you kill thunderbird.” It had a severity
of “major” on Windows XP and included additional form
text. It was marked as a duplicate within four days.

When these four example reports are presented in suc-
cession their similarities are evident, but in reality they were
separated by up to nine months and over thirty thousand in-
tervening defect reports. All in all, 42 defect reports were
submitted describing this same bug. In commercial devel-
opment processes with a team of bug triagers and software
maintainers, it is not reasonable to expect any single de-
veloper to have thirty thousand defects from the past nine
months memorized for the purposes of rapid triage. De-
velopers must thus be wary, and the cost of checking for
duplicates is paid not merely for actual duplicates, but also
for every non-duplicate submission; developers must treat
every report as a potential duplicate.

However, we can gain insight from this example. While
self-reported severity was not indicative, some defect report
features such as platform were common to all of the dupli-
cates. More tellingly, however, the duplicate reports often
used similar language. For example, each report mentioned
above included some form of the word “update”, and in-
cluded “never stops”, “endless loop”, “continous loop”, or
“infinite loop”, and three had “tries again”, “keeps trying”,
or “keeps doing this”.

We propose a formal model for reasoning about dupli-
cate bug reports. The model identifies equivalence classes
based predominantly on textual similarity, relegating sur-
face features to a supporting role.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 53 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

3. Related Work

In previous work we presented a model of defect re-
port quality based only on surface features [6]. That model
predicted whether a bug would be triaged within a given
amount of time. This paper adopts a more semantically-rich
model, including textual information and machine learn-
ing approaches, and is concerned with detecting duplicates
rather than predicting the final status of non-duplicate re-
ports. In addition, our previous work suffered from false
positives and would occasionally filter away all reports for
a given defect. The technique presented here suffers from
no such false positives in practice on a larger dataset.

Anvik et al. present a system that automatically assigns
bug reports to an appropriate human developer using text
categorization and support vector machines. They claim
that their system could aid a human triager by recom-
mending a set of developers for each incoming bug re-
port [2]. Their method correctly suggests appropriate de-
velopers with 64% precision for Firefox, although their
datasets were smaller than ours (e.g., 10,000 Firefox re-
ports) and their learned model did not generalize well to
other projects. They build on previous approaches to au-
tomated bug assignment with lower precision levels [4, 5].
Our approach is orthogonal to theirs and both might be gain-
fully employed together: first our technique filters out po-
tential duplicates, and then the remaining real bug reports
are assigned to developers using their technique. Anvik et
al. [1] also report preliminary results for duplicate detection
using a combination of cosine similarity and top lists; their
method requires human intervention and incorrectly filtered
out 10% of non-duplicate bugs on their dataset.

Weiß et al. predict the “fixing effort” or person-hours
spent addressing a defect [17]. They leverage existing bug
databases and historical context information. To make their
prediction, they use pre-recorded development cost data
from the existing bug report databases. Both of our ap-
proaches use textual similarity to find closely related defect
reports. Their technique employs the k-nearest neighbor
machine learning algorithm. Their experimental validation
involved 600 defect reports for the JBoss project. Our ap-
proach is orthogonal to theirs, and a project might employ
our technique to weed out spurious duplicates and then em-
ploy their technique on the remaining real defect reports to
prioritize based on predicted effort.

Kim and Whitehead claim that the time it takes to fix a
bug is a useful software quality measure [8]. They mea-
sure the time taken to fix bugs in two software projects. We
predict whether a bug will eventually be resolved as a du-
plicate and are not focused on particular resolution times or
the total lifetime of real bugs.

Our work is most similar to that of Runeson et al. [15], in
which textual similarity is used to analyze known-duplicate

bug reports. In their experiments, bug reports that are
known to be duplicates are analyzed along with a set of
historical bug reports with the goal of generating a list of
candidate originals for that duplicate. In Section 5.2 we
show that our technique is no worse than theirs at that task.
However, our main focus is on using our model as a filter
to detect unknown duplicates, rather than correctly binning
known duplictes.

4. Modeling Duplicate Defect Reports

Our goal is to develop a model of bug report similarity
that uses easy-to-gather surface features and textual seman-
tics to predict if a newly-submitted report is likely to be a
duplicate of a previous report. Since many defect reports
are duplicates (e.g., 25.9% in our dataset), automating this
part of the bug triage process would free up time for devel-
opers to focus on other tasks, such as addressing defects and
improving software dependability.

Our formal model is the backbone of our bug report fil-
tering system. We extract certain features from each bug
report in a bug tracker. When a new bug report arrives, our
model uses the values of those features to predict the even-
tual duplicate status of that new report. Duplicate bugs are
not directly presented to developers to save triage costs.

We employ a linear regression over properties of bug re-
ports as the basis for our classifier. Linear regression offers
the advantages of (1) having off-the-shelf software support,
decreasing the barrier to entry for using our system; (2)
supporting rapid classifications, allowing us to add textual
semantic information and still perform real-time identifica-
tion; and (3) easy component examination, allowing for a
qualitative analysis of the features in the model. Linear re-
gression produces continuous output values as a function
of continuously-valued features; to make a binary classifier
we need to specify those features and an output value cut-
off that distinguishes between duplicate and non-duplicate
status.

We base our features not only on the newly-submitted
bug report under consideration, but also on a corpus of
previously-submitted bug reports. A key assumption of our
technique is that these features will be sufficient to sepa-
rate duplicates from non-duplicates. In essence, we claim
that there are ways to tell duplicate bug reports from non-
duplicates just by examining them and the corpus of earlier
reports.

We cannot update the context information used by our
model after every new bug report; the overhead would be
too high. Our linear regression model speeds up process-
ing incoming reports because coefficients can be calculated
ahead of time using historic bug data. A new report requires
only feature extraction, multiplication, and a test against a
cutoff. However, as more and more reports are submitted

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 54 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

the original historic corpus becomes less and less relevant
to predicting future duplicates. We thus propose a system in
which the basic model is periodically (e.g., yearly) regener-
ated, recalculating the coefficients and cutoff based on an
updated corpus of reports.

We now discuss the derivation of the important features
used in our classifier model.

4.1 Textual Analysis

Bug reports include free-form textual descriptions and ti-
tles, and most duplicate bug reports share many of the same
words. Our first step is to define a textual distance metric
for use on titles and descriptions. We use this metric as a
key component in our identification of duplicates.

We adopt a “bag of words” approach when defining sim-
ilarity between textual data. Each text is treated as a set of
words and their frequency: positional information is not re-
tained. Since orderings are not preserved, some potentially-
important semantic information is not available for later
use. The benefit gained is that the size of the representation
grows at most linearly with the size of the description. This
reduces processing load and is thus desirable for a real-time
system.

We treat bug report titles and bug report descriptions
as separate corpora. We hypothesize that the title and de-
scription have different levels of importance when used to
classify duplicates. In our experience, bug report titles are
written more succinctly than general descriptions and thus
are more likely to be similar for duplicate bug reports. We
would therefore lose some information if we combined ti-
tles and descriptions together and treated them as one cor-
pus. Previous work presents some evidence for this phe-
nomenon: experiments which double the weighting of the
title result in better performance [15].

We pre-process raw textual data before analyzing it, tok-
enizing the text into words and removing stems from those
words. We use the MontyLingua tool [9] as well as some
basic scripting to obtain tokenized, stemmed word lists of
description and title text from raw defect reports. Tokeniza-
tion strips punctuation, capitalization, numbers, and other
non-alphabetic constructs. Stemming removes inflections
(e.g., “scrolls” and “scrolling” both reduce to “scroll”).
Stemming allows for a more precise comparison between
bug reports by creating a more normalized corpus; our
experiments used the common Porter stemming algorithm
(e.g., [7]).

We then filter each sequence against a stoplist of com-
mon words. Stoplists remove words such as “a” and “and”
that are present in text but contribute little to its comparative
meaning. If such words were allowed to remain, they would
artificially inflate the perceived similarity of defect reports
with long descriptions. We used an open source stoplist of

roughly 430 words associated with the ReqSimile tool [11].
Finally, we do not consider submission-related informa-

tion, such as the version of the browser used by the reporter
to submit the defect report via a web form, to be part of
the description text. Such information is typically colocated
with the description in bug databases, but we include only
textual information explicitly entered by the reporter.

4.1.1 Document Similarity

We are interested in measuring the similarity between two
documents within the same corpus; in our experiments all of
the descriptions form one corpus and all of the titles form
another. All of the documents in a corpus taken together
contain a set of n unique words. We represent each docu-
ment in that corpus by a vector v of size n, with v[i] related
to the total number of times that word i occurs in that docu-
ment. The particular value at position v[i] is obtained from
a formula that can involve the number of times word i ap-
pears in that document, the number of times it appears in
the corpus, the length of the document, and the size of the
corpus.

Once we have obtained the vectors v1 and v2 for two doc-
uments in the same corpus, we can compute their similarity
using the following formula in which v1 • v2 represents the
dot product:

similarity = cos(θ) =
v1 • v2

|v1| × |v2|

That is, the closer two vectors are to colinear, then the
more weighted words the corresponding documents share
and thus, we assume, the more similar the meanings of the
two documents. Given this cosine similarity, the efficacy of
our distance metric is determined by how we populate the
vectors, and in particular how we weight word frequencies.

4.1.2 Weighting for Duplicate Defect Detection

Inverse document frequency, which incorporates corpus-
wide information about word counts, is commonly used in
natural language processing to identify and appropriately
weight important words. It is based on the assumption that
important words are distinguished not only by the number
of times they appear in a certain text, but also by the in-
verse of the ratio of the documents in which they appear
in the corpus. Thus a word like “the” may appear mul-
tiple times in a single document, but will not be heavily-
weighted if it also appears in most other documents. The
popular TF/IDF weighting includes both normal term fre-
quency within a single document as well as inverse docu-
ment frequency over an entire corpus.

In Section 5 we present experimental evidence that in-
verse document frequency is not effective at distinguishing
duplicate bug reports. In our dataset, duplicate bug reports

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 55 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

of the same underlying defect are no more likely to share
“rare” words than are otherwise-similar unrelated pairs of
bug reports. We thus do not include a weighting factor cor-
responding to inverse document frequency. Our weighting
equation for textual similarity is:

wi = 3 + 2 log2 (count of word i in document)

Every position i in the representative vector of a bug report
v is determined based upon the frequency of term i and the
constant scaling factors present in the equation. Intuitively,
the weight of a word that occurs many times grows loga-
rithmically, rather than linearly. The constant factors were
empirically derived in an exhaustive optimization related to
our dataset, which ranges over all of the subprojects under
the Mozilla umbrella. Once we have each document repre-
sented as a weighted vector v, we can use cosine similarity
to obtain a distance between two documents.

A true distance metric is symmetric. However, we use
a non-symmetric “similarity function” for our training data:
textual distance is used as defined above in general, but as a
special case the one-directional similarity of an original to
its duplicates is set to zero. We hypothesize that duplicates
will generally be more similar to the original bug report than
to unrelated reports. Because we are predicting if a report
is a duplicate and only one part of a duplicate-original pair
has that feature, textual similarity would be somewhat less
predictive if it were symmetric.

4.1.3 Clustering

We use our textual similarity metric to induce a graph in
which the nodes are defect reports and edges link reports
with similar text. We then apply a clustering algorithm to
this graph to obtain a set of clustered reports. Many com-
mon clustering algorithms require either that the number of
clusters be known in advance, or that clusters be completely
disjoint, or that every element end up in a non-trivial clus-
ter. Instead, we chose to apply a graph clustering algorithm
designed for social networks to the problem of detecting du-
plicate defect reports.

The graph cluster algorithm of Mishra et al. produces a
set of possibly-overlapping clusters given a graph with un-
weighted, undirected edges [10]. Every cluster discovered
is internally dense, in that nodes within a cluster have a high
fraction of edges to other nodes within the cluster, and also
externally sparse, in that nodes within a cluster have a low
fraction of edges to nodes not in the cluster. The algorithm
is designed with scalability in mind, and has been used to
cluster graphs with over 500,000 nodes. We selected it be-
cause it does not require foreknowledge of the number of
clusters, does not require that every node be in a non-trivial
cluster, and is efficient in practice.

In addition, the algorithm produces a “champion”, or ex-
emplary node within the cluster that has many neighbors

within the cluster and few outside of it. In our experiments
in Section 5 we measure our predictive power as a duplicate
classifier. In practice our distance metric and the champi-
ons of the relevant clusters can also be used to determine
which bug from an equivalence class of duplicates should
be presented to developers first.

We obtain the required graph by choosing a cutoff value.
Nodes with similarity above the cutoff value are connected
by an edge. The cutoff similarity and the clustering parame-
teres used in our experiments were empirically determined.

4.2 Model Features

We use textual similarity and the results of clustering as
features for a linear model. We keep description similar-
ity and title similarity separate. For the incoming bug re-
port under consideration, we determine both the highest title
similarity and highest description similarity it shares with a
report in our historical data. Intuitively, if both of those val-
ues are low then the incoming bug report is not textually
similar to any known bug report and is therefore unlikely to
be a duplicate.

We also use the clusters from Section 4.1.3 to define a
feature that notes whether or not a report was included in
a cluster. Intuitively, a report left alone as a singleton by
the clustering algorithm is less likely to be a duplicate. It is
common for a given bug to have multiple duplicates, and we
hope to tease out this structure using the graph clustering.

Finally, we complete our model with easily-obtained sur-
face features from the bug report. These features include the
self-reported severity, the relevant operating system, and the
number of associated patches or screenshots [6]. These fea-
tures are neither as semantically-rich nor as predictive as
textual similarity. Categorical features, such as relevant op-
erating system, were modeled using a one-hot encoding.

5. Experiments

All of our experiments are based on 29,000 bug re-
ports from the Mozilla project. The reports span an eight
month period from February 2005 to October 2005. The
Mozilla project encompasses many different programs in-
cluding web browsers, mail clients, calendar applications,
and issue tracking systems. All Mozilla subprojects share
the same bug tracking system; our dataset includes reports
from all of them. We chose to include all of the subprojects
to enhance the generality of our results.

Mozilla has been under active development since 2002.
Bug reports from the very beginning of a project may not
be representative of a “typical” or “steady state” bug report.
We selected a time period when a reasonable number of bug
reports were resolved while avoiding start-up corner cases.
In our dataset, 17% of defect reports had not attained some

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 56 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

sort of resolution. Because we use developer resolutions as
a ground truth to measure performance, reports without res-
olutions are not used. Finally, when considering duplicates
in this dataset we restrict attention to those for which the
original bug is also in the dataset.

We conducted four empirical evaluations:
Text. Our first experiment demonstrates the lack of cor-

relation between sharing “rare” words and duplicate status.
In our dataset, two bug reports describing the same bug
were no more likely to share “rare” words than were two
non-duplicate bug reports. This finding motivates the form
of the textual similarity metric used by our algorithm.

Recall. Our second experiment was a direct comparison
with the previous work of Runeson et al. [15]. In this exper-
iment, each algorithm is presented with a known-duplicate
bug report and a set of historical bug reports and is asked
to generate a list of candidate originals for the duplicate. If
the actual original is on the list, the algorithm succeeds. We
perform no worse than the current state of the art.

Filtering. Our third and primary experiment involved
on-line duplicate detection. We tested the feasibility and
effectiveness of using our duplicate classifier as an on-line
filter. We trained our algorithm on the first half of the defect
reports and tested it on the second half. Testing proceeded
chronologically through the held-out bug reports and pre-
dicted their duplicate status. We measured both the time to
process an incoming defect report as well as the expected
savings and cost of such a filter. We measured cost and ben-
efit in terms of the number of real defects mistakenly filtered
as well as the number of duplicates correctly filtered.

Features. Finally, we applied a leave-one-out analysis
and a principal component analysis to the features used by
our model. These analyses address the relative predictive
power and potential overlap of the features we selected.

5.1 Textual Similarity

Our notion of textual similarity uses the cosine distance
between weighted word vectors derived from documents.
The formula used for weighting words thus induces the sim-
ilarity measure. In this experiment we investigate the use of
inverse document frequency as a word-weighting factor.

Inverse document frequency is a contextual measure of
the importance of a word. It is based on the assumption that
important words will appear frequently in some documents
and infrequently across the whole of the corpus. Inverse
document frequency scales the weight of each word in our
vector representation by the following factor:

IDF(w) = log
(

total documents
documents in which word w appears

)
While inverse document frequency is popular in general
natural language processing and information retrieval tasks,

0

50

100

150

200

250

300

0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2

Shared-Word Frequency

F
re

q
u

e
n

c
y
 (

b
u

g
 r

e
p

o
rt

 p
a
ir

s
)

Duplicates

Non-Duplicates

Figure 1. Distribution of shared-word frequencies
between duplicate-original pairs (light) and close
duplicate-unrelated pairs (dark).

employing it for the task of bug report duplicate identifica-
tion resulted in strictly worse performance than a baseline
using only non-contextual term frequency.

We performed a statistical analysis over the reports in our
dataset to determine why the inclusion of inverse document
frequency was not helpful in identifying duplicate bug re-
ports. First, we define the shared-word frequency between
two documents with respect to a corpus. The shared-word
frequency between two documents is the sum of the inverse
document frequencies for all words that the two documents
have in common, divided by the number of words shared:

shared-word frequency(d1, d2) =
Σw∈d1∩d2 IDF(w)

|d1 ∩ d2|

This shared-word frequency gives insight into the effect of
inverse document frequency on word weighting.

We then considered every duplicate bug report and its
associated original bug report in turn and calculated the
shared-word frequency for the titles and descriptions of that
pair. We also calculated the shared-word frequency between
each duplicate bug report and the closest non-original re-
port, with “closest” determined by TF/IDF. This measure-
ment demonstrates that over our dataset, inverse document
frequency is just as likely to relate duplicate-original reports
pairs as it is to relate unlinked report pairs.

We performed a Wilcoxon rank-sum test to determine
whether the distribution of shared-word frequency between
duplicate-original pairs was significantly different than that
of close duplicate-unique pairs. Figure 1 shows the two dis-
tributions. The distribution of duplicate-unique pair val-
ues falls to the right of the of distribution of duplicate-
original pair values (with a statistically-significant p-value

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 57 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

0.22

0.27

0.32

0.37

0.42

0.47

0.52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Top List Size

R
e

c
a

ll
 R

a
te

Our Algorithm
Runeson
TF/IDF
Runeson No Stoplist

Figure 2. Recall rate of various algorithms on the
Runeson task as a function of top list size. Our algo-
rithm performs up to 1% better than that of Runeson
et al., which in turn performs better than a direct ap-
plication of inverse document frequency (TF/IDF).

of 4×10−7). In essence, in the domain of bug report classi-
fication, shared-word frequency is more likely to increase
the similarity of unrelated pairs than of than duplicate-
original pairs. Thus, we were able to dismiss shared-word
frequency from consideration as a useful factor to distin-
guish duplicates from non-duplicates. This study motivates
the form of the weighting presented in Section 4.1.2 and
used by our algorithm.

5.2 Recall Rate

Our second experiment applies our algorithm to a
duplicate-detection recall task proposed by Runeson et
al. [15] Their experiment consists of examining a corpus
of bug reports that includes identified duplicate reports. For
each duplicate report d, the algorithm under consideration
generates an ordered top list containing the reports judged
most likely to be d’s original. This top list could then be
used by the triager to aid the search for duplicate bug re-
ports.

Results are quantified using a recall rate metric. If the
true original bug report associated with d appears anywhere
in the top list produced by the algorithm when given d, the
algorithm is judged to have correctly recalled the instance
d. The total recall rate is the fraction of instances for which
this occurs. The longer the top list is allowed to be, the
easier this task becomes. For every duplicate bug report, our
algorithm considers every other bug report and calculates
its distance to d using the word-vector representation and
cosine similarity. The reports are then sorted and the closest
reports become the top list. The algorithm of Runeson et al.

is conceptually similar but uses a similarity metric with a
different word weighting equation.

We tested four algorithms using all of the duplicate bug
reports in our dataset as the corpus. Figure 2 shows the re-
call rates obtained as a function of the top list size. The
TF/IDF algorithm uses the TF/IDF weighting that takes
inverse document frequency into account; it is a popular de-
fault choice and serves as a baseline. As presaged by the
experiment in Section 5.1, TF/IDF fared poorly.

We considered the Runeson et al. algorithm with and
without stoplist word filtering for common words. Unsur-
prisingly, stoplists improved performance. It is interesting
to note that while the TF/IDF algorithm is strictly worse at
this task than either algorithm using stoplisting, it is better
than the approach without stoplisting. Thus, an inverse doc-
ument frequency approach might be useful in situations in
which it is infeasible to create a stop word list.

In this experiment, our approach is up to 1% better than
the previously-published state of the art on a larger dataset.
We use our approach as the weighting equation used to cal-
culate similarities in Section 5.3. However, the difference
between the two approaches is not statistically significant at
the p ≤ .05 level; we conclude only that our technique is no
worse than the state of the art at this recall task.

5.3 On-Line Filtering Simulation

The recall rate experiment corresponds to a system that
still has a human in the loop to look at the list and make a
judgment about potential duplicates; it does not speak to an
algorithm’s automatic performance or performance on non-
duplicate reports. To measure our algorithm’s utility as an
on-line filtering system, we propose a more complex exper-
iment. Our algorithm is first given a contiguous prefix of
our dataset of bug reports as an initial training history. It
is then presented with each subsequent bug report in order
and asked to make a classification of that report’s duplicate
status. Reports flagged as duplicates are filtered out and
are assumed not to be shown to developers directly. Such
filtered reports might instead be linked to similar bug re-
ports posited as their originals (e.g., using top lists as in
Section 5.2) or stored in a rarely-visited “spam folder”. Re-
ports not flagged as duplicates are presented normally.

We first define a metric to quantify the performance of
such a filter. We define two symbolic costs: Triage and
Miss. Triage represents a fixed cost associated with triag-
ing a bug report. For each bug report that our algorithm
does not filter out, the total cost it incurs is incremented by
Triage. Miss denotes the cost for ignoring an eventually-
fixed bug report and all of its duplicates. In other words,
we penalize the algorithm only if it erroneously filters out
an entire group of duplicates and their original, and if that
original is eventually marked as “fixed” by the developers

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 58 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

(and not “invalid” or “works-for-me”, etc.). If two bug re-
ports both describe the same defect, the algorithm can save
development triage effort by setting aside one of them. We
assume the classifications provided by developers for the
bug reports in our dataset are the ground truth for measur-
ing performance.

We can then assign our algorithm a total cost of the
form a × Triage + b × Miss . We evaluate our perfor-
mance relative to the cost of triaging every bug report (i.e.,
11, 340× Triage , since 11,340 reports are processed). The
comparative cost of our model is thus (11, 340 − a) ×
Triage + b×Miss .

In this experiment we simulated a deployment of our al-
gorithm “in the wild” by training on the chronological first
half of our dataset and then testing on the second half. We
test and train on two different subsets of bug reports both
to mitigate the threat of overfitting our linear regression
model, and also because information about the future would
not be available in a real deployment.

The algorithm pieces we have previously described are
used to train the model that underlies our classifier. First,
we extract features from bug reports. Second, we perform
the textual preprocessing described in Section 4.1. Third,
we perform separate pairwise similarity calculations of both
title and description text, as in Section 4.1.1. This step is
the most time intensive, but it is only performed during the
initial training stage and when the model is regenerated.

Once we have calculated the similarity, we generate
the graph structure for the clustering algorithm, as in Sec-
tion 4.1.3. We use a heuristic to determine the best similar-
ity cutoff for an edge to exist between two bug report nodes.
For each possible cutoff, we build the graph and then exam-
ine how many edges exist between bug reports in an equiv-
alence class and bug reports in different classes. We choose
the cutoff that maximizes the ratio of the former to the lat-
ter. Given the cutoffs we can run the clustering algorithm
and turn its output into a feature usable by our linear model.

We then run a linear regression to obtain coefficients for
each feature. After the regression, we determine a cutoff
to identify a bug as a duplicate. We do this by finding the
cutoff that minimizes the Triage/Miss cost of applying that
model as a filter on all of the training bug reports. In Sec-
tion 5.3.1 we investigate how cutoff choices influence our
algorithm’s performance; in this section we present the re-
sults for the best cutoff.

Bug reports from the testing set are then presented to the
algorithm one at a time. This is a quick process, requiring
only feature recovery, the calculation of a total score based
on the precalculated coefficients, and a comparison to a cut-
off. The most expensive feature is the comparison to other
reports for the purposes of the textual similarity features.
The running time of this step grows linearly with the size
of the historical set. In our experiments, the average total

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Simulated Weeks of Filtering

D
u

p
li

c
a
te

 B
u

g
 R

e
p

o
rt

s

Ideal

Our Algorithm

Figure 3. Cumulative number of duplicate bug re-
ports filtered out as a function of the number of weeks
of simulated filtering. Our algorithm never filtered
out equivalence classes of reports that were resolved
as “fixed” by developers. Note log scale.

time to process an incoming bug report was under 20 sec-
onds on a 3 GHz Intel Xeon. In 2005, the Mozilla project
received just over 45,000 bug reports, for an average of one
bug report every 12 minutes. Our timing results suggest our
algorithm could reasonably be implemented online.

Figure 3 shows the cumulative number of duplicate bug
reports correctly filtered by our algorithm as a function of
time. For comparison, the ideal maximum number of filter-
able bug reports is also shown. We correctly filtered 10%
of all possible duplicates initially, trailing off to 8% as our
historical information became more outdated. In this exper-
iment we never regenerated the historical context informa-
tion; this represents a worst-case scenario for our technique.
At the end of the simulation our algorithm had correctly fil-
tered 8% of possible duplicates without incorrectly denying
access to any real defects.

Whether our algorithm’s use as a filter yields a net sav-
ings of development resources generally depends on an or-
ganization’s particular values for Miss and Triage — on
other datasets our filter might incorrectly rule out access to a
legitimate defect. Companies typically do not release main-
tenance cost figures, but conventional wisdom places Miss
at least one order of magnitude above Triage . In certain
domains, such as safety-critical computing, Miss might be
much higher, making this approach a poor choice. There are
other scenarios, for example systems that feature automatic
remote software updates, in which Miss might be lower.
For Triage, Runeson et al. report on circumstance in which,
“30 minutes were spent on average to analyze a [defect re-
port] that is submitted” [15]. Using that figure, our filter

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 59 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

False Positive Rate

T
ru

e
 P

o
s

it
iv

e
 R

a
te

Our Algorithm

Line of No
Discrimination

Figure 4. Receiver operating characteristic (ROC)
curve for our algorithm on this experiment. A false
positive occurs when all bug reports in an equiva-
lence class that represents a real defect are filtered
out. A true positive occurs when we filter one or
more spurious reports while allowing at least one re-
port through. Each point represents the results of our
algorithm trained with a different cutoff.

would have saved 1.5 developer-weeks of triage effort over
sixteen weeks of filtering. We intentionally do not suggest
any particular values for Miss and Triage .

5.3.1 False Positives

In our analysis, we define a false positive as occurring when
a fixed bug report is filtered along with all its duplicates (i.e.,
when an entire equivalence class of valid bug reports is hid-
den from developers). We define a true positive to be when
we filter one or more bugs from a fixed equivalence class
while allowing at least one report from that class to reach
developers. A false positive corresponds to the concept of
Miss and an abundance would negatively impact the sav-
ings that result from using this system while a true positive
corresponds to our system doing useful work.

In our experiment over 11,340 bug reports spanning four
months, our algorithm did not completely eliminate any
bug equivalence class which included a fixed bug. Hence,
we had zero false positives and we feel our system is
likely to reduce development and triage costs in practice.
On this dataset, just over 90% of the reports we filtered
were resolved as duplicates (i.e., and not “works-for-me”
or “fixed”). While the actual filtering performed is perhaps
modest, our results suggest this technique can be applied
safely with little fear that important defects will be mistak-
enly filtered out.

We also analyze the trade off between the true positive

0

20

40

60

80

100

120

Titl
e

S
im

ila
rit

y

D
es

c
Sim

ila
rit

y

E
ve

ry
 O

S

R
ep

or
te

d
D
ay

 4

M
ac

 O
S X

 O
nl
y

S
ev

er
ity

: M
aj
or

C
lu
st
er

in
g

Titl
e

Le
ng

th

H
as

 P
at

ch

R
ep

or
te

d
D
ay

 7

Feature left out

P
e
rc

e
n

t
o

f
s
a
v
in

g
s
 l

o
s
t

Figure 5. A leave-one-out analysis of the features in
our model. For each feature we trained the model and
ran a portion of the experiment without that feature.
The y-axis shows the percentage of the savings (using
Triage and Miss) lost by not considering that feature.
Note that without the title textual similarity feature
our model is not profitable in this simulation.

rate and the false positive rate in Figure 4. When consid-
ering both safety and potential cost savings, we are most
interested in the values that lie along the y-axis and thus
correspond to having no false positives. However, this anal-
ysis suggests that our classifier offers a favorable tradeoff
between the true positive rate and false positive rate at more
aggressive thresholds.

5.4 Analysis of Features

To test our hypothesis that textual similarity is of prime
importance to this task, we performed two experiments to
measure the relative importance of individual features. We
used a leave-one-out analysis to identify features particu-
larly important in the performance of the filter. We also used
a principal components analysis to identify overlap and cor-
relation between features.

We perform the leave-one-out analysis using data saved
from our modeling simulation. To measure the importance
of each feature used in our filter, we reran the experiment
without it. This included recalculating the linear model
and retraining the relevant cutoff values, then re-considering
each bug report, determining if the restricted model would
filter it, and calculating our performance metric based on
those decisions.

Once we obtain a performance metric for a restricted
model, we can calculate the percent of savings lost as com-
pared to the full model. The restricted models sometimes
filter out legitimate bug reports; the Miss cost must therefore

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 60 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

be considered. We chose to illustrate this analysis with the
values Triage = 30 and Miss = 1000. Figure 5 shows the
change in performance due to the absence of each feature.
Only features that resulted in more than a 1% performance
decrease are shown.

The biggest change resulted from the feature correspond-
ing to the similarity between a bug reports’s title and the
title of the report to which it was most similar. The sec-
ond most important feature was the description similarity
feature. This supports our hypothesis that semantically-rich
textual information is more important than surface features
for detecting duplicate defect reports. This had half the im-
portance of the title, which is perhaps the result of the in-
creased incidence of less-useful clutter in the description.
Surface-level features, such as the relevant operating sys-
tem or the conditions of the initial report, have less of an
impact.

If these features are independent, a larger change in per-
formance corresponds to a feature more important to the
model. We performed a principal component analysis to
measure feature overlap. This analysis is essentially a di-
mensionality reduction. For example, the features “height
in inches” and “height in centimeters” are not independent,
and a leave-one-out analysis would underrate the impact of
the single underlying factor they both represent (i.e., since
leaving out the inches still leaves the centimeters available
to the model). For our features on the training dataset there
were 10 principal components that each contributed at least
5% to the variance with a contribution of 10% from the
first principal component; it is not the case that our features
strongly intercorrelate.

6. Conclusion

We propose a system that automatically classifies dupli-
cate bug reports as they arrive to save developer time. This
system uses surface features, textual semantics, and graph
clustering to predict duplicate status. We empirically eval-
uated our approach using a dataset of 29,000 bug reports
from the Mozilla project, a larger dataset than has generally
previously been reported. We show that inverse document
frequency is not useful in this task, and we simulate using
our model as a filter in a real-time bug reporting environ-
ment. Our system is able to reduce development cost by
filtering out 8% of duplicate bug reports. It still allows at
least one report for each real defect to reach developers, and
spends only 20 seconds per incoming bug report to make
a classification. Thus, a system based upon our approach
could realistically be implemented in a production environ-
ment with little additional effort and a possible non-trivial
payoff.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open
bug repository. In OOPSLA workshop on Eclipse technology
eXchange, pages 35–39, 2005.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In International Conference on Software Engineering
(ICSE), pages 361–370, 2006.

[3] B. Boehm and V. Basili. Software defect reduction. IEEE
Computer Innovative Technology for Computer Professions,
34(1):135–137, January 2001.

[4] G. Canfora and L. Cerulo. How software repositories can
help in reoslving a new change request. In Workshop on
Empirical Studies in Reverse Engineering, 2005.

[5] D. Čubranić and G. C. Murphy. Automatic bug triage using
text categorization. In Software Engineering & Knowledge
Engineering (SEKE), pages 92–97, 2004.

[6] P. Hooimeijer and W. Weimer. Modeling bug report quality.
In Automated software engineering, pages 34–43, 2007.

[7] M. Kantrowitz, B. Mohit, and V. Mittal. Stemming and its
effects on TFIDF ranking. In Conference on Research and
development in information retrieval, pages 357–359, 2000.

[8] S. Kim and J. E. James Whitehead. How long did it take
to fix bugs? In International workshop on Mining Software
Repositories, pages 173–174, 2006.

[9] H. Liu. MontyLingua: an end-to-end natural language pro-
cessor with common sense. Technical report, http://
web.media.mit.edu/∼hugo/montylingua, 2004.

[10] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. Clus-
tering social networks. In Workshop on Algorithms and
Models for the Web-Graph (WAW2007), pages 56–67, 2007.

[11] J. N. och Dag, V. Gervasi, S. Brinkkemper, and B. Reg-
nell. Speeding up requirements management in a product
software company: Linking customer wishes to product re-
quirements through linguistic engineering. In Conference on
Requirements Engineering, pages 283–294, 2004.

[12] C. V. Ramamoothy and W.-T. Tsai. Advances in software
engineering. IEEE Computer, 29(10):47–58, 1996.

[13] E. S. Raymond. The cathedral and the bazaar: musings on
linux and open source by an accidental revolutionary. Inf.
Res., 6(4), 2001.

[14] C. R. Reis and R. P. de Mattos Fortes. An overview of
the software engineering process and tools in the Mozilla
project. In Open Source Software Development Workshop,
pages 155–175, 2002.

[15] P. Runeson, M. Alexandersson, and O. Nyholm. Detection
of duplicate defect reports using natural language process-
ing. In International Conference on Software Engineering
(ICSE), pages 499–510, 2007.

[16] J. Sutherland. Business objects in corporate information sys-
tems. ACM Comput. Surv., 27(2):274–276, 1995.

[17] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller. How
long will it take to fix this bug? In Workshop on Mining
Software Repositories, May 2007.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 61 DSN 2008: Jalbert & Weimer

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 12,2010 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.

