MARTINI: Memory Access Traces to Detect Attacks
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ABSTRACT

Hardware architectural vulnerabilities, such as Spectre and Melt-
down, are difficult or inefficient to mitigate in software. Although
revised hardware designs may address some architectural vulnera-
bilities going forward, most current remedies increase execution
time significantly. Techniques are needed to rapidly and efficiently
detect these and other emerging threats.

We present an anomaly detector, MARTINI, that analyzes traces
of memory accesses in real time to detect attacks. Our experimen-
tal evaluation shows that anomalies in these traces are strongly
correlated with unauthorized program execution, including archi-
tectural side-channel attacks of multiple types. MARTINI consists of
a finite automaton that models normal program behavior in terms
of memory addresses that are read from, and written to, at runtime.
The model uses a compact representation of n-grams, i.e., short
sequences of memory accesses, which can be stored and processed
efficiently. Once the system is trained on authorized behavior, it
rapidly detects a variety of low-level anomalous behaviors and
attacks not otherwise easily discernible at the software level.

MARTINT s implementation leverages recent advances in in-cache
and in-memory automata for computation, and we present a hard-
ware unit that repurposes a small portion of a last-level cache slice
to monitor memory addresses. Our detector directly inspects the
addresses of memory accesses, using the pre-constructed automa-
ton to identify anomalies with high accuracy, negligible runtime
overhead, and trivial increase in CPU chip area. We present analy-
ses of expected hardware properties based on indicative cache and
memory hierarchy simulations and empirical evaluations.
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1 INTRODUCTION

Two trends point to the need for robust, low-overhead detection
of novel attacks: (1) the advent of attacks that exploit architec-
tural vulnerabilities, such as Spectre [24] or Meltdown [28], and
(2) the widespread use of cloud and embedded systems intended
to run sets of authorized programs but vulnerable to the injection
of unauthorized code [10, 11, 26]. These problems, especially ar-
chitectural vulnerabilities, are not easily and efficiently mitigated
with software patches. Thus, there is a need for solutions that can
be deployed with minimal modification to existing hardware, that
impose minimal overhead on running software, and that generalize
to detect novel attacks.

Runtime intrusion detection systems (IDS) are a well-studied
approach for software vulnerabilities [27, 32, 42] and are deployed
in industry [22, 53]. These systems typically monitor systems at
high levels of abstraction (e.g., using system calls [18], network
packets [43], filesystems [22], user-behaviors [36], architectural
features [40, 63], or hardware performance counters [47]). Unfor-
tunately, modern attacks such as Meltdown and Spectre leave no
trace at these levels (and indeed are hidden by the processor’s
ISA) [27]. Other vulnerabilities may not be exposed with existing
IDS techniques. Further, many host-based IDS approaches have high
overhead arising from instrumentation (such as hooking I/O system
calls or inspecting network packets). Thus, existing, software-level
IDS are insufficient for defending against emerging classes of at-
tacks. For Spectre and Meltdown, CPU speculation features can
also be disabled, but the performance impact is high [31, 58] and
doing so does not address other extant hardware vulnerabilities.
Finally, novel microarchitecture redesigns are non-trivial and costly
in terms of time and resources and may expose new—or overlook
existing—hardware vulnerabilities.



There have been recent advances in processing-in-memory tech-
nology and, specifically, the development of memory-centric fi-
nite automata accelerator architectures such as the Cache Automa-
ton [51], which admit low-overhead access to memory and require
minimal architecural modification. Further, we observe that all pro-
grams manipulate memory and do so in characteristic ways (i.e., a
program may be identified by its instruction stream). We hypothe-
size that (1) memory access patterns provide a suitable abstraction
for identifying programs and detecting anomalous behavior, and (2)
it is feasible to construct low-overhead anomaly detectors leverag-
ing this memory access abstraction and in-memory computation.

In this work, we present initial evidence in support of these
hypotheses. We describe MARTINI,! a low-overhead, hardware-
assisted anomaly-intrusion detection system that detects anoma-
lous and malicious program execution at the memory access level,
including emerging hardware attacks. MARTINI can be deployed
alongside existing IDS techniques to provide a greater level of
system security. With MARTINI, authorized behavior is modeled
with dictionaries that represent n-grams, or sliding windows, of
short sequences of memory accesses, where each memory access is
compressed into eight bits of information. Because MARTINI uses
n-grams rather than complex pattern matching, once the dictionary
is trained on indicative, authorized behavior, subsequent queries
can be formulated in terms of finite automata inputs. Thus, MAR-
TINI can be deployed in hardware with low overhead and latency
by leveraging near-memory processing and in-cache computation.
We develop a new functional unit with a custom data path that can
be deployed in the processor core or last-level cache of modern
CPUs, which admits real-time monitoring of memory accesses.

As an initial deployment scenario, we consider high-assurance
whitelisting in which an operator provides a list of known, autho-
rized programs—any other program or behavior is unauthorized
(anomalous), and any such anomalous behavior should raise an
alarm that terminates the program or logs the activity for later
scrutiny by an operator. Such whitelisting facilities are useful in
scenarios that require regulatory compliance, such as avionics soft-
ware [44], health informatics [54], cloud infrastructure [16], and
industrial control systems [38].

Threat Model: We assume an attacker can hijack control of
userspace software by exploiting a vulnerability in an authorized
program (i.e., executing an authorized program using malicious in-
puts) or by executing unauthorized programs. MARTINI is trained on
indicative, authorized benign behavior, then exposed to subsequent
behavior and asked to decide whether or not it is anomalous. Benign
programs are known in advance (i.e., authorized), but their inputs
are not. Generality thus requires few false alarms on untrained
benign inputs and accurate detection of unauthorized scenarios,
i.e., one that has high true positives and low false positives.

Our evaluation of MARTINI demonstrates an overall false positive
rate of 4.4% with a true positive rate of 100% (area-under-curve =
0.9954) across a benchmark consisting of 16 Coreutils programs,
the PARSEC 3 benchmark suite, and four recent CVEs that include
Spectre and Meltdown proofs-of-concept. We consider more than
2,400 program traces and more than 13 billion individual memory
accesses. We further evaluate the cost of our approach with a circuit
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simulation of the chip area required to deploy MARTINI. Based on
a simulation using a 45nm process, we estimate that the area of
our proposed address monitoring unit is only .015mm?, a die area
increase of less than 0.04% for a current-generation 8-core Xeon
processor. These low overheads allow MARTINI to be deployed
alongside existing IDS techniques providing defense in depth. Our
empirical evaluation provides evidence in support of deploying
processing-in-memory for security applications.
In summary, the primary contributions of this paper are:

o A model of system-level behavior based on sequences of mem-
ory accesses. The model captures microarchitectural phenom-
ena, such as those exploited by recent hardware attacks, that
are unobservable in current software-level IDS.

e MARTINL an implementation that leverages this model to de-
tect unauthorized program behavior, including architectural
side-channel attacks, using dictionaries of n-grams of memory
accesses.

e An empirical evaluation of MARTINT's classification accuracy
on over 2,400 program traces from two large benchmark suites
and four exploits, including Spectre and Meltdown proofs-of-
concept. We find that MARTINI is able to classify intrusive
activity with high accuracy and precision (AUC 0.9954) while
requiring a very small chip area. Moreover, deploying MAR-
TINI in hardware would enable classification without runtime
overhead.

e A custom data path that leverages recent insights from high-
performance automata processing to provide per-cycle moni-
toring of memory accesses. Our design increases total chip area
by less than 0.04% on an 8-Core Xeon processor and demon-
strates that low-overhead, hardware-level deployment of anom-
aly detectors is feasible with current design and manufacturing
techniques.

2 BACKGROUND AND RELATED WORK

In this section, we describe (1) the memory access patterns of archi-
tectural side-channel attacks, (2) earlier work on intrusion detection
and process identification, and (3) hardware acceleration via near-
memory computation.

2.1 Architectural Side-Channel Attack Memory
Access Patterns

Architectural side-channel attacks, such as Spectre and Meltdown,
use cache timing to leak information in memory. Such attacks can
exploit side effects of branch prediction and speculative execution
to read or affect arbitrary memory locations. The key problem is
that changes to the state of the cache persist even if the CPU dis-
cards instructions that are speculatively executed. Consequently, a
malicious program can influence that state by executing a controlled
sequence of memory accesses, then leverage its knowledge of the
cache structure to either read or write arbitrary locations in memory
that are cached by other programs. In addition to Spectre and Melt-
down, other cache side-channel attacks include Foreshadow [55],
Flush+Reload [64], Evict+Time [41], Prime+Probe [29], and Nail-
gun [37]. Since these attacks rely on hardware vulnerabilities, they
are OS-independent and challenging to patch efficiently in software.



We consider the Meltdown vulnerability [28] as an indicative ex-
ample and elaborate its memory access patterns briefly to motivate
MARTINT's design decisions

At the core of Meltdown is an exploit to read out the value v
stored at a given address A via a side-channel. First, Meltdown (ille-
gally, but speculatively) reads from A the value v. Then, Meltdown
(speculatively) reads from a legal address f(v) which depends on
that previously read value. However, these steps alone are inad-
equate to determine the exact value v: because the access to A is
illegal, the speculation is carried out but not committed. In a second
loop, each potentially accessed address (e.g., (0)-f(255)) is legally
loaded and timed before being flushed from the cache, which reveals
which load was speculated and placed in the cache. Since the loaded
address f(v) was based on the (speculatively) loaded value v, this
leaks v, the value at A. This exploit has a regular memory access
pattern for every iteration and motivates our choice of n-grams of
memory addresses to identify malicious behavior.

In addition, although the absolute page locations of addresses
may vary from run to run (e.g., depending on the target address A as
well as the location of Meltdown’s region f(0)—-f(255)), the relative
differences and low-order bits are likely preserved across runs.
As a result, we propose to abstract memory addresses: By using
fewer bits to represent each access we can achieve low-overhead
deployment, generality, and sensitivity to unauthorized behavior.

Memory access patterns have been studied in microarchitectural
domains, e.g. for prefetching [33], but there is limited work that uses
memory access patterns for detecting attacks. Moreira et al. [35]
used Markov chains to represent program behavior from memory
accesses, but their technique relies on expensive machine learning
methods and are not suitable for our use case because they cannot
be deployed in-hardware with low runtime overhead. Additionally,
they focus on fault tolerance rather than malicious activity.

2.2 Runtime Intrusion Detection Systems

Broadly, an IDS is tasked with classifying a sequence of inputs as be-
ing normal or anomalous according to some model. IDS approaches
can be categorized along several dimensions. Lazarevic et al. [25]
focus on the network-based or host-based information analyzed.
IDS can also be categorized according to the method used to specify
normal behavior, e.g., statistics-based, pattern-based, rule-based,
state-based or heuristics-based [27]. Yet another dimension focuses
on signature-based vs. anomaly-based detection, where signature-
based methods represent patterns of of known attacks and anomaly-
based methods learn a model that can discriminate benign (normal)
behavior from abnormal behavior that is correlated with malicious
behavior. We selected an anomaly-detection approach, rather than
a signature-based one, because it can be implemented efficiently,
can detect zero-day attacks, and can be customized to particular
operating environments. Additionally, signature-based approaches
can be difficult to train and suffer from high false positive rates [49].

The closest IDS work to ours used n-grams of system calls to
detect misbehaving Unix processes [17, 18, 48]. Other relevant work
includes hardware-based malware detectors (HMD) and architec-
tural side-channel detectors. An HMD monitors micro-architectural
traces and raises alerts about anomalous behavior (e.g., [23]). HMDs
can detect side-channel attacks that leave no system call traces and
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Figure 1: Two functionally equivalent finite automata, NFA
(a) and homogeneous NFA (b), which both recognize four
spellings of ‘doughnut’ Starting states are indicated with
an attached arrow and final states have a double edge. Em-
bedding transition information inside each state admits ef-
ficient hardware implementation.

can potentially be secured against a compromised OS [65]. For ex-
ample, Demme et al. used performance counters as the data source
for an HMD [13], though there are concerns about using perfor-
mance counters in this domain [12]. Similarly, Wei et al. proposed
a power anomaly detection system for embedded systems which
can detect side-channel attacks, including Spectre, with high accu-
racy [59]. However, this method targets embedded systems that run
fixed jobs with consistent behavior. Leach et al. used hardware CPU
features to detect attacks against cloud infrastructure [26], but their
technique detected only certain classes of scheduler and resource
usage attacks. We extend these previous HMDs to sequences of
memory accesses in a host-, state-, anomaly-based approach for gen-
eral workloads. This allows MARTINI to detect both conventional
attacks and memory-based side-channel attacks accurately.

2.3 Finite Automata

We use non-deterministic finite automata (NFAs) to represent and
monitor memory access patterns of executing programs. Formally,
an NFA is a five-tuple, (Q, %, Qstart, 6, F), where Q is a finite set
of states, X is a finite alphabet of input symbols, Qstarr € Q is
the set of initial states, & : 2@ x 3 — 2@ is a transition function
encoding transfer of control between states based on an observed
input symbol,2 and F C Q is a set of accepting states.

A homogeneous NFA specializes NFAs by restricting the transition
function such that all incoming transitions to a given state occur
on the same input symbol. NFAs and homogeneous NFAs have
equivalent representative power [7] (Figure 1), and because all
transitions into a given state occur on the same symbol(s), we can
embed transition rules in the states. Following Dlugosch’s et al.
nomenclature, we refer to these combined state/transition rules as
state transition elements (STEs) [14].

An NFA is typically said to have accepted its input if it is in
an accepting state after the entire input has been processed. To
support streaming of input data (memory accesses in MARTINI), we
2For architectural reasons, we choose a definition of NFAs without &-transitions. In

our formulation, an e-transition is encoded by duplicating all incident transitions to a
source state onto the target state [14].
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Figure 2: Cache Automaton (CA) architecture. STEs are
stored in a memory array, and edges are encoded in a recon-
figurable routing matrix. This architecture enables compact
implementation of NFAs in hardware.

extend this definition to a notion of reporting: if at any point during
input processing, an accepting state becomes active, a report signal
is generated to indicate that the encoded pattern has been found
(and is therefore authorized). If an NFA does not report on a given
sequence of memory addresses, then that sequence is interpreted as
unauthorized. Therefore, the NFAs represent authorized program
behavior, with sequences of memory addresses as input.

2.4 Hardware acceleration and Near-Memory
Computation

A recent body of work studies the acceleration of automata pro-
cessing. There have been several efforts to develop memory-centric
architectures for automata processing, such as Micron’s D480 Au-
tomata Processor (AP) [14], Subramaniyan et al.’s Cache Automa-
ton (CA) [51], Parallel Automata Processor [50], and Xie et al.’s
REAPR [61]. These architectures enable fast, efficient implementa-
tions of automata-based computation [39, 56].

Because the CA is most similar to our approach, we describe our
memory-centric automata processing with respect to it. Figure 2
depicts the CA architecture. SRAM arrays in the last-level cache
(LLC) are repurposed in the CA to encode both STEs and transition
rules. STEs are mapped to individual columns in the array. The
NFA in Figure 1(b) requires eight columns to execute. To perform
computation, 8-bit input symbols are fed through the row address
lines of the array, and the row decoder drives a single row in the
array (effectively implementing a one-hot encoding of the input
symbol). An STE matches the input if a 1 is stored in the row
associated with the input symbol. In a single clock cycle, all STEs
simultaneously determine whether they match the input. STEs that
match the input and are active (as determined by an additional
one-bit register stored with each column) generate a transition
signal, which is fed into a reconfigurable routing matrix to update
the activation bit registers for the next cycle of computation. In
brief, this construction implements a given NFA transition function
in hardware.

Sliding Window
—

Window 1 | 0x17 0xB2 0xC3 0xC4 0xDF 0xC8

Window 2 0xB2 0xC3 0xC4 0xDF 0xC8

Window 3 0xC3 0xC4 0xDF 0xC8

Figure 3: Example of a four-address fixed-width window.
Here, an executing program accesses addresses 0x17, 0xB2,
0xC3, etc. Each window (n-gram) thus represents a local
snapshot of accessed memory locations as the window slides
across all memory accesses.

We leverage Subramaniyan et al.’s design for a novel sense-
amplifier cycling technique, but demonstrate that NFAs for our
application-specific deployment for monitoring memory accesses
have a uniform and trivial topology that allows for significantly
smaller interconnect than the one used in the CA.

3 TECHNICAL APPROACH

In this section, we describe MARTINT's design and implementation
followed by a description of our proposed hardware architecture for
monitoring memory accesses without impacting runtime overhead
or classification performance.

3.1 The Memory Access Pattern Abstraction

Many abstractions have been proposed to compactly character-
ize program behavior, including the cadence of cache misses [63],
program counters [45], taint tracking in I/O inputs [52], and hard-
ware performance counters [12, 47]. Despite their ability to identify
anomalous behavior, these models typically require intrusive in-
strumentation that degrades system performance. We aim for an
abstraction of memory access patterns that is suitable for low-
overhead, high-accuracy real-time monitoring.

Programs are represented as data stored in memory, and pro-
gram execution proceeds by reading, modifying, and storing data
in memory. Program behavior therefore partially manifests as a
sequence of memory accesses produced during execution. These
sequences are inherent to the underlying execution path and struc-
ture of program code. That is, alterations to the way in which a
program processes information are revealed by its memory access
patterns. For example, a calculator program that parses and inter-
prets expression strings will generate distinct memory traces when
multiplying vs. adding operands due to variations in the execu-
tion’s control flow. By contrast, changing the operands (i.e., the
numerical data) will typically not result in a change in the trace of
memory addresses. The MARTINI design leverages this insight to
characterize program execution as either benign or malicious (i.e.,
either authorized or unauthorized by the system operator) in a way
that, ideally, generalizes to subsequent inputs.

Instead of considering a program’s unique sequence of memory
accesses as a whole, we propose a stream-based approach that can
scale to arbitrary-size programs, observing a fixed-width window of
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Figure 4: Visualization of n-gram representation for differ-
ent programs. Sets of windows of size three are shown for
memory accesses of cal and dmesg. Each point (a, a1, az)
in three-dimensional space represents a unique window
recorded during the execution of the program, where a, rep-
resents the n'" address in the window. The plots are struc-
turally different between the two programs indicating sig-
nificant differences in their behavior. We consider such win-
dows in 8 dimensions.

the n most recently accessed memory addresses. This window acts
as a shift register, allowing MARTINT to observe a sliding window of
memory addresses as program execution proceeds. This provides a
localized, contextual view of a program’s recent memory behavior
that can be monitored during the execution of the program. Figure 3
provides an example of the construction of windows of width four
from a stream of memory addresses.

Although any individual n-gram is likely shared across the ex-
ecution of different programs, we hypothesize that the set of all
windows for a given program provides a unique signature that is dif-
ficult to spoof. This is the intuition behind our approach—programs
are characterized by the pattern of memory addresses accessed
during execution. As an example, consider three-address windows:
Figure 4 plots windows for the Linux utilities cal and dmesg in
three-dimensional space, where each dimension represents one bit
of the address. Each point represents a unique sequence of three
memory addresses recorded during the execution of the program.
The two plots are structurally dissimilar (e.g., the dense behavior
on the “center-left,” ap—ay region, for cal), which shows how a sim-
ple comparison of fixed-width memory access window sets will
differentiate the execution of different programs. We rigorously
evaluate this hypothesis in Section 6.

3.2 Dictionaries of Program Behavior

Next, we extend the notion of memory access windows to (1) allow
a system operator to define a collection of authorized programs
and (2) compactly represent sets of valid windows.

Statically determining the exact execution path of a program is
undecidable. Instead, we sample many indicative memory traces
from each authorized program. We next construct a dictionary with
all of the windows generated by this training set. The dictionary is
an abstract model of authorized program behavior. New programs
and traces may be added to a dictionary without retraining on
existing traces. Similar to other IDS approaches, the quality of
the model is determined by the extent to which the training set
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Figure 5: Example of address truncation. Memory address
deltas are bitwise AND’d with a truncation mask and packed
into 8-bit values. In practice, a sign bit and the seven least
significant bits produce accurate results.

generalizes to all normal behaviors. In our experience, however,
most programs have highly conserved execution patterns under
benign inputs.

Two related challenges in offline learning of labeled training data
include overfitting and model size [9, 19]. We require a solution
that avoids overfitting (so that it will generalize to untrained benign
program input data for high-assurance whitelisting) and that admits
a compact representation (so that it can be efficiently deployed in
hardware, such as in a Cache Automaton setting). To address these
challenges, we propose three additional refinements:

3.2.1 A-Windows. Defensive techniques such as address space lay-
out randomization (ASLR) randomize important memory locations
of processes to harden systems against classes of exploits [46]. For
MARTINT, the execution of identical processes could produce signif-
icantly different absolute memory traces. We generalize otherwise
identical memory traces by storing the distance between consecu-
tively accessed memory addresses rather than absolute locations.
While absolute addresses can vary across executions, we hypoth-
esize that these distances, or deltas, likely remain constant and
generalize. We refer to windows of address deltas as A-windows.

3.2.2  Truncation. A-windows mitigate some of the risk of overfit-
ting due to address randomization, but differences between physical
and virtual addresses remain. We mitigate this by truncating the
address delta values to b bits, excluding bits in the delta that may be
specific to the physical page selected at runtime. This also signifi-
cantly reduces the address space represented by our model, helping
generalize the model and reduce overfitting. MARTINI supports
general masking of the address deltas. Although a full parameter
sweep falls outside the scope of this work, our experimentation
showed that storing a sign bit and the seven least significant bits of
the address deltas produces good results. An example of address
delta truncation is given in Figure 5.

3.2.3 Compression. Simply truncating deltas (e.g., to 8 bits) im-
proves the model, but is still insufficient for our needs. For example,
for A-windows of length 8 containing 8-bit truncated deltas, there
are 288 = 264 unique values that could be stored in a dictionary.
Even when storing fewer than half of these values, we found that a
dictionary trained on a subset of Linux Coreutils contained approx-
imately 40 million windows, which is several orders of magnitude
larger than what MARTINI can efficiently support (Section 4).

To address this scalability challenge, we compress dictionaries
using a method similar to earlier work on system calls [18]. In
this scheme, the first element of a window is stored exactly, but
each subsequent position is represented by the unordered set of



all observed values at that offset from that starting element. For
example, if the windows (c, a,t), {(c,0,w), and (d, 0,g) were ob-
served, the compressed dictionary would store (c, {a, 0}, {t, w})
and (d, {0}, {g}). Note that this compressed dictionary accepts the
original three windows as well as “caw” and “cot”; the compression
is not lossless. Additionally, “dog” is stored separately in the com-
pressed dictionary because its first element is distinct. Thus, while
the compression generalizes a dictionary, it also reduces the size,
admitting efficient hardware implementation.

For windows of length k consisting of b-bit deltas, the number of
possible values stored in the compressed dictionary reduces from
2k0 10 k-2° Our empirical evaluation in Section 6 demonstrates that
compressed dictionaries retain sufficient fidelity to detect unautho-
rized program execution, including difficult-to-observe hardware
side-channel attacks.

3.3 Detecting Anomalous Program Execution

During the training phase, MARTINI records all of the memory
traces associated with runs of authorized programs on indicative
workloads. We consider fixed-width sliding windows of addresses
from those traces, convert adjacent addresses to A-windows, trun-
cate each delta to a smaller number of bits, and finally generate a
compressed dictionary to store (an over-approximation of) the set
of truncated A-windows associated with those programs and runs.
Our experimental results show that such sets of abstracted memory
addresses characterize program behavior in a way that is sensitive
to the classes of anomalies in which we are interested.

After training, we determine whether a new sequence of mem-
ory accesses matches the model by converting incoming accesses
to a truncated A-window and querying the dictionary for mem-
bership. If observations fall outside the dictionary, MARTINI flags
the sequence as anomalous (and possibly malicious). We refer to
these anomalous sequences as mismatches. A mismatch counter c,
initialized to zero, increments by one whenever MARTINI detects a
mismatch. The mismatch counter is multiplied by a decay coeffi-
cientd (0 < d < 1) every N windows to retain local context and
eventually forgive past mismatches. The mismatch rater (0 < r < 1)
is defined as r = (1 —d)c/N. An alarm triggers when the mismatch
rate exceeds a predefined threshold ¢. Briefly, the mismatch rate
reflects the concentration of mismatches at any point in time. This
allows the system to tolerate some false positives, while still re-
sponding to legitimate deviations. t controls the sensitivity of the
system and allows MARTINT to be configured to optimize the trade-
off between false- and true-positives in different settings. Proper
tuning of thresholds has been demonstrated to mitigate many false
positives [48]. We evaluate mismatch rate thresholds in Section 6.

This work focuses on detecting anomalies, but what happens
after an anomaly is reported? Here are two reasonable responses:
(1) the alarm signal could trigger the OS to terminate the process
or (2) the memory system could delay completion of the memory
transaction. Termination would require careful implementation to
avoid denial-of-service and livelock issues. A delay-based approach
can be effective in some OS settings because users can often tolerate
an occasional small delay but attackers typically cannot [48]. For
some versions of Spectre and Meltdown, additional delays would
explicitly defeat relevant timing-based calculations (Section 2.1). We
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Figure 6: Homogeneous NFA representation of a dictionary.
The NFA consists of 256 connected components, each con-
taining a chain of eight STEs. The initial STE for each com-
ponent matches a unique value; all subsequent STEs match
a set of possible values. Training determines the values
within.

MARTINI
AP Core

core Xeon processor, each with private L1 and L2 caches and
shared 2.5MB Last-Level Cache (LLC) slice with embedded
MARTINI processor, and a block diagram of the MARTINI pro-
cessor (shown in pink). Note that regions are not to scale.

view either of these scenarios as plausible but leave the development
of a robust demonstration for future work.

4 MARTINI ARCHITECTURAL DESIGN

Having detailed MARTINT’s IDS design, we now describe its microar-
chitectural design and efficient implementation. First, we present
the homogeneous finite automaton compressed dictionary represen-
tation. Then, we describe our proposed architecture for monitoring
memory accesses, which is embedded in the last-level cache (LLC)

of the CPU.

4.1 From Dictionaries to Automata

We represent compressed dictionaries as homogeneous NFAs (Sec-
tion 2.3) to facilitate hardware implementation and execution. A
separate automaton, or connected component [51], is created for
each A-window in the trained dictionary. Because there is a sin-
gle entry in the compressed dictionary for each unique address
delta that begins a window, b-bit deltas translate to 20 connected
components.

Within a given automaton, we allocate one STE for each window
offset, which forms a linear chain. The symbol match conditions are
taken directly from the compressed dictionary. Additionally, each
initial STE contains a self-loop to account for the sliding window
comparison. The last state in each chain (equivalent to the final
position in the window) generates a report signal if activated. In



MARrTINI Figure 6 illustrates the automata layout. When a new
dictionary is trained, the overall automata topology is unchanged,;
only the symbols within individual STEs change. This insight allows
us to simplify hardware-level routing to save space in silicon.

The automata input is the sequence of truncated memory address
deltas generated by program execution, and reports are generated
for every input A-window that matches the encoded dictionary.

4.2 MARTINI Address Monitor

To support real-time monitoring of memory accesses, we embed
MARTINI in the last-level cache (LLC) region of the CPU. Figure 7
shows an enterprise 8-core Intel Xeon-E5 processor. The Xeon
family of processors typically includes 8-16 slices of LLC (one
slice per core) [6, 8, 20]. In our prototype, each processor core is
allocated a dedicated MARTINT unit (the pink rectangles within each
private cache in the Figure). Our MARTINT unit consists of three
components: the Address Delta Unit, Automata Processing (AP)
Core, and Trigger Arbitration Unit.

The Address Delta Unit snoops the memory address lines of the
core and calculates the truncated delta between two consecutive
addresses (as described in Section 3.2). In its simplest form, this unit
performs two’s complement arithmetic on 8-bit values; however, a
more sophisticated unit could support dynamically masking and
truncating address deltas.

The generated address deltas are then fed into the AP core, de-
scribed in the next subsection. This core executes the automata
computation, producing triggers when a window of address deltas
is not found in the loaded dictionary.

The Trigger Arbitration Unit tracks triggers and generates an
alarm signal when a pre-defined threshold is exceeded. Our pro-
totype implementation consists of two counters. The first counter
tracks the number of windows processed, while the second counter
tracks the number of triggers produced by the AP core. Whenever
the window counter reaches its threshold, the trigger counter is
shifted to decay the value and favor local context. If the trigger
counter reaches its threshold (i.e., the mismatch rate from Sec-
tion 3.3), the Trigger Arbitration Unit produces a signal indicating
an anomaly, which is handled by the OS or memory system.

4.3 Automata Processing Core

The AP Core is responsible for taking an input A-window and
determining whether it is present in the dictionary. We next de-
scribe our prototype design for implementing MARTINT in a current-
generation Intel Xeon CPU, which represents a novel, system-level
integration of automata processing.

Our AP Core follows much of the implementation of the Cache
Automaton [51]; however, we make several application-specific
modifications to reduce space overhead and improve performance.
Each 2.5 MB slice of LLC in the Xeon processor is organized into
20 ways, each of which is subdivided into five 32 kB banks. Four
of these banks constitute data arrays, while the fifth is used for
storing cache state [6, 8, 20]. Internally, the banks used for data
arrays are made up of four 8 kB (256 x 256) SRAM arrays. We
repurpose these SRAM arrays to perform automata computation.
A single SRAM array can accommodate 256 STEs, meaning that
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Figure 8: Specialized MARTINI AP architecture. Routing of
activation signals is simplified because connected compo-
nents in the automata consist of chains of eight STEs (shown
in the dashed region). A single 256 x 256 SRAM Array con-
tains 32 connected connected components. We require eight
arrays (256 connected components). Masked address deltas
are fed as input to the row decoders, and outputs from each
connected component are fed to trigger arbitration.

to accommodate all 2048 STEs of the compressed dictionary, eight
arrays—two banks—are repurposed for the AP Core.

Figure 8 depicts the repurposed SRAM array. As described in
Section 2.4, each column encodes the input matching rule for an
STE following the state-match design of previous memory-centric
AP models [14, 51]. The row decoder converts the current address
delta to a 256-bit one-hot encoding. The homogeneity property
of the automata ensures that STEs can be represented by a single
column of SRAM. Each STE also has a corresponding activation
bit. An STE must both match the input symbol and also be active
to generate a transition signal. One exception is the initial STE in
each connected component: this STE is always active (every cycle
is also the start of a new sliding window).

In general-purpose automata processing, a second SRAM array
is used to support a reconfigurable routing matrix for transition sig-
nals. For MARTINT, this is not needed; the topology of the automata
is fixed, consisting of chains of eight STEs. This allows for static
routing in which the transition signal from the previous STE feeds
into the activation bit register of the next STE, resulting in a more
compact design. The transition signal out of the last STE in each
connected component chain feeds into a NOR gate, which aggre-
gates signals from all of the connected components and produces a
trigger for the Trigger Arbitration Unit.

4.4 System Integration

Compressed automata dictionaries are (1) placed and routed for
hardware resources and (2) stored as a bitmap containing STE
input match symbols and the thresholds for the Trigger Arbitration
Unit. At runtime, the OS loads the bitmap into the monitoring
unit using standard load instructions and Intel Cache Allocation
Technology [21]. Anomaly alarms trigger a hardware interrupt,
allowing the OS to implement custom mitigation strategies. The
configuration overheads are small (roughly equivalent to loading 2



kB of data into the LCC) and typically only occur once. The unit
needs to be reconfigured only when loading a new dictionary.

5 EXPERIMENTAL METHODOLOGY

Although we have not fabricated the custom data path described in
Section 4, we evaluate the viability of collecting and using memory
traces from program executions, and describe our approach for
simulating the Address Delta, AP and Trigger Arbitration units.

5.1 Recording Memory Traces

We built two helper tools to collect memory access traces of tar-
get programs. First, we leverage an extension to QEMU [4] called
PANDA (the Platform for Architecture-Neutral Dynamic Analy-
sis) [15]. Since QEMU is a full-system emulator, this approach has
the advantage that we can instrument every instruction executed
by the guest system without perturbing its behavior. Second, we
used Intel’s Pin tool [30] to collect memory traces of userspace
programs. In contrast to the QEMU-based approach, Pin can collect
memory traces much more quickly, where faithful modeling of the
cache hierarchy is necessary. However, the primary disadvantage
to Pin is the need to statically modify a target binary, potentially
changing memory addresses that are accessed at runtime.

These PANDA and Pin instrumentations are used only in the
simulation evaluation to establish a ground truth; they are not
part of our proposed deployment. We use both approaches to col-
lect memory traces of a suite of benchmark programs. While Pin
instrumentation modifies the software under test, we observed a
difference of less than 1%.

5.2 Building and Testing Dictionaries

We next construct a dictionary from the recorded memory traces
by applying the refinements described in Section 3.2. First, we
calculate the differences between consecutive memory accesses in
the traces. Next, we slide a fixed-width window across this data
to form 8-delta-long A-windows while simultaneously truncating
each value to 8 bits. Finally, we construct a dictionary by creating
sets of address deltas for each window offset.

We use MNRL to generate automata from a compressed dictio-
nary. MNRL is an open-source state machine representation lan-
guage and language API intended for large-scale automata process-
ing applications [2, 3]. To simulate the execution of our proposed
accelerator architecture, we use VASim, a cycle-accurate simulator
for automata processing architectures [57]. We extend the simu-
lation to support the operations of the Address Delta and Trigger
Arbitration units. In our evaluation, we loaded memory traces from
the testing set into VASim and processed the data using the com-
pressed dictionary NFA, producing a list of generated alarms.

5.3 Benchmarks

We use multiple software benchmarks as indicative examples of
both benign and malicious behavior. Table 1 shows these programs
aggregated into one of three benchmark suites based on general
behavior. In total, we collect and test on over 2,400 program traces
and over 13 billion memory accesses.

The Coreutils Subset features a subset of 16 of the Linux coreutils
programs, commonly used as benchmarks (e.g., [34, 60]). Programs

Table 1: Summary of benchmarks used in the experiments.

Coreutils Subset Suite

Program Version Traces Average Trace Length
cal N/A 269 307,994
cat coreutils 8.25 227 133,667
cp coreutils 8.25 175 274,652
date coreutils 8.25 29 102,393
diff coreutils 3.3 50 266,856
dmesg util-linux 2.27.1 50 7,077,967
dnstracer 1.8.1 100 107,111
du coreutils 8.25 257 6,498,869
grep 2.25 266 429,125
Is coreutils 8.25 260 884,068
objdump Binutils 2.26.1 150 1,066,007
ps procps-ng 3.3.10 30 2,112,550
readelf Binutils 2.26.1 50 8,911,505
sed 4.2.2 50 370,897
tar 1.28 232 458,187
uname coreutils 8.25 57 93,281
PARSEC Suite
Program Version Traces Average Trace Length
blackscholes 3.0 1 233,020,782
bodytrack 3.0 1 614,815,076
canneal 3.0 1 946,425,872
dedup 3.0 1 1,005,640,971
facesim 3.0 1 232,921,684
ferret 3.0 1 766,278,169
fluidanimate 3.0 1 640,500,257
freqmine 3.0 1 1,287,177,742
raytrace 3.0 1 1,005,358,609
streamcluster 3.0 1 473,597,488
swaptions 3.0 1 786,879,131
vips 3.0 1 1,596,912,331
x264 3.0 1 233,132,151
Security Suite
Program Version CVE Traces Avg, Trace Detect
Length

Meltdown N/A N/A 64 13,361,880 v

Spectre N/A N/A 52 3,614,351 v

dnstracer 1.8.1 2017-9430 52 227,616 v

objdump Binutils 2.26 2018-6323 50 814,034 v

in this suite represent a range of benign applications; we executed
each with a variety of command-line arguments to gather memory
access traces. The PARSEC benchmark [5] is composed of larger
multithreaded programs that are designed to simulate a diverse
set of highly parallelizable programs (e.g., ray tracing, fluid simula-
tion, video compression, etc.). We use these programs as a test set
for evaluating whether MARTINI can successfully detect execution
that is not part of a trained dictionary. The Security benchmarks
include representative malicious behavior: Spectre, Meltdown and
two recent CVEs associated with Linux programs: dnstracer and
objdump. The additional “Detect” column indicates whether MAR-
TINI can successfully detect the execution of these CVEs using a
dictionary of indicative benign programs (see Section 6).

We trained dictionaries in our evaluation using a random 60%
of the corresponding program’s traces. For example, a dictionary
containing diff would be trained using 30 of its traces, randomly
selected.
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Figure 9: Comparison of memory traces between pairs of
Linux utilities. We trained a dictionary using each utility,
then measured the ratio of similarities between additional
traces of that utility and traces of the other utilities. Red bars
compare the trained utility to a subsequent execution of that
same utility. Note that the red bar is approximately one for
all utilities while all blue bars are less than one, demonstrat-
ing that memory traces can effectively identify programs.

6 EVALUATION

In this section, we present an empirical evaluation of MARTINI
and our proposed memory sequence abstraction. We frame our
evaluation around the following four research questions to validate
design assumptions and investigate system-level hypotheses:

RQ1. Can our proposed memory sequence model identify, and
differentiate, program executions?

RQ2. What are the effects of compressing dictionaries?

RQ3. Can MARTINI distinguish malicious from benign inputs?

RQ4. Can MARTINI detect unauthorized and malicious programs,
including Spectre and Meltdown?

6.1 RQ1. Differentiating Programs

We collected traces of memory accesses for each program in the
Coreutils Subset (Table 1) and constructed a dictionary for each
utility using 8-access windows from the traces (see Section 3.2).
Then, we used execution traces from the other utilities and mea-
sured the fraction of tested 8-access windows that are found in the
trained dictionary. This experiment measures sequences of mem-
ory accesses that are the same between a trained dictionary and
some subsequent test program execution. For example, we expect
that a dictionary constructed from 1s will match a high number of
memory accesses in a subsequent run of 1s on different arguments,
but will match a low number of accesses from a trace of cat, an
entirely different program.

Figure 9 summarizes our findings, showing bar graphs for each
utility (the remainder show similar results and are elided for space).
The x-axis shows the testing program and the y-axis shows the “hit
rate,” or fraction of 8-access sequences in the testing program trace
that matches the dictionary. We gain confidence in our assumptions

if (1) testing and training on the same program shows a high hit rate
(i.e., the red bar is near 1.0), and (2) testing and training on separate
programs shows a low hit rate. The figure shows clear separation
between these two measurements, which establishes that we can
set a threshold to distinguish between different programs, based
only on 8-access sequences of memory accesses.

6.2 RQ2. Effects of Dictionary Compression

Next, we evaluate the effectiveness of dictionary compression (Sec-
tion 3.2.3). Recall that (1) the primary goal for the compression is
minimizing the chip area required for implementation, and (2) we
hypothesize that we can compress the model without significantly
increasing collisions of A-windows, which would cause false nega-
tives. To study this question, we compare MARTINI s accuracy at
classifying authorized vs. unauthorized program behavior, both for
uncompressed and compressed dictionaries.

We built compressed and uncompressed dictionaries from traces
of 12 of the Coreutils Subset programs. We then used traces from
the four CVE proofs-of-concept and the four held-out Coreutils
Subset to determine whether those programs would trigger alarms.
In this setup, traces from the in-dictionary programs should not trig-
ger alarms, and traces from the out-of-dictionary programs should.
We measured true- and false-positive and -negative data (results
are detailed in Section 6.4). We found that the uncompressed dictio-
nary yielded an AUC of 0.9995, while the compressed dictionary
yielded an AUC of 0.9928, a trivial decrease in performance. Thus,
we conclude that compressing dictionaries does not significantly
influence classification performance.

6.3 RQ3. Malicious vs. Benign Inputs

Having established that MARTINT separates benign from anomalous
behavior (e.g., cal from objdump) and validated that compression
is effective, we consider malicious program inputs (e.g., objdump
normal operation vs. an objdump exploit). CVE-2018-6323 describes
an unsigned integer overflow in the elf_object_p function of
objdump that can be triggered when it reads a specially crafted ELF
file. We generated a training dictionary by running objdump over
34 different ELF files. We evaluated with respect to three traces
each of 16 benign ELF inputs and traces of the malicious ELF.

We used these to evaluate the detector’s performance as a func-
tion of the threshold ¢ chosen (see Section 3.3). We say that a trace
passes if it does not trigger any alerts. Figure 10 plots the pass rate of
the held out benign objdump dictionary (i.e., true negatives, shown
in solid blue) and the held out malicious CVE (i.e., false negatives,
shown in dashed red), both as a function of threshold. Note that
interval size and decay are configurable parameters discussed in
Section 3.3. Thresholds from 0.01 to 0.05 catch all malicious be-
havior with no false positives. This is one of three principal
whole-system results: MARTINI distinguishes malicious from be-
nign program behavior with accuracy and precision.

6.4 RQA4. Detecting Unauthorized and
Malicious Programs

We also investigate MARTINT s ability to detect unusual or malicious
programs, such as unauthorized programs or exploits and attacks.
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Figure 10: MARTINI performance on objdump CVE-2018-6263,
as a function of threshold for benign and malicious inputs.
We trained on traces from benign objdump inputs; the vulner-
ability was exploited using the malicious input, and MARr-
TINI classified the runs as benign or malicious. True nega-
tives are shown in solid blue and false negatives in dashed
red. Note that thresholds of 0.01-0.05 allow all benign runs
to pass, while raising alarms on 100% of malicious runs.

In this evaluation, we train a dictionary with 60% of all traces of
12 of our Coreutils Subset programs. The resulting model is then
simultaneously subjected to four types of testing traces: (1) trained
programs, (2) untrained Linux utilities (i.e., the remaining held-
out Coreutils), (3) exploits of trained programs, and (4) Spectre and
Meltdown proofs-of-concept. In our use case, only trained programs
are considered normal; all the others are anomalous and cause
MARTINI to raise an alarm. We can detect anomalous behaviors
with a high true positive rate and a low false positive rate.

We are particularly interested in detecting emerging hardware
side-channel attacks, such as Spectre and Meltdown. Therefore, we
first consider these two attacks, in isolation, before presenting our
full system results. Figure 11 shows the pass rates for both Spectre
and Meltdown using the dictionary described in this subsection. For
comparison, we also show the pass rate of objdump, an indicative,
authorized program. The horizontal separation between the blue
and the two red curves allows a generous range of thresholds that
would detect all malicious executions with no false positive alarms
on executions of objdump. This is our second principal whole-
system result: sequences of memory accesses provide a suitable
abstraction for detecting emerging hardware side-channel attacks.

There are several reasons this result is significant. First, the vul-
nerabilities exploited by both Spectre and Meltdown are not exposed
by the processor’s ISA, yet our memory sequence abstraction de-
tects the anomalous behavior. Second, our dictionary-based model
is trained using only benign, authorized programs, meaning that
exploits need not be known a priori to be detected by MARTINT.
Third, our approach, while intended to detect emerging hardware
side-channel attacks, does not leverage any exploit-specific insights.
Instead, we leverage a general model of memory access patterns.
As such, we expect that the results presented here will generalize
to other hardware-based exploits as they become available.

Next, we present results using all of the benchmark applications.
Figure 12 shows the receiver operating characteristic (ROC) curve
of the results. The curve plots the true-positive and false-positive
rates parametrically as a function of the threshold: each point on
the curve represents a different threshold that can be chosen and
thus a different tradeoff in the space. A common metric to evaluate
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Figure 11: Comparison of pass rates between Spectre and
Meltdown and an indicative, authorized program (Obj-
dump). We show one authorized application for comparison
and present full-system results separately. The horizontal
separation (up and left) between the benign and malicious
programs demonstrates the range of thresholds that can de-
tect both attacks while allowing benign executions.
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Figure 12: Experimental MARTINI results for tested anom-

alies. The ROC curve reports data for all the benchmarks.

The blue line reports the average detection rate across all

data points using the 12 Coreutils dictionary with 2400 pro-

gram traces. AUC=0.9954.

such figures is the Area Under the ROC Curve (AUC); an effective
classifier that with high true positives and low false positives has
a high AUC. This is our third principal whole-system result:
when trained on Linux utilities, MARTINT distinguishes them from
other utilities, and all of the other benchmark security exploits
and side-channel attacks powerfully, with an area-under-curve
(AUC) of 0.9954. At 100% true positive rate, our best-performing
configuration has a false-positive rate of 4.4%.

We use PARSEC traces as indicative long-running processes that
could be considered anomalous with respect to the Coreutils dictio-
nary. We test if MARTINI detects anomalies early, regardless of the
trace length (i.e., detection soon after an attack, rather than minutes
later). We split PARSEC traces into blocks with 2.5 million memory
accesses each and assigned a reasonable threshold. The result is
shown in Figure 13. The x-axis of each graph shows execution time
(in block index units) and the y-axis shows the mismatch rate. The
programs generally fall into two categories. Some (e.g., bodytrack
and vips), consistently trigger alarms. Others, (e.g., fluidanimate
and streamcluster), trigger alarms more sporadically, likely due
to coincidental overlap with address sequences in the dictionary.
Across all benchmarks, we correctly identified anomalous execu-
tion within an average of 85,000 memory references (minimum
20,000, maximum 360,000, stdev 48,400).
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Figure 13: Detection of unauthorized program execution. We trained a dictionary using the Coreutils subset of 16 Linux util-
ities. Then, we ran each of the PARSEC benchmarks to determine if MARTINI could correctly identify the anomalous exce-
cutions. The x-axis of each graph represents execution time in terms of blocks of 250 million memory accesses each, and the
y-axis shows the mismatch rate.The horizontal line represents a configurable threshold (set to 0.00068 in the figure). These
plots suggest that the NFA approach, when combined with a simple counter for mismatches between memory access sequences
and the trained dictionary, detects anomalous execution within an average of 85,000 memory references. Using this simple
thresholding approach, MARTINI correctly identifies all benchmarks as anomalous early in their execution.

Table 2: MARTINI Runtime Overhead.

Full Cache Reduced Cache
Program Runtime (ms) Std. Dev. Runtime (ms) Std. Dev. Change
blackscholes 152.7 4.7 154.8 3.7 1.42%
bodytrack 457.2 25.5 455.2 30.1 -0.43%
canneal 27749 24.3 2809.4 26.1 1.24%
dedup 3236.1 25.3 32429 33.8 0.21%
facesim 114 0.6 11.5 0.5 0.92%
ferret 467.9 18.4 463.2 122 -1.02%
fluidanimate 3.1 0.3 3.1 0.3  -2.00%
freqmine 1053.8 78.5 1042.6 715  -1.07%
raytrace 2798.6 10.8 2794.5 1.2 -0.15%
streamcluster 35375.0  8428.7 324910 80154 -8.15%
swaptions 3:7 0.5 3.8 0.4 0.45%
vips 259.0 10.1 259.7 10.1 0.27%
X264 718.9 8.9 717.2 9.8 -0.23%

For this benchmark suite, anomalous behavior is detected almost
immediately (i.e., the blue bar crosses the read line very far to the
left on each subgraph). Second, the overall performance is quite
high: 91.87% true positive rate and 2.39% false positive rate.

7 ARCHITECTURAL EVALUATION

Having established in the previous section that sequences of mem-
ory abstraction provide a suitable abstraction for detecting emerg-
ing hardware exploits, we next evaluate MARTINT s ability to pro-
vide low-overhead runtime monitoring. In this section, we present
an evaluation of the runtime performance, chip area, and energy
consumption of our proposed hardware unit.

7.1 System Performance Impact

Because computation in MARTINI is decoupled from cache opera-
tions, performance impacts are predominantly the result of reduced

LLC capacity. We evaluate this impact using the PARSEC bench-
mark suite. We collected runtime performance metrics using a
server running Ubuntu 16.04 with 192 GB of RAM and two Intel
Xeon Platinum 8275CL CPUs, each with 36 cores running at 3 GHz.
Each processor has 36 MB of LLC, subdivided into eleven cache
ways. We execute each benchmark twenty times, recording wall
clock execution time. Then, using Intel Cache Allocation Tech-
nology [21], we reduce the number of cache ways from eleven to
ten and execute each benchmark an additional twenty times. One
cache way exceeds the resources required by our proposed design
for each processor core; the results here present an upper bound for
the runtime overhead. Aggregate results are presented in Table 2.

In general, we find that the runtime overhead of our proposed
hardware is negligible. In the worst case (blackscholes), we observed
a 1.42% increase. The largest change in performance (streamcluster)
actually ran 8.15% faster with the reduced cache size. We hypothe-
size that this performance gain is caused by improved cache data
alignment. However, any observed performance gain or loss is neg-
ligible: using a Wilcoxon signed-rank test, we are unable to find
a significant difference in the average execution times for the full
and reduced cache configurations (p = 0.1536).

7.2 Area Overhead

Next, we study the feasibility of deploying MARTINT in real silicon by
considering a current-generation Intel Xeon CPU. We estimate the
area overhead for in-memory automata processing accelerators [1,
51]. We model the area overhead of the proposed AP core with IBM
45 nm s0i12s0 cell library and Synopsys Design Compiler. The
total area is 0.016mm?. For comparison, an 8-core Intel Xeon E5
processor has a die size of 354mm? [6] in a 22nm manufacturing
process. Thus, our proposed architectural changes would increase
the overall die size by less than 0.04%. The synthesis results also



shows that all the additional circuits achieves 4GHz frequency after
technology scaling to 22nm, maintaining existing frequencies.

7.3 Energy Consumption

The energy required to read out 256 bits from an SRAM array is
estimated to be 13.6p]J [1], for the Xeon CPU used by our AP Core.
The SRAM arrays operate at 4GHz. As there are eight arrays used in
an AP Core, the peak power of our AP Core is estimated at 0.435W.
The peripherals of AP Core, the Address Delta Unit, and the Trigger
Arbitration Unit together consumes 0.035W of power based on the
synthesis results with IBM 45nm cell library. In total, these sum to
0.470W, which is far below the TDP of the Xeon E5 processor core
(160 W). Therefore, the proposed architecture does not incur any
significant power overhead to the system.

8 DISCUSSION

At a high level, MARTINI captures program behavior by observing
memory access patterns under normal operation and then look-
ing for unusual patterns in subsequent executions. Unauthorized
programs and malicious use of authorized programs, including ar-
chitecture side-channel attacks, both manipulate data differently
to accomplish their goals. Defeating this approach would require
that a program: (1) mimic the memory behavior of the trained pro-
gram(s), and (2) manipulate data differently enough to attack the
system. Although we do not offer an impossibility proof of such
mimicry, we argue that it would be very difficult to accomplish
without inventing entirely new exploit strategies. We hypothesize
that MARTINT will apply to subsequent side-channel attacks based
on memory accesses or memory timings. Inasmuch as a program
accesses memory, both for data and for instructions, this para-
digm of detection applies broadly. For these same reasons, efforts
to exfiltrate a dictionary from our proposed monitoring unit in
the CPU would be difficult without detection. Our evaluation sec-
tion provides evidence that simple memory traces can be used to
characterize normal and anomalous program behavior accurately
and precisely (i.e., with high true positives/negatives and low false
positives/negatives) and with low runtime overhead (i.e., at native
speed if deployed in hardware). This novel combination of microar-
chitectural insights and anomaly detection provides a useful basis
for efficiently detecting architectural side-channel attacks such as
Spectre and Meltdown as well as recent CVEs. In this section, we
discuss applications and limitations of our technique.

8.1 Applications of MARTINI

Our approach is motivated by deployment in hardware for low-
latency, low-overhead detection of anomalous execution. We demon-
strated how MARTINI detects Spectre and Meltdown—recent ar-
chitectural side-channel attacks. When such vulnerabilities are
discovered, there may be a significant delay between developing
software- and hardware-based fixes. Currently proposed hardware
fixes incur significant performance overheads (21-72% slowdown
in one study [62]), and architectural changes often address a single
vulnerability type, leaving the system vulnerable to other attacks.
MARTINI provides a method for detecting unusual patterns of ex-
ecution, which can protect the system until hardware redesigns

are deployed. In brief, we provide a low chip area, low overhead
approach to detecting general anomalous execution.

8.2 Limitations of MARTINI

We consider a high-assurance scenario with a set of authorized
programs—any execution not in that approved set is considered
anomalous. A more general use-case would focus on malicious
execution. MARTINI captures such behavior for the cases we tested
(correctly classifying malicious CVE behavior vs. benign behavior),
but increased generality would require overly large, uncompressed
dictionaries and violate our chip area constraints. With current
technology, our approach is effective in high-assurance, safety-
critical scenarios such as avionics or industrial control software.
In addition, after building a dictionary of authorized execution,
our approach requires the selection of an appropriate mismatch
rate threshold to rapidly detect subsequent anomalous execution.
Our evaluation demonstrates that is is possible to determine such
a threshold. However, in practice, MARTINI would require an in-
ternal testing or validation set of memory traces to determine the
threshold. A system administrator could perform threshold selec-
tion as part of a deployment of MARTINI. Finally, the dictionary
and threshold can be updated quickly as MARTINI uses an SRAM
cache in its implementation, which is quick to rewrite and update.
MARTINI does not directly protect legacy hardware, but our
proposed technique requires minimal modification to current hard-
ware designs, protecting future processors and allowing for drop-in
replacements. Automata processing architectures have also been
embedded in DRAM [14], which suggests that our approach could
be implemented in the outer layers of the memory hierarchy. While
limiting memory accesses visible to the monitoring unit (i.e., cache-
based side-channel attacks would no longer be observable), a DRAM
unit could protect legacy systems against a subset of vulnerabilities.

9 CONCLUSIONS

Architectural side-channel attacks such as Spectre and Meltdown
potentially impact billions of devices. There is a need for techniques
that efficiently and precisely identify when such attacks occur. In
this paper, we present MARTINI, a hardware-assisted approach for
leveraging memory accesses of programs to classify behavior as au-
thorized or anomalous. Our proposed implementation strategy uses
NFAs appropriate for in-cache computation. We demonstrated that
MARTINTI accurately and precisely classifies benign and malicious
program execution using a suite of Coreutils programs, PARSEC
benchmarks, and four CVEs. MARTINI demonstrates the important
role in-memory computation can play in the development of new
detection and mitigation strategies for emerging attacks.
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