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Abstract
Programs written for hardware accelerators can often be
difficult to debug. Without adequate tool support, program
maintenance tasks such as fault localization and debugging
can be particularly challenging. In this work, we focus on
supporting hardware that is specialized for finite automata
processing, a computational paradigm that has accelerated
pattern-matching applications across a diverse set of prob-
lem domains. While commodity hardware enables high-
throughput data analysis, direct interactive debugging (e.g.,
single-stepping) is not currently supported.

We propose a debugging approach for existing commodity
hardware that supports step-through debugging and variable
inspection of user-written automata processing programs.
We focus on programs written in RAPID, a domain-specific
language for pattern-matching applications. We develop a
prototype of our approach for both Xilinx FPGAs and Mi-
cron’s Automata Processor that supports simultaneous high-
speed processing of data and interactive debugging without
requiring modifications to the underlying hardware. Our em-
pirical evaluation demonstrates low clock overheads for our
approach across thirteen applications in the ANMLZoo au-
tomata processing benchmark suite on FPGAs. Additionally,
we evaluate our technique through a human study involving
over 60 participants and 20 buggy segments of code. Our
generated debugging information increases fault localization
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accuracy by 22%, or 10 percentage points, in a statistically
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1 Introduction
The amount of data being produced by companies and con-
sumers continues to grow,1 and business leaders are becom-
ing increasingly interested in analyzing and using this col-
lected information.2 To keep up with data processing needs,
companies and researchers are turning to specialized hard-
ware for increased performance. Accelerators, such as GPUs,
FPGAs, and Micron’s D480 Automata Processor (AP) [10],
trade off general computing capabilities for increased per-
formance on very specific workloads; however, these de-
vices require additional architectural knowledge to effec-
tively program and configure. Despite this added complex-
ity, researchers have successfully used specialized hardware
to accelerate data analysis across many domains, includ-
ing: natural language processing [66], network security [33],
graph analytics [32], high-energy physics [53], bioinformat-
ics [30, 31, 45], pseudo-random number generation and simu-
lation [48], data-mining [51, 52], and machine learning [44].

1https://web.archive.org/web/20170203000215/http://www.csc.com/insights/flxwd/
78931-big_data_universe_beginning_to_explode
2https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html

https://doi.org/https://doi.org/10.1145/3297858.3304066
https://doi.org/https://doi.org/10.1145/3297858.3304066
https://doi.org/https://doi.org/10.1145/3297858.3304066
https://web.archive.org/web/20170203000215/http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
https://web.archive.org/web/20170203000215/http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html


Numerous programming models have been introduced
to ease the burden on hardware accelerator users, such as
OpenCL [41], Stanford’s Legion programming system [6],
and Xilinx’s SDAccel framework.3 Recently, the RAPID lan-
guage was proposed to improve the programming of au-
tomata processing engines [3]. These processors accelerate
the identification of a collection of byte sequences (or pat-
terns) in a stream of data by supporting many comparisons
in parallel. RAPID is a C-like language that includes a com-
bined imperative and declarative model for pattern-matching
problems, providing intuitive representations for patterns in
use cases where regular expressions become cumbersome
or exhaustive enumerations. The language provides parallel
control structures, admitting concurrent searches for mul-
tiple criteria against the data stream. RAPID programs are
compiled into finite automata, supporting efficient execution
using both automata processing engines, such as Micron’s
Automata Processor (AP) or Subramaniyan et al.’s Cache Au-
tomaton [42], and also general-purpose accelerators, such as
Field-Programmable Gate Arrays (FPGAs) and GPUs. How-
ever, RAPID abstracts away from the low-level automata or
circuit paradigms used by the hardware, thus allowing de-
velopers to work with code in a semantically-familiar form.

This focus on new domain-specific languages (DSLs) and
accelerators introduces challenges from a software mainte-
nance standpoint. Developers may wish to port existing code
to these new languages or rewrite algorithms to be better-
suited for these new accelerators, tasks which can introduce
new faults [63, 65]. For automata processing applications,
these faults can be particularly difficult to localize. Devel-
opers may not observe abnormal behavior until processing
large quantities of data (i.e., testing samples may not exhibit
high coverage of corner cases). Extracting a smaller input
for analysis from the large data set can be challenging or
costly, since many pattern-matching algorithms perform a
sliding-window comparison where the relevant piece of data
is not known a priori. It is therefore desirable to support
high-throughput data processing with the ability to inter-
rupt accelerated program execution and transfer control to
a debugging environment.

Although debugging support for CPUs is mature and fully-
featured (including standard tools [40], successful technol-
ogy transfer [5] and annual conferences [17]), throughput of
automata processing applications on CPUs is typically orders
of magnitude slower than on hardware accelerators [26, 49],
making CPUs too slow for effective debugging of automata
processing. Unfortunately, current debugging techniques are
limited or nonexistent for most accelerators. For architec-
tures where the sequence of operations is configured or hard-
wired in the hardware (i.e., there is no instruction stream,
such as in FPGAs), the traditional method of inserting break-
points is not available. Instead, debugging on FPGAs is often

3https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

performed at the signal level using logic analyzers or scan
chains [4, 21, 43, 55], exposing low-level state to software.
The AP also provides no explicit debugging support, but does
expose low-level state through APIs.

We propose an approach for building an interactive, source-
level debugger using low-level signal inspection on hardware
accelerators. Our debugging system includes support for
breakpoints and data inspection. We demonstrate prototype
implementations for both the AP and Xilinx FPGAs; no modi-
fications to the underlying accelerators are needed. While we
focus our presentation on one indicative DSL, the techniques
we present for exposing state from low-level accelerators to
provide debugging support lay out a general path for pro-
viding such capabilities for other accelerators and languages.
Our approach leverages four key insights:

• A combined hardware accelerator and CPU-software
simulation system design allows for both high-speed
data processing as well as interactive debugging.
• Micron’s AP contains context-switching hardware re-
sources, which are often left unused, for processing
multiple input streams in parallel. Additionally, FPGA
manufacturers provide logic analyzer APIs to inspect
the values of signals during data processing. We re-
purpose these hardware features to transfer control
from the execution context on the accelerator to an
interactive debugger on the host system.
• Runtime state for automata processing applications
is compact, consisting only of the set of active states.
We lift this state to the semantics of the source-level
program through a series of mappings generated at
compile time. The mapping from source-level expres-
sions to architecture-level automata states is trace-
able within the RAPID compiler; our approach is ap-
plicable to any high-level programming language for
which such a mapping from expressions to hardware
resources may be inferred.
• Setting breakpoints on expressions in a program is not
directly supported by the automata processing para-
digm. Instead, we set and trigger breakpoints on input
data, pausing execution after processing N bytes. We
can leverage these pauses to provide the abstraction
of more traditional breakpoints set on lines of code.

We also extend our basic design to support low-latency
time-travel debugging near breakpoints by stopping acceler-
ated computation early and recording execution traces with a
software-based automata simulator. The addition of software
simulation allows our system to support logical backward
steps in the subject program near breakpoints without incur-
ring significant delays while data is re-processed.
Capturing the state information from each automaton

state on FPGAs incurs a hardware, performance, and power
overhead, in contrast to the AP (where support is built into
the architecture). We evaluate our debugging approach on

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html


the ANMLZoo benchmarks [49] using the REAPR automata-
to-FPGA tool [57] and a server-class FPGA. We were able to
achieve an average of 81.70% of the baseline clock frequen-
cies.We also discuss the tradeoff between resource overheads
and support for debugging.

We evaluate our debugging approach using an IRB-approved
human study to understand how our technique affects de-
velopers’ abilities to localize faults in pattern-matching ap-
plications. During the study, we collected data using a set
of ten programs indicative of real-world applications with a
total of twenty seeded defects. Our human study included 61
participants with a wide range of programming experience,
including a mix of undergraduate and graduate students at
our home institution, as well as a professional developer. We
found a statistically significant 22% increase (p = 0.013) in
localization accuracy when participants were provided with
debugging information generated by our system.

In summary, this paper makes the following contributions:

• A technique for interactive debugging of automata
processing applications written in a high-level DSL.
We leverage an accelerator to quickly process input
data and repurpose existing hardware mechanisms to
transfer control and initiate a debugging session.
• A characterization of breakpoint types for the automata
processing domain. We differentiate between break-
points set on input data and on expressions.
• An empirical evaluation of our debugging system on a
Xilinx FPGA. We achieve an average of 81.70% of the
baseline clock frequencies for the ANMLZoo bench-
marks.
• A human study of 61 participants using our debug-
ging tool on real-world applications. We observe a
statistically significant (p = 0.013) increase in fault
localization accuracy when using our tool.

2 Background
In this section, we present background material on our de-
bugging technique and the underlying execution model.

2.1 Homogeneous Finite Automata
In this work, we develop a debugging technique to support
algorithms designed for a finite automata computational
model. In particular, we consider algorithms represented as
homogeneous non-deterministic finite automata (NFAs). An
NFA is a state machine that consumes an input string and
returns a Boolean value indicating whether the given string
matches the pattern encoded in the machine. Homogeneous
NFAs restrict the definition of the transition function such
that, for all states q1 and q2, δ (q1,α ) = δ (q2, β ) ⇒ α = β [8].
Traditionally, NFAs are represented as a directed graph

with vertices representing states and labeled edges repre-
senting the transition function. Homogeneity restricts all
incoming edges to a given state to be labeled with the same

∗ b ∗ x y z

Figure 1. Homogeneous NFA matching a ‘b’ two characters
before the string “xyz” (‘*’ is a wildcard). Gray triangles are
starting states; double circles are accepting states.

ST
E 0

ST
E 1

ST
E 2

ST
E 3

ST
E n
−
4

ST
E n
−
3

ST
E n
−
2

ST
E n
−
1

8-Bit Input
Symbol

Ro
w
D
ec
od

er

Activation Bits

Reconfigurable Routing Matrix

Figure 2. AP architecture. STEs are stored in a memory
array, and edges are encoded in a reconfigurable routing
matrix.

set of symbols. This allows us to label states rather than
transition edges, a representation that is often helpful for
hardware acceleration, but does not reduce expressiveness.
An example homogeneous NFA is given in Figure 1.

2.2 Accelerating Automata Processing
As improvements in semiconductor technology have slowed
while demand for increased throughput for complex algo-
rithms remains, there is a trend in hardware design toward
specialized accelerator architectures [28, 37]. For example,
the use of GPUs and Field-Programmable Gate Arrays (FP-
GAs) to accelerate general-purpose computation has become
commonplace [34]. In fact, cloud computing providers now
lease compute time on nodes containing both GPUs and
FPGAs.4 In this work, we focus on two architectures that ac-
celerate automata processing applications: commodity FPGAs
andMicron’s D480 AP.While we focus on the AP and FPGAs,
automata processing engines have been developed for other
hardware platforms, including CPUs and GPUs [2, 18]. In

4https://aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now-generally-
available/
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Section 4.3, we describe the functionality needed for such
processors to be used with our debugging system.

Micron’s D480 AP. The AP is a hierarchical, memory-
derived architecture for direct execution of homogeneous
non-deterministic finite automata developed by Dlugosch et
al. [10]. A homogeneous state (and its transition symbols) is
referred to as a State Transition Element (STE). The processing
core of the AP consists of a DRAM array and a reconfigurable
routing matrix, representing the STEs and edges respectively.
The architecture is depicted in Figure 2.

A single column of the memory array is used to repre-
sent an STE. For the NFA given in Figure 1, six columns
of memory are needed. The transition symbol(s) of an STE
are encoded in the rows of the memory array; each row
represents a different symbol in the alphabet. At runtime, a
decoded input symbol drives a single row in the DRAM, and
all STEs simultaneously determine whether they match the
input. STEs that match and are active (determined by an ad-
ditional activation bit stored with each column) generate an
output signal that passes through the reconfigurable routing
matrix to set the activation bits of downstream STEs.

The ability to record locations in input data where patterns
are matched is supported by connecting accepting STEs to
special reporting elements. When an accepting STE activates,
the reporting element generates a report, which encodes in-
formation about which STE generated the signal and the
offset in the data stream where the report was made. Re-
ports are collected on the AP through a series of buffers and
caches before being copied back to the host system (i.e., the
AP supports an offload model similar to GPU programming).
Because the AP allows for the execution of many NFAs in
parallel and because a single NFA may contain multiple re-
porting STEs, Dlugosch et al. extend the definition of an
NFA to contain a labeling function that maps nodes to unique
labels. We represent labeled NFAs as (Q, Σ,δ , S, F , id ), where
id is the labeling function. In this work, we leverage this
mapping information to lift hardware runtime state to the
semantics of the user-level program.

Field-Programmable Gate Arrays. FPGAs are fabrics of
reconfigurable look-up tables (LUTs), flip-flops (FFs), and
block RAMs (BRAMs). LUTs can be configured to compute
arbitrary logic functions and are connected together with
memory using a reconfigurable routing fabric. This architec-
tural model allows FPGAs to form arbitrary circuits, which
can be useful for prototyping logic circuits.
Recently Xie et al. developed the Reconfigurable Engine

for Automata Processing (REAPR), which generates high-
performance automata processing and IO cores for Xilinx
FPGAs [57]. REAPR generates FPGA configurations that
operate very similarly to the AP-style processing model.
LUTs are used in place of columns of memory to determine
input symbol matches each clock cycle (logically, one LUT
is assigned to each STE). Flip-flops are then used to store the

activation bits for STEs, and transition signals are propagated
through the FPGA’s reconfigurable routing matrix.
Further, REAPR supports notions of reporting and STE

labeling, thereby admitting similar operations to lift runtime
state to the semantics of the user-level program.

3 The RAPID Programming Language
Before discussing our approach to generating debugging in-
formation, we summarize the basics of the subject language.
RAPID is a high-level language designed to support highly-
parallel pattern searches through a stream of data [3]. RAPID
is intended for use cases where hundreds or thousands of
pattern searches are executed simultaneously over a large
data stream. A pattern defines a sequence of data that may
be found within another collection of data.

3.1 Supporting Parallel Pattern Searches
RAPID provides built-in support for parallel inspection of
input data. Special constructs allow programmers to perform
tasks, such as checking for multiple criteria simultaneously
or matching a sequence at any point in the input stream.

Either/Orelse Statement. This structure supports parallel
exploration of patterns. An either/orelse statement in-
stantiates a static number of parallel comparisons against
the input stream with each block in the statement being
executed in parallel.

Some Statement. In certain cases the ability to generate a
dynamic number of parallel searches (e.g., one for each ele-
ment of an array) is desirable. RAPID’s some statement, using
syntax that is similar to a for-in loop in Java, instantiates a
parallel computation for each element provided.

Whenever Statement. Sliding window searches, in which a
pattern could begin on any character within the input stream,
are a common operation in pattern-matching. For example,
a search might begin after a particular data sequence. The
whenever statement consists of a Boolean guard and an in-
ternal statement. At any point in the data stream where this
guard is satisfied, the internal statement will be executed in
parallel with the rest of the program. A whenever statement
is the parallel dual of a while statement. Whereas a while
statement checks the guard condition before each iteration
of the internal statement, a whenever statement checks the
guard in parallel with all other computations.

3.2 Worked Example
In Figure 3, we present an example RAPID application that
searches for ‘b’ two characters before the string “xyz” (the
pattern matched by the machine in Figure 1). The network
(akin to the main function in a standard C program) is used
to instantiate a single search on line 20. In RAPID, macros
programmatically define portions of a pattern-matching algo-
rithm. In the macro b_xyz, a whenever loop creates a sliding



1 macro b_xyz() {
2 // match 'b' two characters before "xyz"
3 whenever( 'b' == input() ) {
4 // match any character
5 // computation stops if a comparison
6 // returns false
7 ALL_INPUT == input();
8
9 // match the string "xyz"
10 foreach(char c : "xyz") {
11 c == input();
12 }
13
14 report; // if we successfully matched everything ,
15 // report
16 }
17 }
18
19 network () {
20 b_xyz(); // instantiate a single search with b_xyz
21 // macro
22 }

Figure 3. RAPID program matching ‘b’ two characters be-
fore the string “xyz”.

window search over the input, searching for a ‘b’ (the con-
dition is true for every ‘b’). Then, we match any character
(line 7). Note that comparisons against the input stream are
declarative in nature; comparisons evaluating to false termi-
nate computation for the particular parallel search. Finally,
a foreach loop is used to match “xyz”. If all comparisons
match successfully, a report event is generated (line 14).

3.3 Compilation
RAPID programs are compiled into a set of finite automata,
which can then be executed on an automata processing en-
gine. The compiler employs a staged computation model to
perform the conversion: comparisons with the input stream
occur at runtime, while all other values are resolved at com-
pile time. Compilation recursively transforms a RAPID pro-
gram into finite automata in much the same way that regular
expressions can be transformed into NFAs [38]. Comparisons
with the input stream are transformed into NFA states. The
context in which the comparison occurs determines how
the NFA states attach to the rest of the automaton. Broadly,
each instantiated pattern search in the network generates a
stand-alone automaton that is executed in parallel on the pro-
cessing core. Depending on the targeted automata processing
engine being used, further transforms may occur. With the
Automata Processor, for example, generated automata are
placed and routed to assign states to hardware elements [10].
Similarly, the REAPR toolchain for FPGAs maps generated
automata to connected LUTs and FFs, which are then syn-
thesized into a hardware configuration bitmap [57].

4 Hardware-Supported Debugging
In this section, we present a novel technique for acceler-
ating debugging tasks for sequential pattern-matching ap-
plications using a hardware-based automata processor. Our
technique bridges the semantic gap between the underlying
computation and the source-level RAPID program and can be
extended to other languages whose compilers map program
expressions and state to hardware resources. We consider
two varieties of breakpoints (line and input) and describe
how input-based breakpoints can be used in our system to im-
plement traditional line-based breakpoints. We also extend
our debugging system to support low-latency time-travel
debugging by using a software-based automata simulator.
While the technique generalizes to various automata process-
ing architectures (including CPUs), we present the approach
with respect to Xilinx FPGAs and Micron’s D480 AP.

4.1 Breakpoints
Breakpoints allow a developer to begin interacting with a de-
bugger [19]. The subject program executes until a breakpoint
is reached, and then control is transferred into an interac-
tive session, allowing the user to inspect program state [24].
Watchpoints, or conditional breakpoints, are another com-
mon tool developers use to debug programs. Unlike break-
points, a watchpoint only transfers control when the value
of a variable changes or an assertion becomes true. Because
watchpoints may be implemented as breakpoints [36], we
focus solely on breakpoints in this work.

Line Breakpoints. Traditionally, breakpoints are set on lines
of code, statements, or expressions in a program. Execution
stops every time control reaches the corresponding program
point. We refer to this type of breakpoint as a line breakpoint.
In the example RAPID program in Figure 3, a line breakpoint
could be set on line 11 to halt execution for each match of a
character in the sequence “xyz”.

Input Breakpoints. Automata-based pattern-recognition
programs often process large quantities of data, and spurious
or incorrect reports5 may only appear after a significant por-
tion of the input stream has been consumed. To debug these
defects, a developer may wish to pause program execution
after a given number of input symbols have been processed
by all parallel searches. In other words, the developer might
wish to set a breakpoint on the input stream given to an
application. We refer to this type of breakpoint as an input
breakpoint. This abstraction provides functionality similar
to several automata simulators that support “jumping“ to a
given offset in input data.

4.2 Hardware Abstractions for Debugging
Unlike traditional (non-parallel) CPU debugging, we explic-
itly target a setting with a particular kind of parallelism, one
5False negatives (missing reports) remain an open challenge.
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where multiple pattern-matching searches and multiple au-
tomata states can be active simultaneously. Central to our
technique is the ability to inspect the active set, or currently
active states, in the executing automata. On both the AP and
FPGA, this information is tracked using the activation bit
stored within each STE (see Section 2.2), and we refer to this
collection of data as the state vector. The state vector provides
a complete and compact snapshot of machine execution after
processing a given number of input symbols (in NFAs, there
is no other notion of “memory” such as a stack or tape).

4.3 Accessing the State Vector
To support our debugging system, a target hardware platform
must provide access to the state vector of the executing
automata. We describe accessing this vector on both the
AP and Xilinx FPGAs; no modifications or additions to the
hardware platform are needed to support these techniques.

Micron’s AP. Off-chip access to the state vector is provided
through the context switching cache on the AP [10]. This
cache was developed to allow automata executing on the AP
to switch between—and process in parallel—several input
streams. Additionally, the AP runtime allows the host system
to inspect the contents of the context switching cache. We
repurpose this hardware to transfer control to the interactive
debugging session: when a breakpoint is reached, our debug-
ger captures the state vector from the executing automata
and copies the values back to the host system.

Xilinx FPGA. We consider two approaches to accessing
the state vector on Xilinx FPGAs: integrated logic analyzers

(ILAs) [58] and virtual IOs (VIOs) [59]. Both of these Xilinx IP
(Intellectual Property) blocks are used for runtime debugging
the FPGA and come with different design tradeoffs [60].

The ILA is a signal-probing core that can be used to moni-
tor a hardware design’s internal signals by attaching logical
probes to these signals. It supports advanced, dynamically-
configurable triggering conditions that specify when the ILA
captures data. This functionality allows the developer to trig-
ger data capture on complex hardware events represented
by a combination of signals. ILAs use block RAM to probe
the internal design signals at the clock speed of the design
under test, but has a fairly high hardware utilization cost.
For our application, ILAs allow us to dynamically specify
breakpoint triggering conditions while having a negligible
impact on the data throughput of automata being debugged.
VIOs are similar to the ILAs, allowing logical probes to

sample data within a target design, but without the advanced
triggering functionality. Consequently, VIOs are more com-
pact than ILAs while still providing the needed access to
data in automata state vectors. Because they are instantiated
within the design and are synchronous with the design, VIOs
can result in reduced design clock speeds.
While ILAs provide a richer set of features with little

impact on clock frequency, we found that the space require-
ments needed to interface with automata processing designs
frequently exceeded the capacity of FPGAs for indicative
applications. In particular, ILAs for our debugging system
require more BRAM resources than our server-class FPGA
made available. Therefore, we choose to implement our de-
bugging system using VIOs, which require fewer hardware



resources, but may reduce clock frequencies. Our empirical
evaluation (cf. Section 5.2) demonstrates that these reduc-
tions are less than 20% for most automata applications.
We extend Xie et al.’s REAPR (cf. Section 2.2) to auto-

matically generate VIOs or ILAs attached to the activation
bits of STEs for a given automaton. Applications built with
automata often consist of tens of thousands of states (cf.
Table 1), but the current VIO implementation provided by
Xilinx only supports 256 individual probes, and ILAs are lim-
ited to 1024. To address this dichotomy in scale, we increase
the width of each VIO probe, treating a set of N STEs as a sin-
gle, multi-bit value. Once the state vector data is transferred
to the host system, we disambiguate the individual STEs. For
a probe width of 256 (the maximum supported width), our
technique is able to monitor a total of 256 × 256 = 65, 536
STEs with a single VIO; multiple VIOs may be used for larger
designs. We greedily assign STEs to VIO probes in the or-
der STEs are encountered in an input automaton. A more
sophisticated graph analysis (e.g., calculating connectivity
of states) could result in probe assignments that reduce final
placement and routing overheads. We leave exploration of
such optimizations to future work.

Other Processors. Other processors may be used in place
of the AP in our debugging system as long as the state vec-
tor abstraction is exposed. For example, inspection of the
state vector for some CPU-based automata processors (e.g.,
VASim [50]) requires iterating through all states in the au-
tomaton to capture the active set. Other custom accelerators
for automata processing, such as the Cache Automaton [42],
also provide direct support for accessing the state vector.

4.4 Hardware Support for Breakpoints
A typical use case for our debugging system begins with de-
velopers observing abnormal behavior during the execution
of a RAPID program. They then set a breakpoint that trig-
gers near the abnormal behavior and re-execute the program.
When the breakpoint is reached, runtime state is transferred
to the host system, lifted to the semantics of the source-level
RAPID program, and control is transferred to an interactive
debugger. An overview of this process is given in Figure 4.
In this subsection, we describe the steps needed to trigger
a breakpoint on an automata processing engine. We first
consider input breakpoints, and then we describe how line
breakpoints may be transformed into input breakpoints.
Input breakpoints are implemented through partitioning

of the input data stream. We split the data such that the input
stops at the offset of the desired breakpoint and process this
using the AP. When processing completes, we export the
state vector of the executing automata to the host system.

Line breakpoints in source-level RAPID programs cannot
be directly implemented in the underlying AP or VIO-based

FPGA hardware platforms. The automata processing para-
digm only generates reports; there is no notion of a program
counter or printf -like behavior that we can leverage.

We thus use reports tomap line breakpoints to input break-
points by recording the offsets at which the NFA states asso-
ciated with a RAPID statement or expression (determined
during compilation) are active while processing the input
data. This is achieved by compiling two distinct sets of au-
tomata from an input RAPID program. One set of automata
(machine A) perform computation as normal. The second
set (machine B) report whenever selected lines of code ex-
ecute. We modify the RAPID compiler to emit machine B.
Given a set of line numbers, the modified compiler removes
all previous reporting states and instead configures STEs
associated with the given lines to report. By processing data
with machine B, we identify the input stream offsets at which
breakpoints are triggered. Processing the input data a second
time with machine A allows our system to capture relevant
hardware state and trigger input breakpoints at offsets dis-
covered with machine B. Updating or selecting new line
breakpoints requires regenerating machine B. This transfor-
mation is illustrated in Figure 5.

While the double compilation and execution steps do incur
a minimum of a 2× overhead6 for line breakpoints over exe-
cution containing no line breakpoints, we note that current
hardware supports this approach. A more efficient approach
would be to support hardware-based debugging signals. On
a straightforward modification of the AP, these could be im-
plemented similar to reporting events, serving a similar role
as a hardware break- or watch-point in a general-purpose
CPU [36]. Breakpoint signals are supported on FPGA-based
automata processing engines using ILAs to capture the state
vector; however, space overheads are currently too signifi-
cant for use with most real-world applications.

4.5 Debugging of RAPID Programs
After capturing of the state vector, our system lifts the un-
derlying state to the semantics of the input RAPID program.
Our approach is similar to traditional CPU debugging, in
which processor state is mapped to expressions in the input
program using lookup tables generated at compile time [36].

We augment the RAPID compiler to produce a debugging
automaton, (Q, Σ,δ , S, F , id,d ). The additional term, d , is a
mapping from NFA states to RAPID source locations and
known program variable state. RAPID employs a staged
computationmodel (Section 3.3); the values of some variables
are resolved at compile time and are known at the time of
NFA state generation. These are stored in the mapping.

6Naively, processing of the input stream twice approximately doubles the
execution time. However, this does not consider the additional time needed
to compile a second automaton, reconfigure the AP or FPGA, or process
reporting events.



macro helloWorld() {
  whenever(  ALL_INPUT == input() ) {
    foreach(char c : "Hello") {
      c == input();
    }
    input() == ' '; 
    foreach(char c : "world") { 
      c == input();
    } 
    report;
  }
}

network() {
  helloWorld(); 
}

RAPID Program

RAPID
Compiler

Machine
A

Machine
B

Accelerator processes data with Machine B

Accelerator processes data with Machine A

Reports occur when
line is executed

Input breakpoints
inserted at reports

Figure 5. Transformation of a line breakpoint to an input breakpoint. Reports generated by STEs mapped to RAPID expressions
determine input breakpoints.

Compilation for the AP transforms an input automaton to
a configuration for the processor’s memory array and rout-
ing matrix (see Section 2.2), and compilation for the FPGA
maps an automaton to LUTs and FFs. These compilation pro-
cesses may result in multiple states being mapped to a single
hardware location (state merging) or a single state being
mapped to multiple hardware locations (state duplication) as
a result of optimizations to better utilize available hardware
resources (cf. debugging with optimizations [15]). The com-
piler also produces a mapping, loc , from hardware locations
to automaton state IDs. This debugging technique can be
directly extended to any underlying automata processing
engine that can provide this location mapping.

When an STE-level breakpoint is triggered, we determine
the corresponding location(s) in the original RAPID program
by calculating ⋃

q∈Qact ive

d (id (loc (q)))

where Qactive is the set of active states extracted from the
state vector. Due to the inherent parallelism in RAPID pro-
grams, the locus of control may be on several statements in
the program simultaneously. Our technique for lifting the
underlying program state of the automata processing core
to the semantics of the RAPID program therefore returns a
minimal set of the currently executing RAPID statements.

4.6 Time-Travel Debugging
Many debuggers provide the ability to step backward in a
program, a functionality often referred to as time-travel de-
bugging [20]. This feature is beneficial for automata-based
applications to find the start of a spuriously matched se-
quence. To step backward in the source-level RAPID pro-
gram or data stream, our debugger would have to reprocess

the input data, leading to high latency when breakpoints are
set deep in the data stream. We now describe a modification
to our system that significantly reduces this overhead.
When triggering input breakpoints, our debugging sys-

tem splits the input stream N bytes (symbols) before the
user-specified location (rather than splitting the data at the
specified input offset). Once the input has been processed,
we export the current state vector like before and have access
to the state vector N bytes before the user’s breakpoint.
We then load the automata into a modified version of

VASim [50], a CPU-based automata execution engine. We
have modified VASim to record and output state vectors simi-
lar to those produced by the AP and FPGA.7 We then execute
the final N bytes before the breakpoint using VASim, and
save the state vector. For the N bytes before the breakpoint,
our system has low-latency access to the execution state that
is lifted to the semantics of the source-level RAPID program.
This allows a developer to step forward and backward near
a breakpoint with minimal processing delay.

In our initial implementation, we choose to stop process-
ing on the accelerator 50 bytes (symbols) before the actual
breakpoint. We find that this provides suitable time travel
without incurring significant slow-downs; however, a com-
plete sensitivity analysis is beyond the scope of this work.

5 FPGA Evaluation
In this section, we present the results of an empirical evalua-
tion of our FPGA-based debugging system. Our evaluation
focuses on the overheads of debugging support. We repur-
pose existing hardware on the AP for debugging, and there-
fore do not introduce additional overhead. Thus, we focus

7Modified version available at https://github.com/kevinaangstadt/VASim/
tree/statevec.

https://github.com/kevinaangstadt/VASim/tree/statevec
https://github.com/kevinaangstadt/VASim/tree/statevec


Table 1. ANMLZoo Benchmark Overview

Benchmark Family States Ave Node Degree

Brill Regex 42,658 1.03287
ClamAV Regex 49,538 1.00396
Dotstar Regex 96,438 0.97396
PowerEN Regex 40,513 0.97601
Protamata Regex 42,009 0.99110
Snort Regex 69,029 1.08831

Hamming Mesh 11,346 1.69672
Levenshtein Mesh 2,784 3.26724

Entity Resolution (ER) Widget 95,136 2.28372
Fermi Widget 40,783 1.41176
Random Forest (RF) Widget 33,220 1.00000
SPM Widget 100,500 1.70000

BlockRings Synthetic 44,352 1.00000
CoreRings Synthetic 48,002 1.00000

our evaluation on the space and time overheads incurred for
the additional FPGA hardware needed in our system.

5.1 Experimental Methodology
We evaluate our prototype automata debugging system on
a server-grade Xilinx FPGA using the ANMLZoo automata
benchmark suite, which consists of fourteen real-world-scale
finite automata applications and associated input data [49].
The benchmarks are varied, including both regular expression-
based and hand-crafted automata. We present a summary of
the applications in Table 1, including the number of states
in each benchmark as well as the average degree (number
of incoming and outgoing transitions) for each state. The
higher the degree, the more challenging the benchmark is to
map efficiently to the FPGA’s underlying routing network.

For each benchmark, we generate an FPGA configuration
using our modified version of REAPR [57], producing Verilog
including both VIOs (for capturing state) and also Wadden
et al.’s reporting architecture [47] for efficient transfer of
reports to the host system. We also use REAPR to generate a
baseline configuration that does not include the VIOs.
We synthesize and place-and-route each application for

an Alphadata board rev 1.0 with a Xilinx Kintex-Ultrascale
xcku060-ffva1156-2-e FPGAusing Vivado 2017.2 on anUbuntu
14.04.5 LTS Linux server with a 3.70GHz 4-core Intel Core
i7-4820K CPU and 32GB of RAM. As of 2019, this configu-
ration represents a high-end FPGA on a mid-range server.
For both the baseline and our version supporting debugging,
we measure the hardware resources required, the maximum
clock frequency and the total power utilized. We present
these results next.

5.2 FPGA Results
Performance results for FPGA-based debugging are presented
in Table 2. We were able to successfully place and route thir-
teen of the fourteen benchmarks—the Xilinx toolchain fails
with a segmentation fault for one of the synthetic bench-
marks. We limit our discussion to these thirteen benchmarks.
Entity Resolution, Snort, and SPM require two VIOs due

to the number of states in the automata. Nonetheless, all but
Entity Resolution and SPM—our two largest benchmarks—
fit within the hardware constraints when synthesized with
debugging hardware. We support these two benchmarks by
partitioning the automata. Most applications in ANMLZoo,
including these two, are collections of many small automata
or rules. By splitting the applications into two pieces, we still
support debugging on an FPGA, but throughput is halved
if run serially on a single FPGA. The numbers presented in
Table 2 include this overhead.

Our additional debugging hardware has average LUT and
FF overheads of 2.82× and 6.09×, respectively. The overheads
vary significantly between applications, and we suspect that
this is due to aggressive optimization during synthesis. The
area overhead of state capture is unknown in the AP (area
details for structures are not published), but since it is pro-
vided for context switching, using it for debugging incurs
no extra hardware cost. For FPGAs, the area overhead of our
approach is 2–3× for LUTs (except for Hamming) and 5–10×
for FFs. This area overhead is high. For complex programs,
the compiled automata may need to be partitioned, which is
straightforward and supported by our infrastructure. How-
ever, partitioning requires either running multiple passes
over the input (end-to-end latency increases as passes are
added) or using multiple FPGAs (increasing hardware costs,
but as of August 2018 cloud computing providers offer in-
stances with up to eight FPGAs8 for $13.20 an hour9). We
believe this is a small price to pay for debugging support: any
extra costs (e.g., FPGA overheads) are small compared to the
value of a programmer’s time, and the presence and quality
of debugging support can increase accuracy (see Section 6)
and reduce maintenance time (e.g., [27, Sec. 5.1]). Lowering
the area cost, either via more selective state monitoring or
more optimized synthesis, remains future work.
Adding VIOs to a design can reduce operating clock fre-

quencies (cf. Section 4.3) and increase power usage. For our
benchmarks, the average power overhead is 1.76×, and we
are able to achieve an average of 81.70% of the baseline
clock frequencies. Even with the partitioned automata, the
throughput of our prototype remains at least an order of mag-
nitude greater than the throughput reported byWadden et al.
for a CPU-based automata processing engine [49]. Therefore,
we expect our FPGA-accelerated system to provide better
performance than a CPU-only approach.

8https://aws.amazon.com/ec2/instance-types/f1/
9https://aws.amazon.com/ec2/pricing/on-demand/

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/pricing/on-demand/


Table 2. FPGA-Based Debugging System Performance Results

Benchmark
Without Debugging With Debugging Num.

VIOs

LUT
Over-
head

FF
Over-
head

Percent
Orig.
Freq.

Power
Over-
head

LUTs FFs Clock Power LUTs FFs Clock Power
(MHz) (W) (MHz) (W)

Brill 27,621 27,782 166.67 0.817 89,605 169,323 166.67 1.973 1 3.24 6.09 100.00% 2.41
ClamAV 42,178 42,067 204.08 0.923 95,891 199,336 121.95 1.257 1 2.27 4.74 59.75% 1.36
Dotstar 49,774 46,965 169.49 0.938 172,350 372,074 142.86 2.622 1 3.46 7.92 84.29% 2.80
PowerEN 35,359 31,530 163.93 0.832 77,900 161,156 149.25 1.302 1 2.20 5.11 91.05% 1.56
Protamata 49,791 36,285 126.58 0.838 85,604 167,646 108.70 1.206 1 2.10 4.62 85.87% 1.44
Snort 43,061 28,047 98.04 0.783 128,684 266,600 91.74 1.478 2 2.99 9.51 93.58% 1.89

Hamming 5,602 6,637 312.50 0.701 25,170 46,080 312.50 1.065 1 4.49 6.94 100.00% 1.52
Levenshtein 2,538 2,242 434.78 0.666 4,218 11,263 400.00 0.737 1 1.66 5.02 92.00% 1.11

ER∗ 50,349 47,102 212.77 1.066 21,3461 38,1258 56.82 1.447 2 4.24 8.09 26.70% 1.36
Fermi 36,314 32,261 116.28 0.991 86,879 167,089 99.01 1.537 1 2.39 5.18 85.15% 1.55
RF 31,060 25,769 200.00 0.990 66,686 130,007 192.31 1.611 1 2.15 5.05 96.15% 1.63
SPM∗ 64,615 59,106 126.58 1.017 225,315 406,241 60.24 2.605 2 3.49 6.87 47.59% 2.56

BlockRings 44,446 44,185 256.41 1.215 90,333 178,905 256.41 2.119 1 2.03 4.05 100.00% 1.74
CoreRings† − − − − − − − − − − − − −

Average 2.82 6.09 81.70% 1.76
∗ Benchmark must be partitioned to fit within FPGA resource limits with added debugging. The clock frequency reflects this partitioning.

† The current commercial Xilinx toolchain terminates with a segmentation fault during synthesis.

Despite high resource overheads, our debugging system
achieves an average of 81.70% of the baseline clock fre-
quencies for all benchmarks. Our system remains an order
of magnitude faster than a CPU-based automata process-
ing engine.

6 Human Study Evaluation
In this section we evaluate our debugging system using a hu-
man study by presenting participants with code snippets and
asking them to localize seeded defects. We measure their ac-
curacy and the time taken to answer questions. This section
characterizes our study protocol and participant selection
and presents a statistical analysis of our results.

6.1 Experimental Methodology
Our IRB-approved human study10 was formulated as an on-
line survey that presented participants with a sequence of
fault localization tasks. Participants were provided with a
written tutorial on the RAPID programming language and
sample programs. These resources were made available to
the participants for the duration of the survey. We presented
each participant with ten randomly-selected and ordered
fault localization tasks from a pool of twenty. For each task,
participants were asked to identify faulty lines in the code

10UVA IRB for Social and Behavioral Sciences #2016-0358-00.

and justify their answer. We recorded the participants’ re-
sponses and the total time taken for each question. Partici-
pants were given the opportunity to receive extra credit (for
students) and enter a raffle for a $50 gift certificate.

Each fault localization task consisted of a description of the
program and fault, the code for the program with a seeded
defect, and an input data stream. On half of the tasks, our de-
bugging information was also displayed. The description of
the program detailed the purpose of the presented code and
also provided the expected output. Code for each task ranged
from 15–30 lines and was based on real-world use cases [49].
Similar to GPGPU programs, RAPID programs accelerate
a kernel computation within a larger program. While our
selected programs are relatively small in terms of line count,
they are both complete and also indicative: we adapted au-
tomata processing kernels to RAPID programs from various
published applications, such as Brill tagging [66], frequent
subset mining [52], and string alignment for DNA/Protein se-
quencing [7, 31]. We seeded a variety of defects into the code
for our fault localization tasks, based on RAPID developer
mistakes reported by Angstadt et al. [3]. When provided, the
debugging information included buttons to step forward and
backward in the data stream. For a given offset in the input
stream, our tool highlights lines of code corresponding to
the current locus of control. We also provided variable state
information for each of the loci. Figure 6 provides an example
fault localization task presented to survey participants.
Participants were all voluntary and predominantly from

the University of Virginia. We advertised in Data Structures,



Figure 6. A question from the human study including gen-
erated debugging information. Task text and program state
information are elided for space.

Table 3. Participant Subsets and Average Accuracies. The
study involved n = 61 participants. Average completion
times are for individual fault localization tasks.

Average Average
Subset Time (min.) Accuracy Participants

All 8.17 50.3% 61

Intermediate Under-
graduate Students

7.3 49.2% 37

Advanced Under-
graduate Students

10.14 50.0% 21

Grad Students and
Prof. Developers

5.07 66.7% 3

Theory of Computation, and Programming Language un-
dergraduate CS courses, in a graduate software engineering
seminar, and to members of the D480 AP professional devel-
opment team. Participants are enumerated in Table 3.

6.2 Statistical Analysis
Next, we present statistical analyses of the responses to our
human study. We address the following research questions:
1. Does our technique improve fault localization accuracy?
2. Is there an interaction between programming experience

and ability to interpret RAPID debugging information?
In total, 61 users participated in our survey each complet-

ing ten fault localization tasks, resulting in over 600 individ-
ual data points. Table 3 provides average accuracy rates and
task completion times for subpopulations in our study.

Does our debugging information improve fault
localization in RAPID programs?
To measure the effect of debugging information on pro-
grammer performance, we used the following metrics: ac-
curacy and time taken. We defined accuracy as the number

of correctly-identified faults. We manually assessed correct-
ness after the completion of the survey, taking into account
both the marked fault location and justification text provided.
Using Wilcoxon signed-rank tests, we did not observe a sta-
tistically significant difference in time taken to localize faults
(p = 0.55); however, we determined that there is a statisti-
cally significant increase in accuracy when participants were
given debugging information (p = 0.013). Mean accuracy
increased from 45.1% to 55.1%, meaning participants were
22% more accurate when using our tool.
Fault localization improvements can be difficult to evalu-

ate: researchers must be careful to avoid simply reporting
the fraction of lines implicated [27, Sec. 6.2.1] rather than
the actual impact on developers. Independent of time, ac-
curacy is important because even in mature, commercial
projects, 15–25% of bug fixes are incorrect and impact end
users [61]. The improvement in accuracy provided by our
information is modest but significant and is orthogonal to
other approaches.

Our debugging tool improves a user’s fault localization
accuracy for RAPID programs in a statistically significant
manner (p = 0.013).

Is there an interaction between programmer
experience and our tool?
Previous studies (cf. Parnin and Orso [27]) have found that
the effectiveness of debugging tools can vary with program-
mer experience. We examined our data for similar trends.
Following an established practice from previous software
engineering human studies (e.g., Fry and Weimer [11]), we
partitioned our data between experienced (students in final-
year undergraduate electives or above) and inexperienced
(students not yet in final-year undergraduate classes) pro-
grammers. Such a partitioning likens final-year undergrad-
uates to entry-level developers. To measure the interaction
between programmer experience and our debugging tool,
we used Aligned Rank Transform (ART) analyses. This tech-
nique allows us to perform factorial nonparametric analyses
with repeated measures (such as the interaction between
experience and debugging information in our study) using
only ANOVAprocedures after transformation [56].We found
that there was no statistically significant interaction between
experience and our debugging tool with respect to either
accuracy (p = 0.92) or time (p = 0.38). This suggests that
novices and experts alike benefit from our tool. Due to the
limited number of professional developers in our initial study,
we leave investigation of further partitions for future work.

There is no statistically significant interaction between
experience and the ability to interpret our debugging in-
formation: both novices and relative experts benefit.



6.3 Threats to Validity
Our results may not generalize to industrial practices. In
particular, our selection of benchmarks may not be indica-
tive of applications written by developers in industry. We
attempt to mitigate this threat by selecting a diverse set of
applications from common automata processing tasks [49].
One threat to construct validity relates to our analysis

of expertise. A different partitioning of participants into in-
experienced and experienced programmers (i.e., a different
definition of expertise) could yield different results; however,
testing multiple partitions requires adjustment for multiple
analyses. Additionally, our study recruited predominantly
undergraduate students. A more balanced participant pool
may also provide additional insight into the interaction be-
tween expertise and debugging information in automata pro-
cessing applications. We leave a larger-scale study including
more professional developers for future work.

7 Related Work
The development of debugging tools has a lengthy history [14,
23, 35, 62], and software debuggers are commonplace in
development toolchains [24]. Ungar et al. argue that im-
mediacy is important for debugging tasks and developed a
step-through debugger [46]. There has also been significant
effort devoted to improving the efficiency of debugging tools,
such as quickly transferring control when a breakpoint is
reached [19] and efficiently supporting large numbers of
watchpoints [64]. These approaches provide debugging sup-
port for general purpose processors and languages. The tech-
nique presented in this work is in the same spirit: we provide
immediacy for debugging big data pattern-matching appli-
cations through low-overhead breakpoints on specialized
hardware and interactive, step-through program inspection.
Previous research has considered debugging for special-

ized hardware, including support for distributed sensor net-
works [39] and energy-harvesting systems [9]. Hou et al.
developed a debugger for general-purpose GPU programs
which leverages automatic dataflow recording to allow users
to analyze errors after program execution [16]. Similarly,
there are approaches for debugging FPGA applications [1,
13]; however, these techniques typically focus on inspec-
tion of the underlying hardware description, rather than
programs written in high-level languages. Debugging of
high-level synthesis (HLS) designs has focused on monitor-
ing trace registers and using record-replay techniques to
expose program state for segments of single-threaded appli-
cations [12, 25]. Our work further develops the area of de-
bugging for specialized processors by presenting a technique
for inspecting source-level program state during program
execution on highly-parallel automata processing engines.
Human studies shed light on debugging and the role of

automated tools. Weiser found that programmers inspect

“program slices” when debugging, which may not be textu-
ally contiguous but follow data and control flow [54]. Ko
and Myers demonstrated that their debugging tool, Whyline,
allowed study participants to perform debugging tasks more
quickly [22]. Fry and Weimer found that localization accu-
racy is not uniform across various bug types [11]. Romero et
al. found that debugging performance is related to balanced
use of available information in programming systems that
provide multiple representations of state [29]. Our results
complement these findings by demonstrating our debugging
system improves fault localization accuracy for the domain
of pattern-matching automata processing applications.

8 Conclusions
Debuggers aid developers in quickly localizing and analyzing
defects in source code. We present a technique for extending
interactive debugging, including breakpoints and variable
inspection, to the domain of automata processing. We de-
scribe the mappings needed to bridge the gap between the
state of the executing finite automata and the semantics of a
high-level programming language. We focus on the RAPID
DSL, but our approach to exposing state from low-level ac-
celerators lays the groundwork for more general support.
Our system provides high-throughput data processing before
transferring control to a debugger at breakpoints by execut-
ing automata on either Micron’s D480 AP or a server-class
FPGA. Only one bit of information per automata state at a
given breakpoint must be copied to the host to support an
interactive debugger. For FPGAs, we automatically generate
custom logic, leveraging virtual IO ports, and capture state
information from the executing automata. On the AP, we
leverage built-in context switching hardware.

We achieve an average of 81.70% of the original clock fre-
quency across 13 benchmarks while supporting interactive
debugging. Despite high resource overheads, our system pro-
vides a valuable tool for debugging at a level of abstraction
higher than hardware signals. Reducing these overheads
with, for example, static or dynamic analyses and innovative
hardware, remain open challenges for future work.
To analyze the utility of our debugging system, we con-

ducted a human study of 61 programmers tasked with local-
izing faults in RAPID programs. We observed a statistically
significant 22% increase (p = 0.013) in accuracy from our
tool’s debugging information and found that our tool helps
both novices and experts alike.
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