
To appear in ACM TOG 30(6).

Supplemental Results for ACM SIGGRAPH Asia 2011 Paper:
Genetic Programming for Shader Simplification

Pitchaya Sitthi-amorn Nicholas Modly Westley Weimer Jason Lawrence
University of Virginia

Shader Add Replace Swap Remove Cross Over

V. Shadow Map 64 74 50 68 364

Table 1: Distributions of mutation operators use to obtain the set
of results along the Pareto frontier for each non-trivial test shader.

This document contains results of our simplification system applied
to a technique for approximating soft shadows.

1 Variance Shadow Map (Multiple Pass)

Variance Shadow Maps (VSM) is a technique for approximating
soft shadow edges developed by Donnelly and Lauritzen [2006].
This shader is comprised of three passes. The first pass computes
the per-pixel depth and square of the depth from the light source’s
vantage point. The second pass blurs this depth information us-
ing a 7× 7 Gaussian filter. The final pass combines these previous
computations to approximate a soft shadow boundary using Cheby-
chev’s inequality. We measured the performance of this shader us-
ing a mobile device with NVidia’s Tegra 2 chipset. This further
illustrates the ability of our system to optimize a shader for a wide
range of hardware platforms.

Figure 1 shows the set of shaders our simplification system dis-
covered. The shader variant at the red dot removes the perspective
divide from the step that computes the square of the per-pixel depth
and reduces the number of samples in the blur kernel from 7 to
6. This variant reduces the rendering time by 18% with no visible
error.

The second variant corresponding to the orange dot reduces the
complexity of the analytical formula of the Gaussian blur filter
while retaining all 7 samples. Although this produces slightly
sharper shadow boundaries, it does not cause aliasing. Using this
variant reduces the rendering time by 33% compared to the original.
The final variant, marked by a purple dot, reduces the shader to a
standard shadow map algorithm. The fact that our system was able
to automatically identify this algorithm as an approximation to a
more sophisticated soft shadow algorithm undermines the ability of
our GP search to uncover profitable areas within a highly non-linear
optimization terrain.

Finally, Table 2 gives the full statistics for this shader (compare
this to Table 1 in the main paper), and Table 1 shows the distri-
butions of the different mutation operators that were used during
our GP search to obtain the set of results along the Pareto frontier.
Altogether, our system generated 229 variants of this shader in 4.3
hours.

References
DONNELLY, W. and LAURITZEN, A. 2006. Variance shadow maps.

In Proceedings of the 2006 symposium on Interactive 3D graph-
ics and games, I3D ’06, New York, NY, USA. ACM, pages 161–
165. ISBN 1-59593-295-X. URL http://doi.acm.org/
10.1145/1111411.1111440.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

R
e
n
d
e
ri
n
g
 T

im
e
 (

m
s
)

Error (L
2
 in RGB)

Varaince Shadow Map Shader

Shader Variants

Pareto Frontier

Error=1.2e-5, 80ms

Error=1.5e-3, 70ms Error=2.8e-3, 45ms

Original, 99ms

Figure 1: Top: Scatter plot of error and performance of different
shader variants generated by our system on the Variant Shadow
Map shader. Bottom: Selected rendering results as indicated in
the graph above. The inset contains a visualization of the per-pixel
error.

1

http://doi.acm.org/10.1145/1111411.1111440
http://doi.acm.org/10.1145/1111411.1111440

To appear in ACM TOG 30(6).

Lines of Code Time (hours) Shader Variants Speedup @ ≤ 0.075 L2 error
Shader Source Asm Compiling Testing Total Generated Unique On Frontier Our Approach

V. Shadow Map 129 67 0.2 4 5 7,035 3,911 228 2.00x
Table 2: Two shaders used in our supplemental experiments. “Lines of code” counts non-comment, non-blank lines. “Compiling time” gives
the total time taken by the shader compiler over all variants. “Testing time” reports the time spent evaluating the error and performance
of variants. “Total time” includes the total time spent performing GP bookkeeping, compiling time and testing time. “Generated Variants”
counts all distinct shader source codes produced; “Unique Variants” counts the number of unique assembly produced. “Variants on Frontier”
gives the number of shaders on the Pareto frontier: the size of the final set of error-performance tradeoffs produced by our algorithm. The
“Speedup @ ≤ 0.075 L2 error” columns give the best speedup obtained (original rendering time divided by optimized rendering time) by a
variant with L2 RGB error at most 0.075 for our approach.

2

