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Abstract

We present a framework based on Genetic Programming (GP) for
automatically simplifying procedural shaders. Our approach com-
putes a series of increasingly simplified shaders that expose the in-
herent trade-off between speed and accuracy. Compared to exist-
ing automatic methods for pixel shader simplification [Olano et al.
2003; Pellacini 2005], our approach considers a wider space of code
transformations and produces faster and more faithful results. We
further demonstrate how our cost function can be rapidly evaluated
using graphics hardware, which allows tens of thousands of shader
variants to be considered during the optimization process. Our
approach is also applicable to multi-pass shaders and perceptual-
based error metrics.
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1 Introduction

The complexity of procedural shaders [Cook 1984; Perlin 1985] has
continued to grow alongside the steady increase in performance and
programmability of graphics hardware. Modern interactive render-
ing systems often contain hundreds of pixel shaders, each of which
may perform thousands of arithmetic operations and texture fetches
to generate a single frame.

Although this rise in complexity has brought considerable improve-
ments to the realism of interactive 3D content, there is a growing
need for automated tools to optimize procedural shaders to meet a
computational budget or set of hardware constraints. For example,
the popular virtual world Second Life allows users to supply cus-
tom models and textures, but not custom shaders: the performance
of a potentially-complex custom shader cannot be guaranteed on
all client hardware. Automatic optimization algorithms could adapt
such shaders to multiple platform capabilities while retaining the
intent of the original.

As with traditional computer programs, pixel shaders can be ex-
ecuted faster through a variety of semantics-preserving transfor-
mations like dead code elimination or constant folding [Muchnick
1997]. Unlike traditional programs, however, shaders also admit
lossy optimizations [Olano et al. 2003]. A user will likely tolerate a
shader that is incorrect in a minority of cases or that deviates from
its ideal value by a small percentage in exchange for a significant
performance boost.

One common way to achieve this type of optimization is through

code simplification. The methods proposed by Olano et al. [2003]
and Pellacini [2005] automatically generate a sequence of progres-
sively simplified versions of an input pixel shader. These may be
used in place of the original to improve performance at an accept-
able reduction in detail. However, these methods have a number
of important disadvantages. The system proposed by Olano et al.
[2003] only considers code transformations that replace a texture
with its average color. This overlooks many possible opportuni-
ties involving source-level modifications. The system proposed by
Pellacini [2005] does consider source-level simplifications. How-
ever, that approach is limited to a small number of code transfor-
mations and uses a brute-force optimization strategy that can easily
miss profitable areas of the objective function. Furthermore, both
approaches were demonstrated only on shaders that require a sin-
gle rendering pass. Modern shaders often involve multiple inter-
dependent passes. Finally, in both of these systems, only a single
error metric is used to evaluate the fidelity of a modified shader. It
would be desirable for a simplification algorithm to support a range
of error metrics, including those that are designed to predict per-
ceptual differences [Wang et al. 2004].

Intuitively, we hypothesize that a shader contains the seeds of its
own optimization: relevant functions such as sin and cos, opera-
tions such as » or +, or constants such as 1.0 are already present in
the shader source code. We propose to produce optimized shader
variants by copying, reordering and deleting the statements and ex-
pressions already available. We also hypothesize that the landscape
of possible shader variants is sufficiently complex that a simple hill-
climbing search will not suffice to avoid being trapped in local op-
tima. We thus present a novel framework for simplifying shaders
that is based on Genetic Programming (GP). GP is a computational
method inspired by biological evolution which evolves computer
programs tailored to a particular task [Koza 1992]. GP maintains
a population of program variants, each of which is evaluated for
suitability using a task-specific fitness function. High-fitness vari-
ants are selected for continued evolution. Computational analogs of
biological crossover and mutation help to locate global optima by
combining partial solutions and variations of the high-fitness pro-
grams; the process repeats until a fit program is located.

Our approach is related to recent software engineering work that
applies GP to automatic program repair [Weimer et al. 2009, 2010].
Our approach is novel not only in the domain considered (contin-
uous shader output vs. discrete software test cases) but also in the
techniques used: to take advantage of the special structure of shader
software, we apply new mutation operations, new approaches to
select a diverse population of variants, new handling for multiple
competing objectives, and optimizations to rapidly approximate the
performance of a shader variant.

Our approach offers a number of benefits over existing methods for
shader simplification. In particular, it explores optimizations be-
yond just texture lookups (cf. Olano et al. [2003]), is not limited to
an a priori set of simplifying transformations (cf. Pellacini [2005]),
does not require the user to specify continuous domains for shader
input parameters (cf. Pellacini [2005]), is demonstrably applicable
to multi-pass shaders and perceptual-based error metrics, and out-
performs previous work in a direct comparison.
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2 Related Work

Prior work on shader optimization has generally taken the form of
either pattern-matching code simplification or data reuse. Previous
work on GP-based program repair has focused on fixing bugs in
oft-the-shelf, legacy software, and not on optimizing programs.

Code Simplification: The original system for simplifying proce-
dural shaders was developed by Olano et al. [2003]. It focused on
converting texture fetches into less expensive operations. A more
recent technique, and one more similar to our own, was proposed
by Pellacini [2005]. Pellacini’s algorithm generates a sequence of
simplified shaders automatically, based on the error analysis of a
fixed set of three simplification rules (e.g., replacing an expression
with its average value over the input domain). It only uses error
estimation to guide its search [Pellacini 2005, Sec 3.2]. By con-
trast, our approach considers arbitrary statement- and expression-
level modifications, and uses both error and rendering time to guide
a multi-objective optimization. In Section 4, we directly compare
our algorithm to Pellacini’s.

Data Reprojection: An alternative strategy for optimizing a pro-
cedural shader is to reuse expensive calculations over consecutive
frames [Nehab et al. 2007]. In many cases, this can reduce ren-
dering time at an acceptable reduction in quality. Temporal re-
projection was used by Scherzer et al. [2007] to improve shadow
generation and by Hasselgren and Akenine-Moller [2006] to ac-
celerate rendering in multi-view architectures. Sitthi-amorn et al.
[2008] demonstrated a related system for automatically identifying
the subexpressions in a pixel shader that are most suitable for reuse.

Code simplification in general has a number of advantages over data
reuse. First, it does not incur additional memory requirements in the
form of off-screen buffers to support a cache. Second, it can be used
with semi-transparent shaders, which are not supported by existing
data reprojection methods. Finally, a series of progressively sim-
plified shaders can be accessed at run-time to achieve appropriate
level of detail while rendering [Olano et al. 2003].

GP-based Code Repair: Weimer et al. [2009, 2010] use genetic
programming to automatically repair bugs in unannotated software.
Their technique optimizes only a single discrete value: the num-
ber of passed test cases. In contrast, our approach makes no use of
negative test cases to limit the search and must simultaneously op-
timize real-valued error and performance objectives, for which we
introduce a rapid approximation. We also use new mutation opera-
tors and new approaches to select a diverse set of variants that are
specific to the domain of shader software.

3 Shader Simplification with GP

Our system for shader simplification is inspired by the program re-
pair techniques of Weimer et al. [2009, 2010] and NSGA-II multi-
objective optimization [Deb et al. 2002], but incorporates shader-
specific insights. The user provides as input the original shader
source code and an indicative rendering sequence (e.g., samples
of game play). An iterative genetic algorithm then maintains and
evaluates a diverse population of shader variants, returning those
representing the best optimization tradeoffs.

We represent each shader variant as its abstract syntax tree (AST).
For example, “3xx” is represented as a BinOp expression node with
three children: 3, %, and x. Similarly, “x=y” is represented as a Set
statement instruction node with two children: x and y. See Necula
et al. [2002] for a formal description of the AST nodes used. The
steps of our algorithm are as follows:

Step 1: Population Initialization. Each element of the population
is initialized by mutating the original shader. A variant is mutated
by considering each of its expressions (i.e., AST nodes) in turn.

We may delete that expression, insert it as the child of a randomly-
chosen expression, or swap it with a random expression. Unlike
work in previous software repair, we may also replace the expres-
sion by its estimated average value. Each of these four outcomes is
equally likely. Deletion is only applicable to statement-level nodes,
and is implemented by replacing the statement with an empty block.

Step 2: Fitness Evaluation. The fitness of each variant is com-
puted by transforming the AST back to shader source code that is
then compiled and executed (see Sections 3.2 and 3.3). As an op-
timization, the fitness calculations can be memoized based on the
shader source code or assembly code. We write f(v) = (¢, ¢e) for
the fitness of a variant v given its rendering time ¢ and error e.

Step 3: Non-Dominated Sort. Unlike previous test-centric work
in software repair, since time and error have incomparable dimen-
sions, we introduce a partial ordering and say that (t1, e1) domi-
nates (i.e., is preferred to) (t2, e2) (written (t1,e1) < (t2,e2)) if
either t1 < to Ae1 < esorty < ta Aer < ez. Thatis, one
variant dominates another if it improves in one dimension and is at
least as good in the other. In a set of variants V, the Pareto fron-
tierof Vis P(V) = {v € V : Yo' € V. v £ v}. That s, the
variants in the Pareto frontier are preferred (but incomparable) and
the variants not in the frontier are dominated. If v € P(V') we say
rank(v) = 1. It is also possible to consider the variants that would
be in the Pareto frontier if only the current frontier were removed:
P(V — P(V)). We say such variants v have have rank(v) = 2,
and so on, as in Deb et al. [2002].

Step 4: Diversity. We wish to retain low-ranked variants into the
next iteration. However, if there is limited space in the next it-
eration, we also prefer to break ties by retaining a diverse set of
variants. In the particular domain of graphics shaders, variants with
distinct source code often have equivalent fitness values; we thus
cannot use the standard crowding heuristics of previous work [Deb
et al. 2002]. In addition, crowding heuristics typically assume that
the objectives have compatible units which is not true of time and
error. Instead, we partition those variants into equivalence classes
by fitness value, and select the next iteration of variants uniformly
at random, without replacement, from those classes.

Step 5: Mating Selection. We choose the fittest variants using a
process known as tournament selection [Miller and Goldberg 1996]
with a tournament size of 16. This is done by selecting 16 individ-
uals at random and returning the preferred variant, where v, is pre-
ferred to v if rank(vi) < rank(v2) (with ties broken by fitness
diversity). We apply selection repeatedly to obtain 2 X | V| (possibly
repeated) individuals, treating them pairwise as parents. Previous
work in program repair and most genetic algorithm approaches use
a tournament size of two [Mitchell et al. 1993]; however, our exper-
iments with different tournament sizes (2, 4, 8, 16, 32) found that
tournament size of 16 gives converges faster than the alternative.
Our larger tournament size means that more variants are considered
when making a decision. This focuses our search less on explo-
ration and more on exploitation of high-fitness substructures that
have already been located. This is desirable because we start with
a fully-functional shader, rather than a blank slate or random pro-
gram. Compared to a classic optimization approach such as New-
ton’s Method, we have reason to believe that our starting point is
relatively close to our desired point, and thus we have less reason to
jump wildly from it. In addition, because shader software is unlike
discrete systems software, small changes to the source are likely to
result in small changes to the render time and output fidelity. Fi-
nally, this high tournament size implies a high selection pressure,
which would normally cause a loss of diversity, but is balanced by
Step 4, which favors greater diversity during the selection function.

Step 6: Crossover and Mutation. GP uses crossover to combine
partial solutions from high-fitness variants; along with mutation it



helps GP to avoid being stuck in local optima. Each pair of par-
ents produces two offspring via one-point crossover. Recall that
each variant is represented by its AST. We impose a serial ordering
on AST nodes by depth-first traversal, anchored at the statement
level, producing a sequence of statement nodes for each variant.
We select a crossover point along that sequence. A child is formed
by copying the first part of one parent’s sequence and the second
part of the other’s and then reforming the AST. For example, if
the parents have sequences [P1, P2, Ps, Py] and [Q1, Q2, Q3, Q4],
with crossover point 2, the child variants are [P1, P>, Q3, Q4] and
[Q1, Q2, P3, P4]. Each child variant is then mutated once (see Step
1), and its fitness is computed (see Step 2).

Step 7: Selection for Next Iteration. The incoming population
V and all of the produced and mutated children are considered to-
gether as a single set of size 3 x |V/|. This set is sorted and its
crowding distances are computed as in Steps 3 and 4. We then se-
lect | V| preferred variants to form the incoming population for the
next iteration. This is done by adding all variants with rank equal
to 1, then all variants with rank equal to 2, and so on, until |V | have
been added. The final rank may exceed the number of remaining
slots, at which point diversity is used to break ties (Step 4).

At the conclusion of the final iteration, all variants ever produced
and evaluated are used to compute a single unified Pareto frontier.
The output of the algorithm is the set of variants along that frontier:
a sequence of progressively simplified shaders that trade off error
for rendering time. Because it is taken from the Pareto frontier, the
sequence is ordered by increasing error and decreasing rendering
time simultaneously.

The heart of our algorithm — the fitness evaluation (see next sec-
tion), diversity heuristic, high-population tournament selection, and
mutation operators — are all novel in this design space compared
to previous work [Deb et al. 2002; Weimer et al. 2009, 2010] and
are specialized to the structure of shader software. For example,
we have found empirically that using our higher-than-normal tour-
nament selection size of 16 halves total optimization time while
producing higher quality results. The genetic algorithm is parame-
terized by a population size, mutation rate, and desired number of
iterations. For the experiments in this paper we set them to default
values of 300, 0.015, and at most 100.

3.1 Example

It is perhaps remarkable that random reorderings of shader source
code could produce desirable optimizations. In this section, we il-
lustrate our approach on a simple example. Consider the follow-
ing function, which computes the Fresnel reflectance of a dielectric
with index of refraction n at incident angle th:

1 float Fresnel (float th, float n) {

2 float cosi = cos (th);

3 float R = 1.0f;

4 float nl2 = 1.0f / n;

5 float sint = nl2 * sqrt (1 - (cosi x cosi));
6 if (sint < 1.0f) {

7 float cost = sqrt (1.0 - (sint * sint));

8 float r_ortho = (cosi — n * cost)

9 / (cosi + n * cost);
10 float r_par = (cost — n * cosi)

11 / (cost + n * cosi);
12 R = (r_ortho * r ortho + r _par * r_par) / 2;
13 }
14 return R;

15 )

For this example, the index of refraction n is set to 1.25 while th is
allowed to vary over the range [0°,90°]. The shader variants pro-
duced by our system are visualized in Figure 1(left). The first point
on the Pareto frontier corresponds to the original shader. Note that
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Figure 1: Illustration of our simplification algorithm applied to a
simple Fresnel shader. Left: Each shader variant produced during
the optimization process is visualized by a light blue dot showing its
error and performance; the dashed line marks the Pareto frontier.
Error is measured as the average per-pixel L? norm in RGB space.
Right: A few variants that lie along the frontier. Each image shows
the shader applied to a sphere illuminated by a point light located
at the camera. The captions report the error and render time.

the check for sint < 1.0f always returns true since n > 1.0,
and can therefore be removed. This corresponds to the point on the
Pareto frontier that is marked with a red dot in Figure 1, and code
below:

1 float Fresnel (float th, float n) {

2 float cosi = cos (th);
3 float R = 1.0f;
4 float nl2 = 1.0f / n;
5 float sint = nl2 * sqrt (1 - (cosi * cosi));
6 {
/ float cost = sqrt (1.0 - (sint * sint));
8 float r_ortho = (cosi — n * cost)
9 / (cosi + n % cost);
10 float r_par = (cost — n * cosi)
11 / (cost + n * cosi);
12 R = (r_ortho * r_ortho + r_par * r_par) / 2;
13 }
14 return R;
15 '}

Our technique also considers changes in operands and expressions.
For example, one of the variants produced by our technique swaps
* and + operators on Line 11:

10 float r_par = (cost — n * cosi)
11 / (cost * n + cosi);

Note that because cost * n has been previously computed in
Lines 8-9, that value can be reused, and this variant produces faster
and more compact shader assembly code (e.g., this reduces the
shader Cg assembly from 80 to 78 instructions). Note that while
the algorithm of Pellacini [2005] can produce the i £-removing op-
timization, it cannot produce the operand-swapping one. Larger
tradeoffs are possible, however: the variant marked with an orange
dot in Figure 1 removes the r_par term entirely, setting it to 0. O£.
While these changes are simple in isolation, together they speed
rendering time by 3x while incurring only a very slight error (0.10
L? RGB). The final highlighted variant, represented by the purple
dot in Figure 1, significantly sacrifices visual fidelity for rendering
speed:

8 float r_par = (cost — n * cosi)

9 / (cost + n x cosi);
10 R = r_par / 2;

11 return (R);

In effect, it removes the r_ortho term entirely, as well as the squar-
ing of r_par.



3.2 Error Model

The quality of any optimization system depends on the error metric
used to measure the difference between the original shader and the
variants. For comparison with previous systems, we use the aver-
age per-pixel L? distance in RGB by default, although our system
allows for other error metrics (see Section 4.7).

For each shader variant, we compute the mean L> RGB error over
the frames in a representative rendering sequence provided by the
user. Only shaded pixels are considered; background pixels are not
considered as part of the average. Because our system may generate
tens of thousands of shader variants, the cost of directly evaluating
the error for thousands of frames can be high. In the case of single-
pass shaders, we address this problem by randomly sub-sampling
a small fraction of patches from the representative sequence and
computing the average error using only these patches. This can
be done quickly using deferred shading [Deering et al. 1988], as
described below. In the case of multiple-pass shaders, we use the
entire representative sequence to evaluate the error.

In a preprocessing step, we populate a geometry buffer (G-buffer)
with patches of input values taken from the representative sequence.
Specifically, we use a 2048 x 2048 G-buffer composed of patches
uniformly sampled from each frame in the representative sequence.
To achieve some degree of stratification, we collect a fixed num-
ber of patches from each frame and discard those that overlap the
background. We evaluate each shader variant over this G-buffer and
compute the difference between this output and the original. This
subsampling procedure reduces the error evaluation time by over
an order of magnitude for the representative sequences we consid-
ered. Additionally, note that by sampling patches, we can support
other error metrics such as the Structural Similarity Index (SSIM),
which operate on groups of nearby pixels to measure local contrast
(Section 4.7).

Figure 2(left) evaluates the correlation between the error values
computed using the representative sequence (“‘brute-force”) and our
subsampling approach. The evaluation uses roughly 100 shader
variants of the Marble shader (Section 4.2) generated by our sim-
plification system. The cross-correlation is 0.84 which indicates a
high degree of success in predicting the actual error from this small
set of samples.

3.3 Performance Model

We also accelerate evaluating running time using a technique simi-
lar to the subsampling method for evaluating error. Note that using
the same exact deferred shading approach described above to esti-
mate rendering time would involve modifying the pixel shader code
to fetch its inputs from the G-buffer, which may change its perfor-
mance profile. We therefore use a grid-based method that allows a
fast evaluation while still capturing the expected performance char-
acteristics of a shader.

We draw a matrix of quadrilaterals that each occupy an 8 x 8
pixel window and together cover a 2,048 x 2,048 render target.
Each vertex in each quad fetches the inputs stored in the G-buffer
and then passes these to the pixel shader. This avoids modifying
the pixel shader code and reduces the performance evaluation time
from minutes to 1-2 seconds per shader.

Another important benefit of using coherent 8 x 8 pixel patches
is that this avoids introducing differences in the performance pro-
file due to dynamic flow control. Modern graphics hardware maxi-
mizes throughput by executing nearby pixel shaders in “lock-step”.
Assemble the G-buffer by sub-sampling single pixels from the rep-
resentative sequence potentially introduces many discontinuities in
the execution paths of neighboring pixels (i.e., the shaders at neigh-
boring pixels may do very different things since their inputs were
constructed artificially). By sampling patches, we maintain the
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Figure 2: Validation of our subsampling approach for computing
the error and performance of each shader variant. Each point in
these graphs represents a single variant of the Marble Shader pro-
duced by our GP optimization. Left: A comparison between the
average L? RGB error computed using the entire representative
sequence (x-axis) and the approximation by our subsampling ap-
proach (y-axis). The correlation coefficient is 0.84. Right: A com-
parison between the rendering time measured using the representa-
tive sequence (x-axis) and the rendering time approximated by our
subsampling approach (y-axis). The correlation coefficient is 0.95.

same degree of spatial coherency found in the representative se-
quence and thus achieve a more accurate approximation of the ex-
pected rendering time. We determined experimentally that 8 x 8
pixel windows produce a G-buffer that matches the lock-step exe-
cution boundaries in modern NVidia and AMD hardware.

Figure 2(right) compares the estimated rendering time using our
grid-based subsampling method to the rendering time measured for
the entire sequence. Note that the absolute values are different, be-
cause the geometry processing and fixed setup costs differ between
these approaches. However, the cross-correlation value is 0.95, in-
dicating that our acceleration technique can reliably predict the rel-
ative differences between two variants, which is all that is required
for our optimization strategy.

4 Experimental Results

In this section, we present results of our prototype shader optimiza-
tion system. Our primary evaluation architecture is an AMD Phe-
nom X6 equipped with an NVidia 285GTX. Our implementation
accepts either HLSL (DX10) or OpenGL Cg source code. It can
also operate on shader assembly, treating the assembly file as an
AST block and each assembly instruction as an atomic AST node.
We use the gpu_t ime hardware counters provided by the NVidia
PerfSDK to measure rendering times when possible.

The shaders we used to evaluate our system are detailed in Table 1.
The setup time for the sampling and deferred shading approxima-
tions is on the order of three minutes, which is dwarfed by the total
optimization time. In general, there is no direct relationship be-
tween the number of variants considered (e.g., every light blue dot
in Figure 1) and the number of dominating variants on the Pareto
frontier (e.g., the points on the dashed blue line in Figure 1): the
former represent the search space considered by the optimization
and the latter the best discovered answers.

Table 2 shows the distributions of the different mutation operators
that were used during our GP search to obtain the set of results
along the Pareto frontier. Notably, these figures show that replacing
one expression with another is the most useful operation in this con-
text, followed by inserting expressions and crossing over to share
source code with other variants. Removals were less likely to be in-
volved in the construction of a shader output by our system, which
supports the claim that genetic evolution is necessary and that our
method is not simply removing or pruning shader code.



Lines of Code Time (hours) Shader Variants Speedup @ < 0.075 L? error
Shader Source  Asm Compiling Testing Total Generated Unique On Frontier Pellacini Our Approach
Fresnel 28 40 0.7 0.3 1 14,218 743 94 1.67x 2.11x
Marble 120 1,023 0.2 0.7 1 7,417 1,725 294 1.43x 4.44x
Trashcan 127 363 2.0 3 5 4,862 1,461 119 1.24x 3.60x
Human Head 962 522 1.0 10 11 18,682 2,960 88 n/a 2.13x
S.S. Amb. Occl. 612 4,266 4.8 1.5 7 1,289 676 54 n/a 4.71x

Table 1: Shaders used in our experiments. “Lines of code” counts non-comment, non-blank lines. “Compiling time” is the total time taken
by the shader compiler over all variants. “Testing time” reports the time spent evaluating the error and performance of variants (Section
3). “Total time” includes the total time spent performing GP bookkeeping, compiling time and testing time. “Generated Variants” counts all
distinct shader source codes produced; “Unique Variants” counts the number of unique assembly produced. “Variants on Frontier” gives the
number of shaders on the Pareto frontier: the size of the final set of error-performance tradeoffs produced by our algorithm. The “Speedup
@ < 0.075 L? error” columns give the best speedup (original rendering time divided by optimized rendering time) of a variant with L*> RGB

error at most 0.075 for both our approach and that of Pellacini [2005].

In what follows, we provide a more detailed analysis of these re-
sults and then compare to prior work. The supplemental material
includes results for one additional example: a multiple-pass vari-
ance shadow map shader.

4.1 Fresnel Shader

The Fresnel shader was discussed in Section 3.1. While it is less
complicated than our other examples, it is indicative of the inner
loops of many shaders. Figure 1 shows the Pareto frontier com-
puted by our algorithm and variants along this frontier rendered as
a sphere under simple lighting. We used this simple scene to eval-
uate the performance and error values of the variants during the
optimization of this shader.

Table 1 shows measurements related to the optimization process.
Our approach produced a total of 94 distinct variants representing
non-dominated performance-error tradeoffs. Each such variant cor-
responds to a point on the Pareto frontier in Figure 1: the right
side of the Figure highlights three interesting variants. Finding the
94 final variants involved the generation of 14,218 unique shader
source programs, which compiled to 743 unique shader assembly
programs (i.e., programs with different source text may produce the
same shader assembly when passed through the NVidia optimizing
cgce shader compiler). The unique shader assembly programs are
marked by light blue dots in the upper right of Figure 1; they repre-
sent the search space explored by our optimization technique. The
entire process took one hour, with 70% of the time spent compiling
shader programs and 30% of the time spent evaluating them (see
Sections 3.2 and 3.3). Bookkeeping costs related to the genetic al-
gorithm (e.g., performing the non-dominated sort, see Section 3)
were dwarfed by the costs of compiling and evaluating the shaders.

4.2 Marble Shader

The Marble shader combines four octaves of a standard procedu-
ral 3D noise function [Perlin 1985] with a Blinn-Phong specular
layer [Blinn 1977]. Figure 3 shows the error and rendering time
of each shader variant produced. The representative rendering se-
quence consisted of 256 frames showing the model at many dif-
ferent orientations and illuminated from many different directions.
We have included a video of the representative sequences for all of
our test scenes as supplemental material. Our system successfully
produces shader variants that reduce the rendering time, while in-
troducing only a small amount of error. Variants with an L? error
exceeding 0.2 were not considered. The average render time of the
original shader is 0.31ms.

The first highlighted shader, marked with a red dot in Figure 3, re-
moves the highest frequency bands in the noise calculation. This
results in a shader that renders each frame in 70% of the time re-
quired by the original while introducing only 0.015 average per-

Shader Add Replace Swap Remove Cross Over
Marble 235 477 68 194 941
Trashcan 202 331 100 111 393
Human Head 3,691 4,269 1,961 1,546 2,933
S.S. Amb. Occl. 333 612 186 239 393

Table 2: Distributions of mutation operators use to obtain the set
of results along the Pareto frontier for each non-trivial test shader.

pixel L? RGB error. The small inset images show the per-pixel L?
error linearly scaled by 100 and mapped to a standard colormap
(i.e., fully saturated red corresponds to an error value of 0.01). The
same colormap is used throughout the paper.

The next highlighted shader, marked with an orange dot, removes
two of the highest frequency bands in the noise calculation, reduc-
ing rendering time to 45% of the original. The final highlighted
shader, marked with a purple dot, represents an aggressive opti-
mization that removes the three highest frequency bands as well
as the specular highlight, which contributes to only a small region
of the scene. The rendering time of this last shader is 23% of the
original. In total, our technique produced 96 shaders representing
distinct performance-error tradeoffs (see Table 1) in one hour.

4.3 Trashcan Shader

The Trashcan shader is from ATI’s “Toyshop” demo.! This shader
reconstructs 25 samples of an environment map and combines them
with weights given by a Gaussian kernel. These samples are eval-
uated along a 5 x 5 grid of normal directions generated from a
normal map. The representative rendering sequence for this shader
consisted of 340 frames that show the trashcan being rotated and
enlarged.

Figure 4 illustrates the optimized shaders found by our system. At
the red point, our system removes 4 of the 25 environment map
samples from the pixel value and correctly changes the total weight
by which the remainder are combined, producing an output that
is almost indistinguishable from the original and takes 89% of the
time to render as the original shader.

The shader variant indicated by the orange dot computes 12 envi-
ronment map samples, reuses some of the computation, and adjusts
the normalization values. This reduces the rendering time to 75%
of the original. The resulting error can be seen most clearly along
the trashcan’s lid and body (see inset Figure 4). The final exam-
ple, corresponding to the purple dot, uses only the highest-weighted
of the original 25 environment map samples. This gives a signifi-
cant performance improvement (rendering time reduced to 30% of
the original) at the cost of some aliasing artifacts. The entire opti-
mization process took five hours to produce the 120 shaders on the
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Figure 3: Top: Scatter plot of error and performance of different
Marble shader variants generated by our system. The line marks
the Pareto frontier. Bottom: Selected rendering results as indicated
in the graph above. The inset contains a visualization of the per-
pixel error.

Pareto frontier.
4.4 Human Head Shader (Multiple Pass)

The NVidia Human Head demo was developed by d’Eon et al.
[2007]. It uses texture-space diffusion to simulate subsurface scat-
tering in human skin in multiple rendering passes. In the first pass,
the surface irradiance over the model due to a small number of point
light sources is computed. In subsequent rendering passes, this
irradiance function is repeatedly blurred using a cascading set of
Gaussian filters to simulate subsurface scattering at different wave-
lengths. Each Gaussian filter uses eight samples. In a final render-
ing pass, this estimate of subsurface scattering is combined with a
surface reflection layer (Cook-Torrance BRDF [Cook and Torrance
1981]), an environment map, and standard tone mapping and bloom
filters. Altogether, this shader involves fifteen passes.

Figure 5 shows the set of shaders our system discovered. At the first
highlighted shader, indicated by the red dot, our system reduces the
calculation involving the environment map and bump maps. This

Error=1.1e-3, 10.6ms Error=4.9e-3, 4.1ms

Figure 4: Top: Scatter plot of error and performance of different
Trashcan shader variants generated by our system. The line marks
the Pareto frontier. Bottom: Selected rendering results as indicated
in the graph above. The inset constrains a visualization of the per-

pixel error.

produces almost-equivalent output (L RGB error of 0.001) but re-
duces the rendering time to 91% of the original.

More aggressive tradeoffs are possible. The shader at the orange
dot simplifies the specular highlight produced by one of the light
sources. In addition, it simplifies the Gaussian filter from 8 to 6
samples along the x-axis and from 8 to 7 along the y-axis. This
variant reduces render time to 76% of the original. The most no-
ticeable differences are in the specular highlight on the nose and the
overall increasing in surface roughness.

The final example, marked by a purple dot, removes the Gaussian
blur filter entirely, and removes several calculations in the final
gather step associated with those passes. Without the repeated blur-
ring of the irradiance function, the simulation of subsurface scatter-
ing is much less faithful, and the shadows on the face are clearly
sharper. This variant renders in 46% of the time of the original.

The human head shader is significantly more complicated than the
previous single-pass shaders (see Table 1). In addition to being
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Figure 5: Top: Scatter plot of error and performance of differ-
ent shader variants generated by our system on the Human Head
shader. Bottom: Selected rendering results as indicated in the
graph above. The inset contains a visualization of the per-pixel

error.

eight times larger, it is also significantly more expensive to evaluate,
as our subsampling optimization applies only to single-pass shaders
(see Sections 3.2 and 3.3). Over 90% of the optimization time was
thus spent evaluating error and performance.

In addition, this shader’s complexity creates a much larger search
space of possible optimizations. An order of magnitude more
unique shader variants were considered than for the single-pass
shaders. This can be seen in the dense covering of dots in Figure 5:
while the smaller shaders are sparse and have a discontinuous fit-
ness landscape, the complexity of the human head shader means
that more feasible error-performance tradeoftfs can be investigated.
The high coverage demonstrates that our technique is strong enough
to produce shaders with fine error distinctions. If we merely deleted
statements or replaced variables with their averages, the distribution
of discovered variants would display far more discontinuous jumps.
In total, 88 optimized shaders were produced in 11 hours.

4.5 SSAO (Multiple Pass)
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Figure 6: Top: Scatter plot of error and performance of differ-
ent shader variants generated by our system on the Screen Space
Ambient Occlusion shader. Bottom: Selected rendering results as
indicated in the graph above. The inset contains a visualization of
the per-pixel error.
The Screen Space Ambient Occlusion (SSAO) shader is taken
from the NVidia DirectX SDK 10 demo suite and implements the
horizon-based algorithm of Bavoil et al. [2008]. This approximates
the portion of the hemisphere that is occluded by scene geometry
within a fixed radius by summing together an estimate of the visi-
bility along 16 directions. Eight discrete positions along each of the
16 directions are checked to detect occluded lines of sight.

Figure 6 visualizes the optimized shaders located by our system. At
the red point, our system has reduced the number of tracing steps
per direction by one and reduced the number of directions consid-
ered at each pixel from 16 to 15. This reduces the rendering time to
80% of the original.

The shader variant indicated by the orange dot reduces the number
of positions along each ray from 8 to 6. It also simplifies the code
that produces the sampling directions. This reduces the rendering
time to 60% of the original but increases the overall brightness of
the scene. The most noticeable differences are near the corner of the
box. The final variant at the purple dot represents a more signifi-



cant reduction in the number of directions that are considered. This
reduces the rendering time to 31% of the original, but introduces
clear visual differences. Our system took seven hours to produce
the 54 shaders on the Pareto frontier.

4.6 Comparison to Prior Work

The technique most similar to our own was developed by Pellacini
[2005]. Pellacini’s algorithm generates a set of shaders according
the three simplification rules. The first rule removes constants from
binary operations (e.g., e X 3 — e); the second rule simplifies loops
by removing iterations; the third rule replaces an expression by its
average value. The average values of expressions are computed by
simulating the shader 1, 000 times on random points in its input do-
main as specified by the user. Each simplification rule is applied
at all relevant locations; the application of a single rule to a single
location produces a new candidate variant. The error of each can-
didate variant is calculated by evaluating it on one sample of the
input domain. Each variant is normalized so that its average output
equals the average output of the original. The variant with the low-
est error is selected for the next iteration (note that rendering time
is not considered and thus is not guaranteed to decrease) and the
process repeats.

Figure 7 compares our system to that of Pellacini on the Trashcan
shader. Only the Pareto frontier of the final shader sequences are
shown (our technique in solid blue, unchanged from earlier; Pel-
lacini’s technique in dashed green). To compare the two techniques
in context, we consider a scenario involving a fixed rendering time
budget per frame. The two red points answer the question: “What is
the best visual fidelity that can be achieved using at most 11ms?” In
that setting, the best available shader produced by our technique has
20 times less error than the best available shader produced by Pel-
lacini’s technique. The orange point shows the best shaders avail-
able with a rendering time of at most S5ms. Here our technique
yields 35 times less error: the Pellacini shader is almost a single
solid color.

This trend continues for most of the fitness space: when the blue
line is below and to the left of the green dashed line, our technique
produces better error at fixed time and also better rendering times at
fixed error. At even higher levels of error (above 0.09), Pellacini’s
technique is more efficient than ours (it reduces to returning the av-
erage RGB color of the original shader; the lines cross in Figure 7).
However, since both shaders are effectively returning solid colors
at that point, the space is uninteresting and likely represents an un-
acceptable level of error. Before that point, all variants produced by
our technique dominate those produced by previous work, typically
with an order-of-magnitude less error for the same time budget.

Figure 8 repeats this comparison on the Marble shader. Once again,
our technique produces faster, more faithful shaders for the majority
of the fitness space. When the rendering budget is fixed under 2.5ms
(the red dots), our technique introduces less than half as much er-
ror (note the shading near the neck, just below the jaw, on Pellacini
shader). When the rendering budget is doubled to 1.5ms, our ap-
proach produces three times less error (orange dots; note blocky
visual artifacts on Pellacini shader).

A large part of this performance disparity results from Pellacini’s
technique using the error metric alone for guidance (i.e., it is not a
classical multi-objective search): if one variant increases the error
by e but does not reduce the rendering time and another increases
the error by 2¢ but reduces rendering time to 20% of the original,
that technique will select the former. Unfortunately, the former may
rule out the latter: because only a single edit is considered at a time,
an attractive local step may preclude a richer optimization later.
Consider the original Fresnel source code shown in Section 3.1: re-
placing the r_ortho = (cos — n * cost) / . calculation
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Figure 7: Top: Comparison between our system and Pellacini’s.
Bottom: Side-by-side comparisons of the best shaders each method
produces for a fixed rendering budget of 11ms (red dots) and 5ms
(orange dots).
on Lines 8-9 with its average value may be locally effective, but
it rules out the r_par rewriting optimization our algorithm finds
because n * cost is no longer a subexpression available for reuse
by the compiler. Thus the technique may converge to poor local
minima.
By contrast, our multi-objective approach explicitly minimizes both
error and performance, which in practice results in a faster render-
ing time given the same amount of error. The GP approach we use
keeps many shader instances in each generation; this high popula-
tion combined with crossover and mutation explicitly helps to avoid
being stuck in local optima (see Step 6, Section 3). In addition, our
stronger mutation operator includes arbitrary sub-expression and
statement insertion and deletion, allowing the shader to contribute
to its own optimization, rather than relying on a small number of
fixed simplifications.

Another important difference between our method and Pellacini’s is
that we can gracefully handle shaders that require multiple passes
(e.g., Human Head, SSAO, and the shadow map shader included
in supplemental material). Pellacini’s requires average values of



Marble Shader

4 : : :
Our GP Algorithm —e—

__35¢ Pellacini’s Algorithm = -e=
£ 5
[0)
£ 25 ]
=
o 2 ]
=
5 15 ]
©
c 1 1
[0
o

0.5 ]

o

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
Error (L2 in RGB)

Marble Shader

4 ; : :
Our GP Algorithm —e—

__35¢ Pellacini’s Algorithm = - =

] 1

E s ‘

0]

£ 25 N ]

-—_— ‘N

S i ‘

c ™

b A A

15 V-

3 \

5 1 'R

- 0.5 =

o
o
o
ot
a
oL
=

0.15

0.2 0.25 0.3 0.35 0.4

Error (1-SSIM)

[Pellacini 200

Our Techniqu

® Error=1.5e-2,2.27ms @ Error=6.7e-2, 2.22ms

Our Techniqu

® Error=2.7e-2, 2.70ms

[Pellacini 200

® Error=0.19, 2.97ms

Our Techniqu

[Pellacini 200

Our Techniqu

[Pellacini 200

Error=3.4e-2, 1.43ms
Figure 8: Top: Comparison of the output of our system to that of
Pellacini’s. Bottom: Side-by-side comparisons of the best shaders
each method produces for a fixed rendering budget under 2.5ms
(red dots) and 1.5ms (orange dots).
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every nodes in the AST. Computing an average value of a node in
one pass may require rendering results of all prior passes, which is
impractical for a long rendering sequence with many passes.

In addition, our technique converges rapidly after considering far
fewer unique variants than Pellacini’s. For example, we gener-
ate over 3,000 total unique variants for the Marble and Trashcan
shaders, while Pellacini’s technique generates over 25,000. As a
result, Pellacini’s approach takes more than twice as long: 16 total
hours for those two shaders compared to 6 hours for our technique.

4.7 Alternate Perceptual Error Metric

While measuring image fidelity using the L? error in RGB space
is simple to understand and facilitates comparison with previ-
ous work, many alternative perceptually-motivated distance met-
rics have been proposed. To demonstrate our technique’s direct
applicability to other error metrics, we consider one such metric,
the Structural Similarity Index (SSIM), which operates on patches
of pixels [Wang et al. 2004]. This metric has been demonstrated

Error=1.0e-1, 1.42ms Error=0.32, 1.37ms

Figure 9: Top: Comparison between our system and Pellacini’s
using the SSIM error metric. Bottom: Side-by-side comparisons of
the best shaders each method produces for a fixed rendering budget
of 0.30ms (red dots) and 0.15ms (orange dots).

to be more consistent with human perception than L>2-distance for
grayscale images.

Figure 9 shows the results of applying our technique, and that of
Pellacini, to the (grayscale) Marble shader with error evaluated for
both using SSIM (8 x 8 non-overlapping window size). Since SSIM
is a similarity metric, 1—SSIM increases with error; variants above
0.4 error were not considered. As in Figure 8, we consider the
same rendering budgets of 0.30ms (red dots) and 0.15ms (orange
dots). At 0.30ms, our shader removes the highest frequency of the
Perlin noise calculation. By contrast, the best shader produced by
Pellacini’s technique introduces an order-of-magnitude more error
(note blocky visual artifacts, which do not show up until later in
Pellacini’s sequence when using RGB in Figure 8). At 0.15ms,
our shader renders only the highest and the lowest frequency of the
noise calculation, producing less than half the error of the corre-
sponding shader from Pellacini. Note that this is a different opti-
mization than what our technique found when optimizing for RGB
L? error (i.e., retaining only the lowest-frequency noise bands).
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Figure 10: Best speedup achieved by our optimization technique
when applied to different hardware over a range of allowed error
budgets. Our technique was run separately for each hardware con-
figuration. Note that at the lowest allowed error, no acceptable op-
timizations are produced for the 9600M GT mobile hardware. Note
also that at the two highest error budgets shown, the 285 GTX and
8600 GT show alternate optimization efficacy (see text).

Because our technique treats image error as one more opaque objec-
tive to be minimized, any such metric can be used. While previous
techniques can simply “plug in” other error metrics as well, this
is not always well founded. For example, the approach of Pellacini
implicitly assumes L? RGB error in two steps: by biasing produced
shaders to the average RGB output color of the original shader, and
by assuming that minimizing delta error will necessarily produce
a faster shader. This distinction can be seen in Figure 9, where the
separation between the two lines, and thus the relative improvement
provided our approach, is greater than in the RGB case in Figure 8.

4.8 Alternate Hardware Targets

Not all tradeoffs are equally good choices on different hardware.
To demonstrate that our technique can produce different hardware-
specific optimizations, we produced simplified sequences of the
NVidia Human Head shader for three different graphics cards. The
cards used were the NVidia 285 GTX, 8600 GT and 9600M GT.
The 285 GTX, the card used in all of our other experiments, is a
high end desktop card with 240 CUDA cores running at 648 MHz;
its average rendering time for Human Head is 6.42ms. The 8600
GT is an older desktop model with 32 cores running at 540 MHz; its
average rendering time is an order of magnitude slower at 61.4ms.
Finally, the 9600M GT is a low end card for mobile laptops with 32
cores running at 120 MHz; its average rendering time was slowest
at 66.2ms. To reduce the required running time, we used a smaller
set of indicative frames for error and performance evaluation.

The results are shown in Figure 10. The pink bars only roughly cor-
respond to the Figure 5 (e.g., 2.2x improvement at 0.05 error). We
first note that at the most stringent error bounds (0.002 and 0.005),
no acceptable variant was produced on the mobile card that was
faster than the original. By contrast, the other two cards were able
to simplify small amounts of the lighting calculation in the final
pass, but the mobile card’s hardware was insufficient to take ad-
vantage. The next point of interest is at 0.05 error where the 285
GTX and 9600M GT were both able to remove some of the Gaus-
sian samples, an optimization that was not equally profitable on
the 8600 GT. However, at the very relaxed error bound of 0.075 (a
weaker bound than that shown in Figure 5), the 8600 GT, which
has a high clock speed but a comparatively small number of cores
and small amount of memory, profited from removing all of the
Gaussian samples, substantially increasing the memory bandwidth
in the final pass. Note that all speedups presented are relative, so
even though the 8600 GT is able to improve upon its baseline per-
formance by 4.5 at the most relaxed error bound, it is still much
slower than the 285 GTX in absolute terms.

This demonstrate that our approach produces qualitatively and
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Figure 11: Sensitivity analysis of our algorithm with respect to
key parameter mutation rate. Our default mutation rate is 0.015;
the two other lines represent +£10%.

quantitatively different optimization tradeoffs for different hard-
ware profiles. Among other benefits, this allows for scenarios in
which suites of shader variants are produced in advance at develop-
ment time and the best sequence is selected locally at install time.
The supplemental material further highlights our system’s ability
to target different architectures by presenting results for NVidia’s
mobile Tegra 2 chipset.

4.9 Parameter Discussion and Sensitivity

A key concern in any metaheuristic or search optimization tech-
nique is the sensitivity of the approach to the choice of internal
algorithmic parameters. Two major parameters for our technique
are the number of generations (i.e., the number of variants consid-
ered or the amount of work put into the search) and the mutation
rate (i.e., how aggressively the search considers possible changes).
In this sort of genetic algorithm, the number of generations is less
important as long as it exceeds a minimum threshold [Weimer et al.
2009, 2010]. In this domain, after a certain number of generations,
the Pareto frontier converges to a series of points from which im-
provements are made only very rarely. In genetic algorithm terms,
this is related to the use of elitism [Koza 1992], in which the best
variants in one generation may be carried over to the next (see
Step 7 of Section 3, in which the initial population is considered
in the final selection). In our experiments, we found that the single
pass shaders settled in under twenty generations and the multi-pass
shader settled in under eighty; adding additional generations be-
yond that did not notably improve output quality.

Experiments suggest that the algorithm is also stable with respect
to the mutation rate. Figure 11 shows the result of applying our
technique to the Marble shader with the mutation rate increased by
10% and then also decreased by 10%. The area under the Pareto
frontier changes by an average of 7.5%, suggesting stability with
respect to this parameter.

5 Limitations and Future Work

Our method requires a representative rendering sequence, typically
a few hundred frames, to estimate expected performance and er-
ror of each shader variant. While this is both potentially easier
and more accurate than the assumption of uniformly distributed in-
put ranges [Pellacini 2005], it does require the user to capture and
record an indicative series of inputs. As with all profile-guided op-
timizations [Muchnick 1997], if conditions in the field are very dif-
ferent from the input sequence, the simplified shaders may decrease
performance while increasing error. However, we view the task of
constructing an indicative workload as orthogonal to the task of op-
timizing a shader, just as constructing a comprehensive test suite is
orthogonal to the task of automated program repair [Weimer et al.
2009, 2010].



Our system does not explicitly handle textures (cf. Olano et al.
[2003]). While we might change or remove an expression that in-
cludes a texture lookup (as in the Trashcan shader), a dedicated
texture optimizer would be able to consider some situations more
rapidly than our method. However, the two techniques are almost
orthogonal, and could be applied together.

Although we have focused on pixel shaders, our technique could
apply equally well to vertex and geometry shaders. Future research
might include developing tools that consider all of these compo-
nents together, possibly in addition to the scene geometry. Addi-
tionally, perhaps rather than optimizing for overall performance,
we might optimize for subsystem-specific performance (e.g., min-
imize memory bandwidth used or memory bank conflicts encoun-
tered while leaving everything else as untouched as possible).

6 Conclusion

We have presented a system for simplifying procedural shaders that
builds on and extends prior work in Genetic Programming (GP) and
software engineering. The key insight is that a shader’s source code
contains the seeds of its own optimization. We therefore consider
transformations to an input shader that take the form of copying, re-
ordering, and deleting statements and expressions already available.
GP provides an optimization framework for efficiently exploring
the space of shader variants induced by this set of transformations,
with a goal of identifying those that provide a superior time/quality
trade-off. Our system achieves this in part via a GPU-based method
for rapidly evaluating candidate shaders. The output of our sys-
tem is a sequence of increasingly faster shaders that can be used in
place of the original. Our approach is powerful, considering a wide
space of transformations and producing shaders that are, on aver-
age, three times as fast as those of previous work at equal fidelity.
Our approach is also general: unlike previous work, it can be used
to optimize multiple-pass shaders and can use perceptually-based
error metrics in a well-founded manner.
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