
Modeling Bug Report Quality

Pieter Hooimeijer and Westley Weimer
University of Virginia

Charlottesville, VA. 22903

{pieter, weimer}@cs.virginia.edu
∗

ABSTRACT
Software developers spend a significant portion of their re-
sources handling user-submitted bug reports. For software
that is widely deployed, the number of bug reports typically
outstrips the resources available to triage them. As a result,
some reports may be dealt with too slowly or not at all.

We present a descriptive model of bug report quality based
on a statistical analysis of surface features of over 27,000
publicly available bug reports for the Mozilla Firefox project.
The model predicts whether a bug report is triaged within
a given amount of time. Our analysis of this model has im-
plications for bug reporting systems and suggests features
that should be emphasized when composing bug reports.

We evaluate our model empirically based on its hypothet-
ical performance as an automatic filter of incoming bug re-
ports. Our results show that our model performs signifi-
cantly better than chance in terms of precision and recall.
In addition, we show that our model can reduce the overall
cost of software maintenance in a setting where the average
cost of addressing a bug report is more than 2% of the cost
of ignoring an important bug report.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; D.2.8 [Software Engineering]: Metrics;
D.2.9 [Software Engineering]: Management—Life cycle;
D.2.9 [Software Engineering]: Management—Time esti-
mation

General Terms
Economics, Experimentation, Human Factors, Management,
Measurement

∗
This research was supported in part by National Science Foun-

dation Grants CNS 0627523 and CNS 0716478 and Air Force
Office of Scientific Research grant BAA 06-028, as well as gifts
from Microsoft Reserach. The information presented here does
not necessarily reflect the position or the policy of the govern-
ment and no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

Keywords
bug report triage, issue tracking, statistical model, informa-
tion retrieval

1. INTRODUCTION
A significant portion of overall software development is

spent addressing defects. Boehm and Basili claim that main-
tenance consumes over 70% of the total lifecycle cost of a
software product [5]. Modifying existing code, dealing with
defects, and otherwise evolving software are major parts of
that maintenance [12]. Large projects often use bug report-
ing and triage systems to cope with defect reports [2]. How-
ever, the number of reports typically exceeds the resources
available to address them; rather than having the devel-
opment resources to deal with every defect, even mature
software projects are forced to ship with both known and
unknown bugs [10]. A lack of resources often constrains de-
velopers to deal with some bug reports too slowly or not at
all.

A further complication is that many submitted bug re-
ports may be spurious duplicates or descriptions of non-
defects. Previous studies have found that as many as 36%
of bug reports were duplicates or otherwise invalid [3]. The
triage work in evaluating bug reports consumes developer
time and effort [14]. Bug report triage and evaluation are
a significant part of modern software engineering for many
large projects.

In this paper we attempt to reduce bug report triage costs
by separating the wheat from the chaff. We present a model
of bug report quality that predicts whether developers will
choose to address a bug report, by measuring whether the
report is addressed within a given amount of time. We do
this by classifying bug reports as either “cheap” or “expen-
sive” to triage. For the purposes of this paper, triage is the
act of inspecting a bug report, understanding its contents,
and making the initial decision regarding how to address the
report.

Our model is based on features that can easily be gathered
from bug report submissions, without referring to past bug
reports. We base our model on a statistical analysis of over
27,000 bug reports from the Mozilla Firefox project, and we
experimentally validate its predictive power. Our model can
be used by developers to filter incoming bug reports or to
aid with bug report prioritization.

In practice, Mozilla and many other open source software
projects make use of bug reporting and triage software [2]
that is open to the public. The assumption is that allow-
ing users to report and potentially help fix bugs improves

34

overall quality [13]. These reporting systems allow users to
report, track, describe, comment on and classify bug reports
and feature requests. Bugzilla is a particularly popular open
source bug reporting software system that is used by large
projects such as Mozilla and Eclipse. Bugzilla bug reports
come with a number of pre-defined fields, including cate-
gorical information such as the relevant product, version,
operating system and self-reported incident severity, as well
as free-form text fields such as defect title and description.
In addition, users and developers can leave comments and
submit attachments, which often take the form of patches
or screenshots.

Bugzilla enforces a specific work flow for each bug report.
Reports start out as unconfirmed and remain that way until
quality assurance is able to reproduce the bug. Bug re-
ports can pass through several other stages repeatedly be-
fore finally being resolved. Bug reports that are resolved
receive one of the following designators: duplicate, invalid,
fixed, wontfix, or worksforme. These indicate why the report
was closed; for example, worksforme indicates that quality
assurance was unable to reproduce the issue described in
the report.

Our model relates bug report attributes to the final status
of that bug report. It can be used as a filter that sits be-
tween incoming bug reports and developers and sets aside
bug reports that are not of interest, for example because
they will never be resolved. Such a filter is useful if its ben-
efits outweigh its costs. In this case the benefits consist of
saved triage effort, and the costs are associated with legiti-
mate defects for which all sources of information are filtered
away. For our data set, our model is sufficiently precise that
it can reduce overall software maintenance costs if the aver-
age cost of addressing a bug report is more than 2% of the
cost of ignoring an important bug report—a ratio that we
claim is quite reasonable in practice.

In addition, the relative weights of various features in our
model suggest changes to bug reporting software and triage
formats. For example, our model suggests that the sever-
ity field has a significant effect on the lifetime of the bug.
We also found that the model places significant weight on
the number of comments posted within the first hour of a
report’s lifetime. This may indicate that reports frequently
need to be clarified, or that bug reports are more likely to
be addressed if more users express an interest.

The main contributions of this paper are:

• A model of bug report quality based on features avail-
able when the bug report is submitted. Over our data
set, the model has reasonable predictive power as an
automatic filter, and can reduce the overall cost of soft-
ware maintenance in a setting where the average cost
of addressing a bug report is more than 2% of the cost
of ignoring an important bug report.

• A discussion of the features involved in the model and
their implications for bug reporting and triage systems.

The structure of this paper is as follows. In Section 2
we describe common bug reports and present a motivating
example linking bug report features and final bug report
resolutions. In Section 3 we formalize a model for bug report
quality. Section 4 presents the experiments that measure our
model’s ability to predict whether a bug is triaged within a
given amount of time. In Section 5 we analyze the results.

Section 6 compares our work to similar research projects and
Section 7 concludes and gives future directions.

2. MOTIVATING EXAMPLE
During the period 2003-2006, the Mozilla project received

over 140 bug reports about the download status indicator,
which incorrectly showed a negative file size when down-
loading files larger than 2 GB. This bug occurred in several
Mozilla products, but most reports cited Firefox and its pre-
decessor, Firebird, as exhibiting the problem.

Mozilla bug report 221359, which we will call First, was
filed in October 2003 describing this defect. The bug report
included a screenshot demonstrating the issue, and reported
a severity of minor, but gave potentially-misleading steps to
reproduce the problem: “Put a 2GB+ file on an IIS 5.0
based Web Server [...] Download the 2GB+ file on a Win-
dows XP based system using Firebird.” Within fifty minutes
a developer had commented on the bug report by asking for
addition details: “does this happen on other webservers?
does this occur on Mozilla as well?” Lacking addition com-
ments from others, the developer changed the report status
to worksforme three weeks after the initial filing.

Mozilla bug report 228968, which we will call Second, was
filed ten weeks later describing the same defect. The re-
port listed the severity as normal, did not include a screen-
shot, noted a Windows NT base system, and included the
text: “Downloading a large file (about 3GB) displays neg-
ative values for file size (Status:xxxKb of -1173483Kb at
xxxKb/sec), after a while the speed becomes negative (-
xxxKB/sec).” The bug was initially marked as a duplicate
of bug 184452, which covers upgrading the project’s core
generic input stream interfaces to handle 64-bit file access,
and was eventually reverted back to an unconfirmed sta-
tus with a dependency on bug 184452. All of this activity
took place within four days of the report’s initial submis-
sion. Over the course of several months, a number of users
and developers commented on this report, confirming it and
supplying screenshots.

The Second bug report was fixed a year later, in April
2005. One month later, First was resolved as a duplicate of
Second. This example helps to show the difficulties involved
in bug report triage in large projects, even when bug track-
ing software systems are used. Bug report status changes
exhibit a more complex behavior than one might expect.

Beyond the importance of the underlying defect, which is
the same for these two duplicate bug reports, the reports
have a number of features that may influence their eventual
status and the time taken to arrive at it. These two reports
differ in their self-reported severity (minor vs. normal), host
operating system (Windows XP vs. Windows NT), number
of comments (few vs. many), attachments (screenshot vs.
nothing), and possibly their descriptive quality (potentially
misleading vs. direct). One might imagine that the initial
screenshot provided by the First report would prevent it
from being dismissed as worksforme, but that was not the
case. In practice, the Second bug report gained the atten-
tion and was eventually fixed directly, possibly because of
its comment count and self-reported severity.

This single example is not sufficient to tease apart the in-
terplay between bug report features such as severity, clarity,
attachments, and comment count and their influence on the
report’s final resolution time. The First bug report had a
ten week lead time on the Second, but developers were un-

35

able to take full advantage of its early warning because of
the worksforme status assignment. Since intuition about this
process is difficult and the triage and resolution process is
complicated, we desire a formal model relating bug report
features and bug report resolution time.

3. A MODEL OF BUG REPORT QUALITY
We want to produce an model of bug report quality that

reduces the cost of bug report triage and is based on objec-
tive and easy-to-gather features. Unfortunately, per-report
cost data is not usually available; while it remains a topic of
recent research, a general formula for developer time costs
has yet to be established. Instead, we measure how long a
report takes to move from its initial unconfirmed state to one
of the resolved states. This approximation to the true triage
cost is based on the assumption that, in general, reports
of higher quality are dealt with more quickly than those of
lower quality. In other words, we assume that the “time
until resolved” is a good indicator of how expensive a bug
report was to triage.

Different classes of bug reports undergo different steps
while moving from unconfirmed to resolved. In the Firefox
project used in our experiments, for example, a bug report
marked as fixed must be associated with a change to the
source code. Developing a patch would take time, regard-
less of how good the initial bug report is. In contrast, a
bug report that is marked as a duplicate may be resolved in
minutes if the triager is already familiar with the problem.

This difference constitutes a possible confound,1 since some
types of reports may consistently be resolved faster than oth-
ers. It is, therefore, tempting to include “resolution type”
as an input to the model. However, our goal is to assist as
early as possibly during bug report triage, which precludes
using features that are not known until a report is resolved.
Instead, we model “time until resolved” as a boolean value.
If a report is resolved within a certain cutoff, it is categorized
as “cheap to triage.” If not, it is marked as “expensive.”

This construction is based on the additional assumption
that, for some cutoff, bug reports that take longer to re-
solve must have been expensive to triage, regardless of their
resolution type.

We use a basic linear regression model to classify bug re-
ports as either cheap or expensive to triage. Recent work
in automatic bug report analysis has tended to use sophis-
ticated machine learning techniques, such as support vector
machines [3] and clustering [17], in combination with text
categorization techniques [4]. An important advantage of
linear regression over other techniques is that the resulting
models are straightforward to analyze. We use analyses of
variance to assess the relative contribution of bug report
features to an accurate prediction.

3.1 Model Features
Our model classifies bug reports based on surface features

that can be extracted from a report within the first few
days after it is submitted. This excludes any features that
require comparing the report to previous reports, such as
textual similarity. We use this restriction because textual
categorization, such as the method used by Weiß et al. [17]

1A “missing variable” in the model, the effect of which is
incorrectly attributed to error rather than the effect of the
variable.

is computationally much more expensive than a basic linear
model, especially as the number of bug reports grows.

3.1.1 Self-Reported Severity
When filing a report using the Bugzilla bug tracking sys-

tem, the user is asked to rate the bug’s severity using one of
the following: blocker, critical, major, normal, minor, trivial,
or enhancement.

We treat this variable as an ordered factor, where blocker
is the most severe and enhancement is the least severe. One
problem with self-reported severity is that users might not
follow the guidelines describing each category. It may be
tempting, for example, for the user to over-report a bug’s
severity to have it looked at more quickly. To test this hy-
pothesis, we also monitor subsequent changes to the severity
field. Section 3.1.5 describes this in more detail.

3.1.2 Readability Measures
Our model incorporates several basic readability measures.

These include the Coleman-Liau formula, the Kincaid for-
mula, the Automated Readability Index, and the SMOG
index [11], all of which are based on surface features such
as the average number of syllables per word or words per
sentence. We hypothesize that bugs that are more difficult
to understand will be more difficult to deal with and will be
addressed later. These measures are applied to the initial
bug report description using GNU Style version 1.10-rc4.

3.1.3 Daily Load
It is possible that bug reports may be dealt with more

slowly if there is a large influx of other bug reports at around
the same time. This might occur following a new release, for
example. We account for this by associating with each bug
report the total number of bugs submitted in the 24 hours
preceding and following the submission of that report.

3.1.4 Submitter Reputation
For each bug report, we define its submitter’s “reputa-

tion” as follows:

reputation =
|S ∩R|
|S|+ 1

Where S is the set of all reports submitted by that submit-
ter before the bug report that is under consideration, and
R is the set of all bug reports that were either resolved or
marked as the duplicate of a resolved report. In other words,
this score measures the submitter’s “success rate” prior to
submitting the report under consideration.

3.1.5 Changes over time
Our model includes several features that are measured

after the initial report is submitted. These features include:

• bug severity changes—We hypothesize that bug re-
ports with overstated severity take longer to fix. In
order to test this hypothesis, the model includes the
total number of severity escalations and de-escalations
within a set of given time periods.

• comment count—At each given time offset, we record
the total number of comments that have been posted
in response to the initial bug report. Note that, in gen-
eral, comments can be posted by anyone. This means
that comment count could serve as a proxy for some
notions of popularity.

36

• attachment count—At each given time offset, we record
the total number of attachments that are associated
with the current report. In previous work, we pre-
sented results that suggest that bug reports that have
a patch included are dealt with more quickly [16]. We
distinguish between patches and other types of attach-
ments, such as screenshots.

In our experiments, we examine how much post-submission
data is needed to yield adequate predictive power. We recorded
this data for several fixed time offsets following the report’s
submission, and used it in various different ways, as de-
scribed in Section 4.3.

3.1.6 Elided Features
In addition to the aforementioned features, we considered

bug priority changes in the same way as severity changes.
Priority changes are typically internal bookkeeping annota-
tions made by a developer once the bug has been assigned
for further analysis. Priority changes turned out to be very
infrequent, however, and the effect of these features was neg-
ligible. Similarly, we do not include fields such as the op-
erating system and product version used. We assume that
the bug reporter simply fills these out truthfully, making
these features mostly irrelevant to the overall quality of the
report.

4. EXPERIMENTS
In the following sections, we present several experiments

designed to:

• validate the assumptions that underlie our model,
such as whether it is reasonable to use a bug report’s
lifetime as a proxy for how expensive it was to triage.
In Section 4.2, we do so by looking at the distribu-
tion of bug report lifetimes between unconfirmed and
resolved for different resolution types.

• find how much post-submission data is neces-
sary to make accurate predictions. In Section 4.3 we
test our hypothesis that useful predictions can be made
from features of a bug report, such as the number of
comments and the number of attachments, that are
available early after its submission.

• find the optimal “resolved by” cutoff with respect
to the the F1-score, which we describe in Section 4.1.
In Section 4.3, we examine the optimal cutoff by evalu-
ating the model’s performance for cutoffs ranging from
25 to 55 days.

• evaluate the hypothetical benefit of our model if
used as a filter. The premise in this experiment is
that the model is given exclusive control over which
bug reports are reviewed by a human developer. The
experiment, described in Section 4.4, is designed to
find the cost ratio between false positives and false
negatives at which the model becomes cost-effective.

The next section describes the general data acquisition
and conversion for the experimental data that follows.

4.1 Experimental Design
Our experiments are based on a data set of 51,154 bug re-

ports for the Mozilla Firefox project. This data was supplied

Time (by calendar months)

N
um

be
r

of
 r

ep
or

ts
 s

ub
m

itt
ed

Time (by calendar months)

N
um

be
r

of
 r

ep
or

ts
 s

ub
m

itt
ed

2002 2003 2004 2005 2006

0
50

0
10

00
15

00
20

00

Figure 1: The number of bug reports filed per month
for the Firefox project. The shaded bars indicate the
data used in our experiments.

by the Mozilla project and verified informally against data
obtained from Mozilla’s Bugzilla website using a crawling
tool. We chose the Firefox project primarily because of its
size, wide deployment, wide range of bug report submitters,
and the public availability of its bug reports.

Figure 1 shows the frequency of bug report submissions in
the period 2002–2006. The reports in our data set were filed
between 07/30/1999 and 12/26/2006. We used slightly more
than half of the reports, all filed between 01/01/2003 and
07/31/2005. The first cutoff was selected based on the fact
that, prior to 2003, the frequency of bug report submissions
was significantly lower than in the period 2003–2006. The
second cutoff was chosen to coincide with the project’s re-
lease cycle, as Firefox 1.5 beta testing started in September
2005. From the resulting data set we eliminated another 293
bug reports based on missing readability scores (e.g., caused
by empty descriptions). Our final data set consists of 27,984
bug reports.

4.2 Experiment 1 – Validating the model
This experiment documents our initial exploration of the

Firefox bug report data set, which prompted the design de-
cisions outlined in Section 3. Figure 2 shows the relative
frequency of bug report lifetimes by their eventual resolu-
tion type. As noted in Section 3, we want our model to
employ a single time-to-resolve cutoff value across reports
in all these categories. Reports that are not resolved by this
cutoff are classified as “expensive,” while those that do meet
the deadline are classified as “cheap.”

Figure 3 shows percentiles for report lifetime. Reports
with resolution type worksforme and fixed cover a signifi-
cantly longer range of lifetimes than, for example, dupli-
cates. The fastest 80% of duplicates are resolved within 45
days, while the fastest 80% of reports marked worksforme are
resolved within 235 days. In addition to the data presented

37

Report resolved within (days)

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

0 20 40 60 80 100

DUPLICATE

0 20 40 60 80 100

FIXED

0 20 40 60 80 100

INVALID

0 20 40 60 80 100

WONTFIX

0 20 40 60 80 100

WORKSFORME

Figure 2: The relative frequency of bug reports resolved in 2.5 day increments, by final status. While the
distributions are not identical, they are all strongly left-heavy, which suggests that it is reasonable to use a
single cutoff value.

Percentile
Type 50th 60th 70th 80th Freq.

duplicate 0.4 1.2 7.3 45.0 40%
fixed 29.0 53.7 113.2 211.1 12%
invalid 0.7 2.1 14.9 62.6 18%
wontfix 10.9 49.3 123.7 243.9 4%
worksforme 58.0 102.5 157.0 235.3 26%

Figure 3: The number of days it took for bug re-
ports to be resolved, for the given percentiles, by
resolution type. For example, 12% of all resolved re-
ports were eventually fixed, and of that 12%, half
were resolved within 29 days.

in this figure, our data set contained 2,675 bug reports that
were never resolved, accounting for 9.6% of our total data.
These bugs are always marked as not having met the cutoff.

This data leads to two meaningful conclusions. First,
there are significant differences in the distribution of bug
report lifetimes. Second, all of the distributions are left-
skewed. This is promising since it may allow a single cutoff
to determine with reasonable accuracy which reports took
unusually long to resolve. In Section 4.3, we evaluate the
performance of our model for several different cutoff values.

4.3 Experiment 2 – Model Selection
In this experiment, we evaluate the performance of our

model based on two parameters:

• The amount of post-submission data, such as comment
count and attachment count, that the model is allowed
to use. The goal is to find the minimum amount nec-
essary for the model to yield adequate performance.

• The cutoff used to classify bugs as “cheap” or “ex-
pensive”. In Section 4.2, we established that there
are significant differences in the distribution of bug re-
port lifetimes for reports that have different resolution
types. In this experiment we try to find the optimal
cutoff, and we verify whether our performance is sig-
nificantly better than chance.

4.3.1 Precision and Recall
We evaluate our performance results in terms of precision

and recall, two measures commonly used in information re-
trieval [15]. In this context, we treat our model as a docu-
ment retrieval system that returns bug reports based on the
query: “Which reports were resolved before the cutoff?”
The performance measures are defined as follows:

precision =
|C ∩R|
|R| recall =

|C ∩R|
|C|

where C is the correct set of bug reports, and R is the set
of reports returned by the model.

Precision and recall measure different types of performance.
Intuitively, recall measures what portion of relevant bug re-
ports our model was able to find. Conversely, precision mea-
sures what portion of the returned results actually satisfied
the query. In other words, recall penalizes false negatives,
and precision penalizes false positives.

Either returning all bug reports and returning a single
correct bug report would trivially maximize recall and pre-
cision respectively. To avoid favoring such degenerate mod-
els, precision and recall can be combined into a single-valued
F -score, which is their weighted harmonic mean:

Fα =
(1 + α)pr

αp + r

where p is precision and r is recall. The α terms represent
the relative weighting of precision over recall. For the fol-
lowing experiments we use α = 1, giving precision and recall
equal weight.

4.3.2 Cross Validation
Linear least squares regression is an instance of a super-

vised learning algorithm. When applied directly, the model
is being trained and tested on bug reports from the same
data set. Although the data set is large enough to yield sta-
tistically significant results, the possibility exists that our
subsampling of bug reports is not completely representative
of Firefox bugs in general. Consequently, a direct training
method might cause the model it produces to overfit, yield-
ing results that do not generalize well outside of the data
set that was used.

We use 10-fold cross validation [9] to detect overfitting.

38

In this procedure, the elements in the data set are randomly
assigned to ten groups of approximately equal size. The
model is trained and evaluated ten times. Each group is held
out once for testing, using the remaining nine groups to train
the model. This way, the model is never trained and tested
on the same data. After this, the cross validation results
can be averaged and compared to the same model when
trained and tested using the entire data set. Any differences
in outcome are referred to as bias, and significant bias would
be suggestive of overfitting.

4.3.3 Experimental Procedure
For each bug report in the data set, we compute the post-

submission features using Bugzilla’s activity log. We record
the value for each feature at eight deadlines following sub-
mission: 1 hour, 12 hours, 1 day, and 2–10 days in 2-day
increments. We construct two different models for each post-
submission deadline:

• A cumulative model. For each submission deadline,
the corresponding model uses the post-submission data
from that deadline and each preceding deadline. For
example, the model for the 12-hour deadline uses both
the 12-hour data and the 1-hour data.

• A non-cumulative model. The model corresponding
to each deadline uses only the post-submission data
recorded for that deadline.

We classify the bug reports based on seven resolved-by
cutoff times: 25–55 days in 5-day increments. The feature
corresponding to each cutoff is set to 1 if the bug was re-
solved before the cutoff, and to 0 otherwise. For each com-
bination of submission deadlines and resolution cutoffs, we
train the two alternative models as follows:

1. We first perform the cross-validation steps. The model
is trained as if the response variable were continuous
in the range [0, 1].

2. The model outputs are turned into a classification by
rounding. We perform a linear search to find a model
cutoff in the range [0; 1]. Reports with a score greater
than the cutoff receive a 1; all others receive a 0. We
record the model cutoff that yields the highest F1-score
for this validation step.

3. After performing the cross validation steps, we train
the model on the entire data set. We compute the
average model cutoff from the cross validation steps,
and use that compute precision, recall, and F1-score
for the model over the entire data set.

Note that the average model cutoff from the cross vali-
dation steps need not be the optimal cutoff for the model
trained on the whole data set. We avoid calculating this
optimal cutoff because it is more prone to cause the classi-
fication to overfit to our data set.

4.3.4 Results
To evaluate this set of models, we first compute the perfor-

mance of a degenerate model to serve as a lower bound. For
each resolution cutoff in the range 25–55 days, the number
of reports that were resolved before the deadline is greater
than the number of reports that were not. This means it
is reasonable to consider a model that outputs 1 for every

Performance
cutoff (days) Precision F1-score

25 0.56 0.72
30 0.57 0.73
35 0.58 0.74
40 0.59 0.74
45 0.60 0.75
50 0.61 0.76
55 0.62 0.76

Figure 4: Performance for a degenerate model that
always returns “this bug report will be resolved be-
fore the cutoff.” This model is equivalent to the
current practice of triaging every submitted bug re-
port.

input. In addition, if the model is used as a filter, as in
Section 4.4, this corresponds to looking at every bug report,
which is the current industrial practice.

Such a model achieves perfect recall, since it always re-
turns all relevant results. Precision would be exactly equal
to the ratio of reports that met the deadline to the total
number of reports in the data set. Figure 4 shows the pre-
cision and F1-score for each resolution cutoff.

Figure 5 shows precision, recall, and F1-score for the cu-
mulative model (left panel) and the non-cumulative model
(right panel), for a resolution cutoff of 30 days. The grey
lines indicate the F1-score and precision for the degenerate
model. The F1-score for the two models is slightly better
than that for the degenerate model. The maximal improve-
ment over the degenerate model is 0.05, achieved by the
cumulative model using 10 days worth of post-submission
data and a resolution cutoff of 25 days.

It is interesting to note that the non-cumulative model
shows diminishing performance for decision deadlines greater
than 1 day (see Figure 5). The cumulative model, on the
other hand, shows level performance for the same range of
deadlines. We hypothesize that the cumulative model per-
forms better because is uses the “early” post-submission fea-
tures, which are unavailable to the non-cumulative model.

Figure 6 illustrates the full set of F1-score results for the
cumulative model. Moving along the vertical axis, perfor-
mance improves significantly between 60 minutes and one
day of post-submission data. Performance is mostly level
when using more than one day of data. The model performs
slightly better for larger resolution cutoffs. This is also true
for the degenerate model, however.

Figure 7 shows the results of a per-feature analysis of vari-
ance on the cumulative model, using six days worth of post-
submission data and a resolution cutoff of 30 days. The
table lists only those features with a significant main effect
(α = 0.05). F denotes the F -ratio, which is close to 1 if
the feature does not affect the model, while p denotes the
significance level of F (i.e., the probability that the feature
does not affect the model).

Self-reported severity does not have a single-valued coef-
ficient. The severity feature only has eight discrete possible
values ranging from enhancement to blocker, to which we as-
signed numerical values 1–8. The relationship between these
severity levels might not be linear, however, so we included
six polynomial transformations of this feature (i.e., powers

39

Decision made after (days)

P
er

fo
rm

an
ce

0 2 4 6 8 10

0.
00

0.
25

0.
50

0.
75

1.
00

Decision made after (days)

Precision

Recall

F−Score

Precision

Recall

F−Score

0.
00

0.
25

0.
50

0.
75

1.
00

0 2 4 6 8 10

Figure 5: Performance using time-dependent data cumulatively (left) and using using a single snapshot at
the decision deadline (right). The light lines denote the F1-score and precision for the degenerate model.

1–6). As a result, there is no single coefficient for severity.
The polynomial is monotonically increasing over the range
[1; 8], however, evaluating to 0.017 for enhancement and 0.14
for blocker. This shows that a higher severity rating corre-
lates with a shorter bug report turnaround.

The analysis of variance shows that comment count and
attachment count are the most important post-submission
features, especially within the first day. Self-reported sever-
ity also has a significant effect, but severity changes (recorded
as a post-submission feature) do not. Variance analyses per-
formed for the other cumulative models show similar results.

Our cross-validation steps revealed little to no bias. The
maximum absolute difference in F1-score between a model
and its corresponding cross validation steps was 0.00259 for
the cumulative model and 0.00343 for the non-cumulative
model. This shows that the averaged results from each set of
cross validation steps were never significantly different from
the results obtained using the corresponding model trained
on the entire data set.

4.4 Experiment 3 – Performance Analysis
In Section 4.3, we evaluated our model’s performance based

on its predictive power relative to a degenerate model. Our
basic claim, however, is that our model can be used to re-
duce the cost of software maintenance by filtering out bug
reports that are “expensive” to triage. In this experiment,
we explicitly evaluate our model in terms of its cost com-
pared to the degenerate model, which represents the current
practice of triaging all bug reports.

4.4.1 Experimental Procedure
We define two symbolic costs: Triage and Miss. Triage

represents a fixed cost associated with triaging a bug report.
For any bug report that the model does not filter out, the
total cost incurred by the model is incremented by Triage.
Miss denotes the cost for ignoring a fixed bug report and all
of its duplicates. In other words, if one or more bug report
in a group of duplicates is marked as fixed, then we penalize
the model only if it erroneously filters out the entire group.

Resolution Cutoff (days)

D
ec

is
io

n
m

ad
e

af
te

r
(d

ay
s)

25 30 35 40 45 50 55

0
2

4
6

8
10

Resolution Cutoff (days)

D
ec

is
io

n
m

ad
e

af
te

r
(d

ay
s)

25 30 35 40 45 50 55

0
2

4
6

8
10

Figure 6: F1-score for the cumulative model, for each
combination of resolution cutoff (horizontal axis)
and the amount of post-submission data used (ver-
tical axis). The grid lines indicate the sampling
points. Performance levels off when using more than
one day of post-submission data.

40

Feature Coefficient F p

Severity N/A 11.7 0
Coleman-Liau -0.0063 11.0 0
Daily Load -0.00069 135 0
Comments (60 min.) 0.063 196 0
Comments (12 hrs.) 0.050 94.2 0
Attachments (1 day) -0.12 10.4 < .001
Attachments (6 days) -0.13 7.34 < .001
ARI -0.0086 4.87 < .05
Attachments (60 min.) -0.051 6.40 < .05
Comments (4 days) 0.018 6.58 < .05

Figure 7: Analysis for variance for the cumulative
model, using 6 days of post-submission data and a
30-day resolution deadline. Features with no signif-
icant main effect (p ≥ 0.05) are not shown.

Cutoff (days) # Triages # Misses Ratio
30 19,832 186 0.023
35 20,512 167 0.022
40 20,721 158 0.022
45 21,988 125 0.021
50 21,801 135 0.021
55 23,443 92 0.020

Figure 8: Evaluation data for the cumulative model
using one day of post-submission data. Only bugs
that the model predicts will be resolved before the
cutoff are triaged. If Triage/Miss > Ratio for a par-
ticular setting then using our model as a filter may
save development resources in that setting.

If two bug reports both describe the same defect, the model
can save development triage effort equal to Triage by setting
aside one of them.

For this experiment, we use the models generated in Ex-
periment 2. The models are trained to optimize for F1-score,
as before. For each model, we compute total cost, which is
of the form aTriage + bMiss. We evaluate our performance
relative to the cost of triaging every bug report. That cost
is 27, 984 × Triage, since our data set contains 27, 984 re-
ports. This means that the comparative cost of a model M
is (aM −27, 984)Triage + bMMiss. For each model, we com-
pute the ratio Triage/Miss that would be required for that
model to outperform the degenerate model. We assume that
Miss � Triage, that is, that the cost of missing an impor-
tant bug far exceeds the cost of triaging a bug report, so we
would like this ratio to be as small as possible.

4.4.2 Results
The best-performing model achieved a ratio of 0.0195, us-

ing eight days worth of post-submission data and resolution
cutoff of 55 days. This means that our model out-performs
the degenerate model if the cost of Triage is greater than
1.95% of the cost of a Miss.

In practice, allowing the model to wait for eight days
would be impractical. Fortunately, the model has adequate
performance using just one day to decide. Figure 8 shows
the number of triages, misses, and the cost ratio for several
models using a single day of post-submission data.

5. DISCUSSION
Our experiments show that a relatively unsophisticated

linear model yields better-than-chance predictive power. In
Experiment 2, we show that such a model achieves sig-
nificantly better precision than the degenerate case. The
model’s performance suggests that it does a reasonable job
of modeling whether a bug report is eventually addressed.
This means that the model captures some notion of the qual-
ity of bug reports, and also the importance of the defect that
is described. We interpret our model’s features accordingly.

Our analysis of these models shows an interesting trend:
“early” features, in particular attachment count and com-
ment count, matter most. Interestingly, attachment count
has a negative coefficient whenever its effect is significant.
In other words, the presence of an attachment with a bug re-
port is correlated with a higher probability of being marked
as “expensive.” Comment count, on the other hand, has
a positive coefficient whenever its effect is significant. This
might suggest that bugs that receive more user attention get
fixed faster, or that important bugs that are fixed quickly
receive a great deal of user attention.

The Coleman-Liau and Automated Readability indices
both attempt to approximate how many years of education
is necessary to comprehend the text, measured in US grade
level. Both indices receive negative coefficients, indicating
that easier-to-read descriptions correlate with a short bug
report lifetime.

Several features proved not to have a significant effect on
the model’s output. Among these were patch count, which
we hypothesized would have a significant effect in previous
work [16]. Similarly, the numbers of severity escalations and
de-escalations were not found to be consistently significant
for the various models. A possible explanation for this is
that these features are relatively infrequent; for example,
only around 900 bugs in our data set had a nonzero patch
count within a day.

In Experiment 3, we tested our model’s usefulness as a
filter. Whether such a filter represents a net savings of de-
velopment resources depends on that organization’s partic-
ular values for Miss and Triage. In addition, the value for
Miss may vary significantly depending on the particular de-
fect. Companies typically do not release maintenance cost
figures, but conventional wisdom places Miss at least one
order of magnitude above Triage.

Specific values that we obtained from software develop-
ment divisions at IBM and Microsoft were made available
on the condition that we not publish them. For the purposes
of comparison, however, if Triage is $30 and Miss is $1000,
using our model as a filter saves between five and six per-
cent of the development costs for this data set. In certain
domains, such as safety-critical computing, Miss might be
much higher, making this approach a poor choice. There are
other scenarios, for example systems that feature automatic
remote software updates, in which Miss might be lower. We
intentionally do not suggest any particular values for Miss
and Triage, instead presenting the required ratio at which
our proposed technique becomes profitable.

6. RELATED WORK
Anvik et al. use support vector machines and text cate-

gorization to automatically assign bug reports to an appro-
priate developer. They claim that their system could aid a

41

human triager by recommending a set of developers for each
incoming bug report [3]. It would be interesting to gauge
if their algorithm’s performance is correlated with the diffi-
culty of triaging a bug report.

Kim and Whitehead measure the time to fix a bug in two
software projects and claim that bug fix time is a useful
measure of software quality [8]. By contrast, we predict
rather than measure and focus on the time to fix a bug after
it has been reported, not on the bug’s total lifetime in the
code.

Antoniol et al. acknowledge the importance of bug track-
ing systems and source repositories and suggest a unified
framework to manage information extracted from source
code, version histories and bug reports [1]. In such a set-
ting a much richer set of features would be available to us,
such as links between bug reports and the complexity of
the associated source code and change histories for files and
components.

Fisher et al. analyze the proximity of software features
based on modification and problem report data related to
a system’s evolution history [7]. Their approach uncovers
relationships between features via bug report analysis and
presents them in user-friendly manner, and was also evalu-
ated on Mozilla and Bugzilla. More recently, D’Ambros and
Lanza proposed a novel visual approach to finding relation-
ships between software bugs and software evolution [6]. We
have focused on predicting bug report resolutions based on
bug report data and our work would benefit from a visual-
ization framework.

Weiß et al. employ a text categorization approach to find
bug reports that are textually similar to incoming bug re-
ports. They use a nearest neighbors technique to predict
how expensive a bug report will be to resolve [17]. To make
this prediction, their algorithm uses pre-recorded develop-
ment cost data from the existing bug report database. This
approach is distinct from ours in that it focuses on using the
existing database and searching it for similarities, while our
approach is intentionally restricted to surface features. Fu-
ture work in this area might try to assess bug report quality
based on textual categorization and a cost measure similar
to our “time to resolve” heuristic. Finally, since their cost
data did not include the cost of missing a bug report, we
were unable to use it in Section 4.4.2.

7. FUTURE WORK AND CONCLUSION
We present a basic linear regression model that predicts

whether bug reports are resolved within a give time span.
This model is based on bug report features that can be read-
ily extracted from a bug report within a day after its initial
filing. The model obtains slightly better F1-score perfor-
mance, which incorporates both precision and recall, than
the current practice of triaging all bugs. We show that us-
ing more than a day’s worth of data does not significantly
improve the model’s performance.

A more detailed analysis of the model demonstrates that
the “early features” are the largest contributors to the model’s
performance, even when much more data is available. This
analysis also showed that self-reported severity is an impor-
tant factor in the model’s performance. Severity changes
over time are not. This is interesting, because severity may
not be a reliable indicator of a bug’s importance. Our em-
pirical evaluation of this model shows that it could reduce
software maintenance costs if the average cost of triaging

a bug report is greater than 2% of the cost of ignoring an
important issue.

Future work in this area could explore a variety of different
issues. Our experiments only cover the bug reports from a
single project. An immediate future step is to extend this
work to multiple software projects and then compare how
well the trained models generalize. One evaluation might
involve testing a model learned on project A as a predictor
for project B. Another might involve comparing the learned
coefficients from one project with the learned coefficients
from another.

Additional future work should address the model itself.
First, a more sophisticated model are likely yield better
performance than the linear least-squares regression used
here. Adding textual categorization techniques, for exam-
ple, could improve performance significantly. Second, we
only explored using this model as a classifier, even though
it is capable of outputting continuous values and confidence
intervals. This means that it might be possible to use our
model as a prioritization tool for triagers rather than just
a filter. Such a tool could reduce triaging costs by allowing
triagers to work faster. In addition, follow-up work could
evaluate the effect of such a tool on triage practices and on
the model itself. For example, applying the proposed model
as a filter may affect its subsequent prediction quality.

8. ACKNOWLEDGMENTS
We are indebted to Dave Miller for making the Mozilla bug

database available to us. We also thank Samuel Sidler for
insightful discussions about the bug report triage process.

9. REFERENCES
[1] G. Antoniol, M. D. Penta, H. Gall, and M. Pinzger.

Towards the integration of versioning systems, bug
reports and source code meta-models. Electr. Notes
Theor. Comput. Sci., 127(3):87–99, 2005.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an
open bug repository. In Eclipse ’05: Proceedings of the
2005 OOPSLA workshop on Eclipse technology
eXchange, pages 35–39, New York, NY, USA, 2005.
ACM Press.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In ICSE ’06: Proceeding of the 28th
international conference on Software engineering,
pages 361–370, New York, NY, USA, 2006. ACM
Press.

[4] R. Bekkerman, R. El-Yaniv, N. Tishby, and
Y. Winter. Distributional word clusters vs. words for
text categorization. J. Mach. Learn. Res.,
3:1183–1208, 2003.

[5] B. Boehm and V. Basili. Software defect reduction.
IEEE Computer Innovative Technology for Computer
Professions, 34(1):135–137, January 2001.

[6] M. D’Ambros and M. Lanza. Software bugs and
evolution: A visual approach to uncover their
relationship. In CSMR, pages 229–238. IEEE
Computer Society, 2006.

[7] M. Fischer, M. Pinzger, and H. Gall. Analyzing and
relating bug report data for feature tracking. In
WCRE ’03: Proceedings of the 10th Working
Conference on Reverse Engineering, page 90,
Washington, DC, USA, 2003. IEEE Computer Society.

42

[8] S. Kim and J. E. James Whitehead. How long did it
take to fix bugs? In MSR ’06: Proceedings of the 2006
international workshop on Mining software
repositories, pages 173–174, New York, NY, USA,
2006. ACM Press.

[9] R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection.
International Joint Conference on Artificial
Intelligence, 14(2):1137–1145, 1995.

[10] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan.
Bug isolation via remote program sampling. In PLDI
’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and
implementation, pages 141–154, New York, NY, USA,
2003. ACM Press.

[11] D. R. McCallum and J. L. Peterson. Computer-based
readability indexes. In ACM 82: Proceedings of the
ACM ’82 conference, pages 44–48, New York, NY,
USA, 1982. ACM Press.

[12] C. V. Ramamoothy and W.-T. Tsai. Advances in
software engineering. IEEE Computer, 29(10):47–58,
1996.

[13] E. S. Raymond. The cathedral and the bazaar:
musings on linux and open source by an accidental
revolutionary. Inf. Res., 6(4), 2001.

[14] C. R. Reis and R. P. de Mattos Fortes. An overview of
the software engineering process and tools in the
Mozilla project. In Proceedings of the Open Source
software Development Workshop, pages 155–175, 2002.

[15] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., New York,
NY, USA, 1986.

[16] W. Weimer. Patches as better bug reports. In GPCE
’06: Proceedings of the 5th international conference on
Generative programming and component engineering,
pages 181–190, New York, NY, USA, 2006. ACM
Press.

[17] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In Proceedings of
the Fourth International Workshop on Mining
Software Repositories, May 2007.

43

