
Patches as Better Bug Reports

Westley Weimer
University of Virginia

weimer@virginia.edu

Abstract
Tools and analyses that find bugs in software are becoming in-
creasingly prevalent. However, even after the potential false alarms
raised by such tools are dealt with, many real reported errors may
go unfixed. In such cases the programmers have judged the benefit
of fixing the bug to be less than the time cost of understanding and
fixing it.

The true utility of a bug-finding tool lies not in the number of
bugs it finds but in the number of bugs it causes to be fixed.

Analyses that find safety-policy violations typically give error
reports as annotated backtraces or counterexamples. We propose
that bug reports additionally contain a specially-constructed patch
describing an example way in which the program could be modified
to avoid the reported policy violation. Programmers viewing the
analysis output can use such patches as guides, starting points, or
as an additional way of understanding what went wrong.

We present an algorithm for automatically constructing such
patches given model-checking and policy information typically
already produced by most such analyses. We are not aware of any
previous automatic techniques for generating patches in response
to safety policy violations. Our patches can suggest additional code
not present in the original program, and can thus help to explain
bugs related to missing program elements. In addition, our patches
do not introduce any new violations of the given safety policy.

To evaluate our method we performed a software engineering
experiment, applying our algorithm to over 70 bug reports pro-
duced by two off-the-shelf bug-finding tools running on large Java
programs. Bug reports also accompanied by patches were three
times as likely to be addressed as standard bug reports.

This work represents an early step toward developing new ways
to report bugs and to make it easier for programmers to fix them.
Even a minor increase in our ability to fix bugs would be a great
increase for the quality of software.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids; I.2.2 [Automatic
Programming]: Program Modification

General Terms Algorithms, Experimentation, Human Factors,
Languages, Verification

Keywords bug, bug report, error, patch, counterexample, explana-
tion, localization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00

1. Introduction
Tools and analyses that find bugs in software automatically are
becoming increasingly prevalent. Such analyses usually report false
positives, and wading through spurious error reports is one cost
of using such tools. Even if false positives are controlled (e.g.,
by ranking or filtering [33]), many real errors go unfixed. Often
the original programmer is unavailable, the available programmer
does not understand the bug report or the specification, or the
bug is viewed as rarely occurring. In such cases the time cost of
understanding and fixing the bug is assumed to outweigh the benefit
of fixing it.

Analyses that find bugs typically give error reports as annotated
counterexamples or backtraces (i.e., feasible paths through the pro-
gram that demonstrate the bug). Unfortunately, such backtraces are
often long or difficult to interpret [6, 26, 28]. We propose that bug
reports additionally contain a specially-constructed candidate patch
describing an example way in which the program could be modified
to avoid the reported policy violation without introducing any new
bugs with respect to that policy. Our patches may either highlight
the cause of the bug or focus on a local symptom; in either case
the information is useful. Programmers viewing the analysis output
can use such patches as guides, starting points, or as an additional
way of understanding what went wrong where.

We present a novel algorithm for automatically constructing
such patches given model-checking and policy information typi-
cally already produced or required by the analysis. The algorithm
builds on nearest accepting strings [36] and path predicates [31].
We then apply our algorithm to bug reports produced by two off-
the-shelf bug-finding tools [30, 43]. Our experiments indicate that
bug reports also accompanied by our patches are more likely to be
addressed than standard bug reports.

In some commercial environments every bug report from an
official tool may be addressed one way or another. For example,
some groups at Microsoft require that all PREfast or ESP [16]
warnings be dealt with before a code change can be committed.
We believe that in such a scenario our algorithm would reduce the
time programmers spend addressing all of the bugs reports (rather
than increasing the number of bug reports deemed worth spending
time on).

There are two main contributions of this work:

• A new algorithm for constructing candidate patches from the
counterexamples produced by bugfinding tools. The patches
can suggest inserting code not present in the original program.
This is the first algorithm we are aware of that produces patches
from bug reports.

• A demonstration that our algorithm increases the usefulness of
off-the-shelf bug-finding tools that find defects in large pro-
grams. We present experimental evidence to show that includ-
ing such patches makes bug reports more likely to be addressed.
We conclude that patches should be included in bug reports in
practice.

181

Figure 1. A simplified socket safety policy.

The true utility of a bug-finding tool lies not in the number of
bugs it finds but in the number of bugs it causes to be fixed or in
the amount of effort it saves on fixing those bugs. Our algorithm
can be thought of as a strong “peephole optimizer” for a large class
of bug-finding tools: it is an automatic post-processing step that
dramatically increases their utility.

The rest of this paper is organized as follows. Section 2 gives
a broad overview of the sorts of bug reports we will consider and
the patches we would like to generate. In Section 3 we describe
existing approaches to reporting bugs and highlight weaknesses in
reporting bugs with backtraces. In Section 4 we present our algo-
rithm for computing patches from error traces, control-flow graphs
and safety policies. Section 5 presents experimental evidence to
support our claim that patches make it more likely that bug reports
will be addressed. In Section 6 we discuss related work in error ex-
planation; in general our approach is complementary to, and can be
used in conjunction with, such approaches.

2. Motivating Examples
An example simplified policy for the correct use of BSD-style
server sockets is given in Figure 1. The policy is presented as a
deterministic finite automaton [41]. The nodes represent temporal
states for socket objects and the program’s use of the socket API.
The edges represent important events related to that API. Such a
description is usually called a safety policy. Each socket instance
starts in the start state must end up in an accepting state. All unlisted
transitions (e.g., calling read from the start state) violate the policy.

Such a formulation is typically called typestate: each instance
of type socket is also given a dynamically-varying association
with a state in the policy state machine. In the Vault programming
language [18] the compiler tracks the typestate of important objects
to ensure that resources are used correctly. As another example,
Shankar at al. [40] use a two-state policy (tainted and untainted) to
track format strings and find security vulnerabilities in C programs.

Consider this buggy example pseudocode:

01: socket(); // state 1 -> state 2
02: bind(); // state 2 -> state 3
03: listen(); // state 3 -> state 4
04: read();
05: close();

The comments show the associated state transitions in the policy
in Figure 1. A safety policy checker will typically report an error
on line 4 (it is illegal to call read from state 3) and include a
backtrace listing lines 1 through 3. We wish to help explain the
error by additionally suggesting code like this:

01: socket();
02: bind();

2708: URLConnection c = url.openConnection();
2709: c.setDoOutput(true);
2710: OutputStream os = c.getOutputStream();
2711:
2712: os.write(p.getBytes(ENCODING));
2713: os.close();
2714: c.connect();

c.setDoOutput(true);
OutputStream os = c.getOutputStream();

+ try {
os.write(p.getBytes(ENCODING));

- os.close();
+ } finally {
+ os.close();
+ }

c.connect();

Figure 2. Code from HSQLDB’s jdbcConnection.executeHTTP()
method and an explanatory patch produced by our algorithm.

03: listen();
04: accept(); /* should be inserted */
05: read();
06: close();

Note that we are not looking for the “smallest” program that
adheres to the policy: removing all of the lines related to sockets
yields a compliant program but is not helpful. On the other hand,
we do not want to include anything unnecessary in our candidate
patch. For example, we do not want a candidate patch that adds a
new call to "write" between the calls to "read" and "close".

Beyond the simple straight-line case, programs often violate
safety policies along some paths while respecting them along oth-
ers. Consider this example:

01: ... // socket in state 4
02: if (p) {
03: accept();
04: }
05: ... // no change to p
06: close();

A safety policy checker will report an error on line 6 and a
backtrace including lines 2 and 5 (skipping the if). We wish to
suggest this code:

01: if (p) {
02: accept();
03: }
04: ... // no change to p
05: if (p) { /* should be inserted */
06: close();
07: }

An alternative candidate patch might involve removing the orig-
inal "if (p)" conditional. In general we cannot know which
is correct without domain- or program-specific knowledge. Our
patch-producing algorithm will make use of a distance metric that
encodes our intuitions and heuristics about likely fixes (e.g., to fa-
vor insertions over deletions).

As a final, simple motivating example, Figure 2 shows source
code from HSQLDB, an open-source Java SQL database engine.
On line 2712, os.write(...) can raise an exception, causing
os to be leaked. This bug was found by a tool and the patch
shown was created automatically using the algorithm described
in the Section 4; from our perspective the patch was created by

182

inserting a call to close along that exceptional path. The patch
was included in a bug report as part of the experiment described
in Section 5. The examples in this section have been simple for
expository purposes, but our algorithm works on more complicated
errors in production code. For example, another patch we produce
for HSQLDB involves making 34 changes over a span of 216 lines.

3. Finding and Reporting Bugs
Many software model-checkers and bug-finders have been devel-
oped in recent years. In general these tools all take as input a pro-
gram (typically by interpreting the source code or some other rep-
resentation of the control-flow graph) and a safety policy (typically
a finite state machine that codifies something that might go wrong:
null pointer dereferences [22, 30], resource leaks [43], locking or
concurrency errors [12], API violations [7, 16, 29], security vulner-
abilities [10, 40], high-level invariants [23], etc.).

Simple safety policies are widely available for many do-
mains [7, 16, 22, 30] and numerous projects exists to mine or infer
them automatically [3, 4, 43, 44, 45]. In general finding the right
safety policy is a difficult problem in its own right; for this work
we assume that a relevant safey policy is already available.

The output of such a bug-finding tool is a set of candidate error
reports (generally including both false positives and real errors).
At minimum an error report lists a program location and refers
to the part of the safety policy that is violated there. In general
the report also includes a backtrace or counterexample (a feasible
path through the program that ends at the error location, possibly
annotated with data values along the way) [11].

While different analyses have different precision/scalability
tradeoffs, the usual interaction with such tools involves checking
a program against an off-the-shelf safety policy and then sifting
through the resulting list of error reports. False positives can be fil-
tered out or assigned special rankings, but ultimately reports must
be inspected manually. Counterexample backtraces often provide
as much information as would be available when debugging a pro-
gram crash at the error location. Despite this, traces can still be
confusing to programmers who are not used to static analyses, are
unfamiliar with the safety policy, are unfamiliar with the environ-
ment and fault models used by the tool, or are unfamiliar with the
code under consideration (often the original developer is no longer
available). Unfortunately, backtraces are not a panacea: “dealing
with an error is often an onerous task, even with a detailed failing
run in hand.” [26] It is not always easy to reason about a bug using
a backtrace: “there is significant room for improving users’ experi-
ences . . . an error trace can be very lengthy and only indicates the
symptom . . . users may have to spend considerable time inspect-
ing an error trace to understand the cause.” [6] In general, “even a
detailed trace of how a system violates a specification may not pro-
vide enough information to easily understand (much less remedy)
the problem.” [28]

While counterexample backtraces are good, developers could
benefit from additional information in the the form of a candidate
patch. Patches make it easier to understand the bug report and
thus reduce the time cost of fixing the bug, making it more likely
that the bug will be addressed. Such patches would not be applied
blindly, but would show how to change the code to satisfy the tool:
such positive examples implicitly explain the relevant parts of the
safety policy (e.g., what events are important) and the assumptions
made by the tool (e.g., what happens when a system function is
invoked, whether exceptional control flow is being considered).
In addition, such a patch gives the developer, previously told to
“fix this bug,” an additional way to approach the problem: “is this
patch legal and would it really fix the bug?” Even if this does not
add new information, research in psychology suggests that humans
possess special cognitive facilities for detecting cheating and rules

1 : GenPatch(policy P, metric M, cfg C, path v, source S) {
2 : string c = NearestAcceptingString(P, v, M);
3 : return a minimum patch d produced by {
4 : foreach cfg C′ ∈ MapToSource(v, c, C) {
5 : source S′ = PrettyPrint(C′);
6 : d = diff(S, S′);
7 : }
8 : }
9 : }

Figure 3. Pseudocode for generating a patch.
NearestAcceptingString and MapToSource are described in
Section 4.

violations when properly cued [13, 25]. Such considerations are
beyond the scope of this work, however, and in this paper we
claim that providing additional information in the form of a patch
makes it more likely that a bug report will be addressed; specific
characterizations of why such patches help are left for future work.

4. Algorithm
Our basic algorithm for producing candidate patches is intraproce-
dural and path sensitive. It takes as input a safety policy P , an edit
distance metric M , a procedure C, a path v through that procedure
that violates the policy, and the program source code S.

The intuition for the algorithm is as follows:

1. Make many copies of the safety policy state machine P and link
them together such that a string is accepted by the kth copy if
that string is a distance k from some string accepted by P .

2. Feed the violating path v to the constructed state machine to
obtain insertions and deletions that would transform v into a
string accepted by P . These changes correspond to adding or
removing function calls to address the bug.

3. Map those insertions and deletions back to the source code. Use
path predicates to guard them so that only the violating path is
affected.

4. Construct a textual patch and include it with the bug report sent
to the developer.

We now describe the algorithm formally. High-level pseudocode
for the patch generation algorithm is given in Figure 3.

The violating path involves some number of important events in
the policy but is not accepted by the policy. The computational heart
of our algorithm considers the string (in the language of policy
events) associated with the violating path v and finds a string c
in the language generated by that safety policy P that is closest
to it according to the distance metric M (line 2 in Figure 3 and
Section 4.1). Once the nearest accepting string c has been found we
then consider all of the ways to match up its suggested insertions
and deletions with the original source S (lines 4-6 in Figure 3 and
Section 4.2).

4.1 Nearest Accepting String

We formalize the core of the problem as follows: given a deter-
ministic finite automaton P (the safety policy) that accepts at least
one string over the alphabet Σ (important program events), a string
v (the violating path’s events) in Σ∗, and an edit distance metric
M : Σ∗ × Σ∗ → N , we must produce a string c ∈ L(P) (the
candidate) such that M(v, c) is a global minimum.1

1 Since the candidate is heuristic, “minimum” is not strictly necessary and
“small” would suffice.

183

The safety policy DFA P is a five-tuple 〈Σ, S, s0, δ, F 〉 where
Σ is the alphabet of policy events, S is the set of states, s0 ∈ S is
the start state, δ : S×Σ �→ S is the transition function, and F ⊆ S
is a set of accepting states.

Our solution is conceptually related to the bitap fuzzy string
searching algorithm used in agrep [36], but we also determine the
operations required to convert v to c and accept a more general edit
distance metric.

Let M assign insertions a maximum cost i > 0 and deletions
a maximum cost d > 0. Let p be a string accepted by P . Then
M(v, p) ≤ |v|d + |p|i. An upper bound on edit distances we
must explore to find c is thus B = |v|d + |p|i. We will first look
for a string c within distance 1 of L(P). If we do not find it we
will look for a c within distance 2 of L(P), and so on. We are
guaranteed to terminate at distance B and find c = p, but in general
we will find a much better c. Optionally, a better search algorithm
such as iterative-deepening-A* [32] could be used to take explicit
advantage of the previous iteration.

To find if there exists c within distance k of L(P) we construct
a non-deterministic finite automaton [41] Pk. We will make Pk

such that it accepts v iff v is within k of some string accepted
by P ; so v ∈ L(Pk) ⇐⇒ ∃c ∈ L(P). M(c, v) ≤ k. Let
P = 〈Σ, S, s0, δ, F 〉. Then Pk = 〈Σ, S′, s′0, δ

′, F ′〉 with the
components defined as follows.

The states in Pk are products S′ = {〈s, j〉 | s ∈ S ∧ 0 ≤
j ≤ k}. We make one “copy” of the original machine for each
possible distance. We will construct the transition function such
that reaching 〈s, j〉 on input x means that there is a string x′

with M(x, x′) ≤ j such that the original DFA P reaches s on
input x′. If s ∈ F is also an accepting state then x is within
distance j of a string in L(P). Thus we let s′0 = 〈s0, 0〉 and
F ′ = {〈s, j〉 | s ∈ F ∧ 0 ≤ j ≤ k}. If Pk accepts v then
∃v′ ∈ Σ∗. v ∈ L(P) ∧ M(v, v′) ≤ k.

In Pk there are three conceptual kinds of transitions: normal
transitions δN , deletion transitions δD , and insertion transitions
δI . The final constructed transition function is given by δ′ =
δN ∪ δD ∪ δI .

The normal transitions δN stay within one “copy” and mimic
P :

δN = {〈〈s, j〉, x, 〈t, j〉〉 | 〈s, x, t〉 ∈ δ ∧ 0 ≤ i ≤ j}
Deletion transitions δD consume input characters and move

down a number of “copies” equal to d(x), the edit distance cost
of deleting event x (note that d(x) may be undefined for some x,
representing events that cannot be deleted by the policy):

δD = {〈〈s, j〉, x, 〈s, j+d〉〉 | s ∈ S ∧ x ∈ Σ ∧ 0 ≤ j ≤ k−d(x)}
Insertion transitions δI do not consume input characters (i.e.,

they are ε-transitions) but do move down a number of “copies”
equal to i(x), the insert cost for event x:

δI = {〈〈s, j〉, ε, 〈t, j + i〉〉 | ∃x.〈s, x, t〉 ∈ δ ∧ 0 ≤ i ≤ k− i(x)}
An example of this construction with k = 2, P accepting

exactly “xyz”, insert cost 1 and delete cost 2 is shown in Figure 4.
To find a string c with M(v, c) ≤ 2 we see if P2 accepts v and
note the transitions taken if it does. For example, the string “xz”
is accepted using edges labeled “x”, “(ins y)”, and “z”. Similarly,
the string “zxyz” is accepted with “(del z)”, “x”, “y”, and “z”. The
string “xx” is not accepted by P2 because it is distance 4 from the
string in L(P).

In the worst case our algorithm will construct each PB where B
is on the order of v + p. The generated patch p is bounded by |δ| or
|S|2. Since Pk is a subset of Pk+1 an efficient implementation can
save work by building the Pk’s incrementally. The deletion edges in
the constructed PB dominate its size: every node is potentially the

Figure 4. Pk construction for k = 2, P accepting exactly “xyz”
with uniform delete cost d = 2 and insert cost i = 1.

source of |Σ| deletion transitions and number of nodes is bounded
by |S|× |B| = |S|× (|v|+ |S|2). So the size of PB is bounded by
|S| × |Σ| × (|v| + |S|2). In practice, however, the error path |v| is
quite small after path slicing has been applied: Jhala and Majumdar
report that the largest of 313 counterexample traces from the gcc
Spec95 benchmark can be sliced from size 82,695 to size 43 [31].

So the algorithm takes time proportional to the time to check
if an NFA of edge size O(|Σ| × |S|3) accepts a string of size |v|
where S is the state size of the input policy DFA. In practice safety
policies are small (four states is a common size) and the largest
policy we have seen had under 30 states [7].

4.2 Mapping Back To The Source

The algorithm in Section 4.1 computes a string c in the language of
accepted policy events that is close to the events of original buggy
path v. It also computes the changes (e.g., insertions and dele-
tions) that should be made to transform the original string to the
new string. We must map those abstract changes to changes in the
control-flow graph (CFG), which can then be pretty-printed to gen-
erate a candidate textual patch. Our soundness condition requires
that the proposed changes to the control-flow graph must prevent
the policy violation reported on path v and must not introduce any
new violations along paths that do not contain v as a prefix.

The major challenge is thus proposing a change that does not in-
terfere with other paths. Minor challenges include matching up ar-
gument values and dealing with exception handling. Our algorithm
uses if statements to guard insertions and deletions with special
predicates to ensure that only the failure path v is affected.

In general there will be multiple ways of mapping the changes
suggested by the nearest accepting string back to the original code.
The two main sources of ambiguity are (1) freedom in inserting
missing events (which can often be placed earlier or later along
v) and (2) multiple ways to guard paths (with path predicates
directly when possible, with path profiling variables when not). We
compute a set of possible valid changes; the change that results
in the smallest textual patch, as computed by whitespace-ignoring
diff(1) [21], will be used.

It would also be reasonable to compute the distances over the
abstract syntax tree instead of at the textual (diff) level. The
approaches usually yield identical results: we chose to favor text
size in order to generate present small patches to developers.

4.2.1 Path Predicates

We must ensure that our candidate change only influences the
behavior of the program along the path v. Consider the following
simplified example (as in Section 2), in which accept must come
between listen and read.

01: if (q)
02: bind();

184

03: // do some work, q is not changed
04: if (q)
05: listen();
06:
07: if (q)
08: read();

Given the violating path v (visiting lines 1 − 2 − 3 − 4 − 5 −
6 − 7 − 8), the Nearest Accepting String algorithm will suggest
inserting an accept event somewhere after line 5 but before line 8.
Any point in that range would be reasonable. Our algorithm works
regardless of which point is chosen. We will return to this choice
later; for now we will choose to insert at line L = 6.

Inserting "accept()" directly on line 6 will introduce a new
error on the path 1 − 3 − 4 − 6 where q is false. Instead, we want
to insert "if (p) accept()" where p is a path predicate that is
true at points 6 and 7 on the path v but is not true along other paths
that reach points 6 and 7. Such path predicates are well-studied
for purposes including profiling [5], instruction scheduling [8],
program slicing [39] and model-checking [31]. Our algorithm can
use any available method for computing a valid path predicate. In
the unlikely event that no symbolic path predicate can be found,
we can apply the profiling technique of [5] directly and include in
our candidate patch all the instrumentation required to dynamically
update a newly-introduced variable such that it will have a unique
value at line 6 along the path v. We assume that inserting or
removing events will not change path predicate values (i.e., in
practice we assume that API calls will not change the values of
local variables).

In the simple case where the program predicates are side-effect
free and are not modified elsewhere (as conservatively determined
by standard dataflow analyses [14] and alias analyses [15]) we can
re-use them directly. The path predicate p is the conjunction of all
of the if-predicates along v (with a predicate negated if the cor-
responding else branch was taken). Standard boolean minimiza-
tion techniques are then used to simplify p. In the example above,
p is "q && q && q" which reduces to "q". In general, however,
more advanced techniques are required. Our implementation fol-
lows Robschink and Snelting [39] for computing basic path predi-
cates, Ranganath et al. [38] for computing control dependences in
loops, and Jhala and Majumdar [31] for minimizing the resulting
predicates. In rare cases where this approach fails we follow Ball
and Larus [5] and emit a patch creating a new variable to track the
path; this was never required in the experiments in Section 5, how-
ever. We do not claim any new results in the generation of path
predicates and view it as an advantage that our approach can make
use of off-the-shelf solutions to that problem.

If we instead chose to insert at L = 8, the candidate patch is
simplified. We need only guard the inserted event with conjuncts
from the path predicate q that are not implied by the path predicate
for L (as determined by the path predicate algorithm itself or by an
automated theorem prover [19]). Empty or statically true conjuncts
need not be checked at run-time. In this example q is always
established at 8 by the if (q) at 7, and thus rather than inserting
"if (true) accept()" we insert "accept()".

We choose the best insertion point L by computing the can-
didate patch for each potential point and choosing the point that
yields the smallest textual patch. The path predicate information
can be shared by all of these trails, so the extra O(|v|) patch cal-
culations are not a key performance factor. In this example line 8
would be favored over line 6 because the patch at line 8 does not
involve inserting a new if statement.

When the Nearest Accepting String indicates that an event must
be removed, we know exactly what part of the program is being
referenced. To avoid interfering with other paths we effectively

remove the event from only v by guarding it with the negation of
v’s path predicate. For example:

01: if (q)
02: open();
03: close();

In the path 1−3 where the socket is not initialized, the Nearest Ac-
cepting String may suggest that close on line 3 be removed. The
path predicate for 1−3 is "not q", so we remove close by guard-
ing it with "not not q" (which reduces to "q"). A statement that
would be guarded by a provably false predicate is instead removed
completely.

4.2.2 Dataflow and Arguments

Safety policies, especially typestate policies, are typically pre-
sented generically and apply to every instance of a resource. Events
are usually function calls related to a special API. When modify-
ing the CFG to insert an event we must either suggest arguments for
each inserted function call or explicitly leave holes for the program-
mer to fill in. We only infer arguments and assignments directly re-
lated to the safety policy; all other arguments are left blank (and a
candidate patch with such a blank will not yield a valid program).
For example:

01: int s1 = accept(server, client1, addrlen1);
02: int s2 = accept(server, client2, addrlen2);
03: close(s1);
04: // forgot close for s2

If we are inserting a close event at line 4, we must either insert
"close(s2)" or some variant on "close(/* FIXME */)". In
particular, we may not suggest "close(s1)". The dataflow track-
ing required to know that s1 is closed but s2 is not must already
be carried out by the client bug-finding analysis. In general we can
obtain that information from the analysis or its normal backtrace
bug report. We may also require that the specification be annotated
in such a way as to make the dataflow clear (i.e., by stating that
the return value from accept must be the argument to close, as
in Figure 1). In the unlikely case that neither source of information
is available we rediscover the specification variable, in any, using
a simple adaptation of the flow dependence annotation and sce-
nario extraction algorithm from the Strauss specification miner [4],
which is designed to infer such dataflow from traces in a safety pol-
icy setting. If we are unable to establish that an argument or return
value is directly related to the safety policy, we leave it blank.

4.2.3 Exception Handling

As noted in Ranganath et al. [38], existing dependence analyses
are often ill-suited to languages with exception handling. Our algo-
rithm can be extend to work on languages with explicit support for
exception handling. Consider the following Java code:

01: Socket s = new Socket(...);
02: s.read(...); // can raise exceptions
03: s.close();

Along the path 1 − 2 − exception the socket is not closed. We
number the statements in the program and extend the language
of path predicates with the special predicate Exc(i), meaning that
an exception was raised in statement i.2 To insert a statement s
guarded with the predicate Exc(i) we catch the exception at i,
execute s, and then re-raise that exception.

01: Socket s = new Socket(...);

2 We could refine Exc(i) to include the type of the exception raised, but that
information is not necessary given the template catch and finally code
we insert.

185

02: try {
03: s.read(...); // can raise exceptions
04: catch (Exception e) {
05: try { s.close(); } finally { throw e; }
06: }
07: s.close();

As an optimization, if inserting an event e would make it occur on
all paths leading out of a statement i and i dominates each e on
those other paths, we can remove the other e events and insert a
finally block:

01: Socket s = new socket(...);
02: try {
03: s.read(...); // can raise exceptions
04: } finally {
05: s.close();
06: }

We can also make use of an existing finally block surrounding
i provided that i post-dominates all statements that come before
it in that block. Many of the resource leaks reported in Section 5
involved creating or patching such try-finally blocks for pro-
grams that disposed of resources properly along some, but not all,
paths.

The Nearest Accepting String output may demand that we re-
move an event by guarding it with the negation of Exc(i). This
would typically arise because of an extraneous event in an excep-
tion handler, as in:

01: Socket s = new socket(...);
02: try {
03: s.read(...); // can raise exceptions
04: s.close();
05: throw new Exception();
06: } catch Exception (e) {
07: s.close();
08: }

The path 1 − 3 − 4 − 5 − exception − 7 contains a double
close. The Nearest Accepting String result may suggest deleting
"s.close()" at line 7, but linguistically there is no simple way
to guard that statement with “only if an exception was not raised
on line 5”. Note that removing line 7 entirely is also wrong, as it
introduces an error on the previously-safe path 1−3−exception−
7. In such cases our general solution is to insert a profiling variable
to track the path taken through the procedure [5] and guard based on
that value of that variable. This approach always produces patches
that adhere to our notion of safety but may produce awkward
patches; this case did not arise in practice in our experiments.

As an optimization we query the NFA Pk produced by the
Nearest Accepting String algorithm and compute L(Pk). If another
nearest accepting string in L(Pk) produces a simpler patch we use
it instead. In the example above, deleting "s.close()" from line
4 has the same edit distance cost as deleting it from line 7 but yields
a much simper patch (since line 4 can be removed entirely). In the
experiments in Section 5 deletions guarded by exception predicates
were rare, but when they did occur this optimization always suc-
ceeded and path-profiling variables were never necessary.

4.3 Distance Metric

We require that the distance metric M describe an edit distance
with specific costs for insertions and deletions. The edit distance
is based on the safety policy and heuristics related to the likely
correctness of existing code. The edit distance chosen does not
affect the correctness of the algorithm, merely the chance that it
will produce appealing patches.

The edit distance selected must provide a maximum insertion
cost and a maximum deletion cost. Specific insertion and deletion
costs can vary by event (e.g., if forgetting a particular function call
is known to be a common mistake, its insertion cost can be made
lower than all other insertion costs) or can be left undefined. An un-
defined insertion (deletion) cost for an event x means that the Near-
est Accepting String algorithm will never suggest inserting (delet-
ing) x. This is useful for certain safety policies. For example, when
“do not dereference null pointers” is phrased as a typestate policy
on pointers, there is typically a transition from a state representing
“this pointer is null” to a state representing “this pointer is valid”.
The event associated with that edge is “this pointer is assigned any
clearly non-zero value”. Null-pointer dereferences are usually the
result of failing to check for null (and our algorithm will suggest
just such a check by “deleting” the dereference from some paths)
rather than the result of failing to include a key assignment. Pre-
venting that event from being inserted ensures that only patches
that add null checks will be produced.

Note that if insertions or deletions are disallowed the Nearest
Accepting String algorithm may fail to find a nearest accepting
string for certain policies and violations. For example, if all in-
sertions are disallowed and the start state of the policy is not an
accepting state, some (short) violations will have no nearest accept-
ing string. In such cases we can either fail to produce a candidate
patch or we can reset each undefined costs to the maximum cost and
try again. The distance metric encodes heuristics; violating them to
produce an optional patch may be preferable to producing nothing.

In the experiments in Section 5 we used a uniform insertion cost
of 1, a deletion cost of 2, and we handled null-pointer dereferences
as above. Favoring insertions over deletions represents our belief
that most mistakes are caused by the programmer forgetting to
do something good in some cases rather than by the programmer
doing something extraneous in some cases. It also showcases our
algorithm’s ability to produce patches that refer to code that is not
present in the original buggy source.

4.4 Algorithm Summary

Given a safety policy, an edit distance metric, a control-flow graph,
a path through that CFG that violates the policy, and the program
source, we construct a textual candidate patch. The key components
of our algorithm are computing a nearest accepting string, which
encodes our desired changes, and then mapping those changes back
to the source using path predicates to avoid introducing new errors.
This is the first algorithm we are aware of that produces candidate
patches from safety policy bug reports.

The patch is meant to make it more likely that the bug be
addressed and not to be applied automatically. The patch may
highlight the root cause of the bug or it may focus on a symptom;
in either case it provides useful information to the programmer.
The patch may have holes where arguments and return values for
inserted function calls are not covered by the specification. Modulo
such holes, the patch comes with the guarantee that if it were
applied it would fix that particular violating path and would not
introduce any new violations of that policy on other paths.3

5. Experiments
In this section we describe an experiment conducted to test the
hypothesis that bug reports that also contain candidate patches are
more likely to be addressed than bug reports with only backtraces.
Our experiments focus on open source software because of its
availability and because of the accessibility of its development
teams (i.e., we can email bug reports directly rather than going

3 The proposed patch could violate other policies that involve the same
events but that are not given as input to the algorithm.

186

through a customer service department). The general experimental
methodology is to submit some bug reports as normal and some
bug reports with candidate patches and then measure which are
addressed. We must take special care to control all of the variables
except for the presence of the patch.

A number of additional factors help to determine whether a bug
is addressed. For example, conventional wisdom in the bug-finding
community claims that an email listing 10 real bugs is more likely
to result in a single bugfix than an email listing 100 real bugs.
Similarly, certain classes of bugs, like security vulnerabilities or
standards compliance, are viewed as more likely to be addressed
than others.

We applied two off-the-shelf bug-finding tools to various open-
source programs using a variety of simple safety policies. Our first
tool is FindBugs [30], abbreviated FB, a light-weight pattern-and-
heuristic bug-finding tool for Java (similar to Metal [22]). Our
second tool is WN, a tool for finding mistakes made in exceptional
situations in Java programs [43]. All of the bugs reported in this
experiment dealt with leaked resources, correct API usage, and
avoiding null-pointer dereferences.

In some cases FindBugs may not explicitly produce a coun-
terexample backtrace for an error report and may instead only indi-
cate a particular expression (e.g., for a null-pointer dereference).
Many lightweight bug-finding tools are similarly terse; in such
cases we can either modify the tool (often the analysis keeps an
internal representation of the path to discover the bug but does not
expose it) or use PSE [37] to automatically generate a backtrace
given the program and the failure. We thus assume that a violating
path is always available.

Running a given bug-finding tool on a given program to check
a given safety policy produces a set of candidate bug reports.
For the purposes of controlling this experiment, we first manually
inspect the bug reports and remove all false positives. Dealing with
or ranking false positives is an orthogonal problem to producing
candidate patches. If the number of remaining bug reports is odd
we discard one at random. Within each set of bug reports we choose
half of the reports at random and annotate them with candidate
patches using the algorithm in Section 4. We then randomize the
order of the bug reports within that set and email or otherwise
submit all of the bug reports.4

It is difficult to determine whether a bug has been truly fixed. In
this experiment we say that a bug report has been addressed when
either (1) the developer we submitted the bug report to says so or
(2) manual inspection reveals that the appropriate code has been
changed in the next release or in the project version control system.
Similar in spirit would be (3) the bug-finding tool, when applied
to the next release, no longer reports the error. Given the number
of bugs in this experiment we chose manual inspection in order to
rule out the effects of bug-finding tool imprecision; a larger-scale
experiment might rely on (3) alone. We measured the number of
reported bugs that had been addressed within two weeks of being
reported. It is possible that some of these bugs would have been
fixed in any event within two weeks, even without a bug report.
Since we chose at random which reports to extend with patches,
however, such a rising tide of software quality would affect both
the patched reports and the normal reports equally.

The results are shown in Figure 5. We submitted 76 bug reports
in total; 33 of them (or 43%) were addressed within two weeks.
Bug reports that also included patches were addressed 66% of the
time while normal bug reports were addressed 21% of the time.

4 We emailed reports to the first developer listed on the project page or
documentation. The emails were form letters with the project and developer
names substituted in. Candidate patches were made against the most recent
version of the source code available (e.g., a CVS checkout taken that day).

Program LOC Tool Bugs Normal Patch
hsqldb 65k WN 20 4 5
ssl-explorer 102k WN 10 0 0
mckoi sql 116k WN 6 0 0
openwfe 128k FB 4 0 2
jboss 145k WN 26 1 13
jasper reports 152k FB 4 0 2
azureus 232k WN 6 3 3
Total 940k 76 8 25

Figure 5. Bugs reported and addressed. The “Bugs” column
counts total bug reports (no false positives) per program. Each bug
report included a backtrace or counterexample; for each program
half of the reports (at random) also included a candidate patch.
The “Normal” column counts non-patch reports addressed within
two weeks. The “Patch” column counts patch-included reports ad-
dressed within two weeks.

If candidate patches had no effect on whether a bug report was
addressed we would expect to see roughly the same number of
patched bug reports addressed as normal bug reports addressed.
One null hypothesis for this experiment is that candidate patches
did not matter at all and that each bug was fixed with probability
43%. In statistical hypothesis testing a p-value is the probability,
assuming that the null hypothesis is true, of getting a result less
favorable to the null hypothesis than the observed value. A standard
cutoff p < 0.05 is used to judge statistically significant values.
For this experiment (χ2 = 4.378), p = 0.0364 and thus by
conventional standards the results are statistically significant [1, 24,
34].

This experiment does not measure how “close” the candidate
patch was to the final fix. In addition, it does not support the claim
that the bug reports with explanatory patches take less time or effort
to fix. Such probing studies, presumably involving human subjects,
remain as future work. More strictly, this experiment only shows
that patches work, it does not show why. We acknowledge that this
experiment, while significant, is too small draw general findings
from and we hope to encourage similar experiments in the future.

This experiment also does not directly address the claim that a
similar benefit might be gained by including some other form of ad-
ditional feedback with bug reports. For example, it is reasonable to
assume that including 10 lines from the “minimal cause” of the bug
(an important subset of the counterexample trace [6, 28]) might also
cause more bug reports to be addressed. However, the “Normal”
bug reports in our experiment did include complete counterexample
traces, which were on average only 6 events long (and at most 34
events long). Our intuition that for this class of bugs, explanatory
patches are more likely to help get bugs addressed than minimal
causes. However, since the approaches are complementary and we
are interested in improving software quality, both can be used. In
addition, this is the first experiment we are aware of that concretely
demonstrates a link between addressed bug reports and such addi-
tional feedback.

In this study manual inspection found that the bug reports ad-
dressed using explanatory patches did not introduce new bugs with
respect to any other safety policy we were aware of. The patches
and the developer fixes typically involved inserting or moving
close calls and null-pointer checks, and were local enough to
avoid breaking other invariants.

To perform the experiments, bug reports from the two bug-
finders were manually tranformed into an intermediate format. The
basic algorithm in Section 4 was applied (using an iterative com-
putation of Pk, not IDA*) to half of the reports. The control-
flow graph was obtained with a standard Java front-end. The tex-

187

tual diff calculations were done between a pretty-printed ver-
sion of the original source CFG and a pretty-printed version of the
patch being considered. Annotating the safety policy with dataflow
information (as in Figure 1) was sufficient to capture typestate
dataflow in these examples. The final candidate patch was then
hand-applied to the original source to create the candidate patch (to
avoid issues with line renumberings and stripped comments). Path
predicate tools for Java were not always available, so path predi-
cates were computed by hand as necessary. In our experiments the
most complicated path predicate necessary was “text != null
&& length > 0”; all other non-empty predicates were of the form
“localVar != null” or Exc(i).

We conclude that including an additional candidate patch with a
bug report makes it more likely for that bug report to be addressed.
We presume (but do not test here) that programmers use some
sort of implicit cost-benefit analysis when considering whether to
address a bug and that the inclusion of a candidate patch lowers the
perceived cost.

6. Related Work
Related work in computing path predicates is described in Sec-
tion 4.2. In addition, there has been much work on error-correcting
compilers and parsers (e.g., [2, 17]). While such frameworks are
conceptually similar to our approach in mechanism (i.e., given an
invalid sequence, produce the nearest valid sequence according to
some metric), their goals are quite different. The patches we gen-
erate, although equipped with a particular safety guarantee, are not
intended to be applied automatically. In spirit our work is more
similar to attempts to explain type errors in polymorphic languages
like ML (e.g., [20, 42]).

The PSE backward dataflow analysis [37] produces execution
traces or paths (not patches) along which the program can be driven
to reach a given failure. PSE is complementary to our work and we
use its algorithm in Section 5 to generate error traces for some bug
reports. We believe that reports should come both with backtraces
and with candidate patches.

Leino et al. [35] present an approach for generating error traces
(not patches) from verification-condition violations in axiomatic
semantics tools. They generate special labeled verification condi-
tions that encode source code locations. Their approach is com-
plementary to ours and allows our technique to be used with error
reports from tools like ESC/Java [23].

The localization work of Ball et al. [6] is closely related to ours.
They narrow down a large counterexample backtrace (the error
symptom) to a few lines (a potential cause). Their algorithm is also
complementary to ours: a bug report could consist of a localized
backtrace and a candidate patch. The key conceptual difference is
that their algorithm is limited to the given trace and source code and
will never localize the “cause” of an error to a missing statement or
suggest that a statement be moved. Our approach can infer new
code that should be added. Ten of the 38 patches in Section 5
involved inserting completely new code, and we think the ability
to present a patch involving code that is not present is worthwhile.

Producing clearer counterexamples is the most common alterna-
tive to producing explanatory patches. Most such work is evaluated
in terms of counterexample size (e.g., a minimized counterexample
might include only two critical statements instead of over a hun-
dred and is thus said to localize or explain the error) and not by
the number of bugs fixed. Including a clear, minimal counterex-
ample in a bug report as a witness to the error should intuitively
make the report more likely to be addressed, but we are aware of
no published results directly supporting that claim. Although many
tools list false positive rates or count bugs reported and fixed, we
are unaware of any other published work that relates bug reporting
techniques to the number of bugs eventually addressed.

Groce et al. have done much work in minimizing [27] and ex-
plaining [9] counterexamples for bounded model checking. Their
explanation algorithms rapidly find the closest non-spurious valid
program execution path to a given error path. An explanation is
then generated by computing a difference (either abstractly or con-
cretely) between the close valid path and the actual error path. This
work is also complementary to ours: an ideal error report could
contain a minimal localized backtrace, an explanation, and a patch.
In addition, since they compute differences with respect to runs
through the existing program, they will generally not be able to
explain bugs resulting from missing code. On the other hand, their
work makes use of special counterfactual dependence distance met-
rics [26] to help locate the cause of an error. In our approach the
overarching metric is patch size, with the assumption that smaller
candidate patches make it more likely that the bug will be ad-
dressed. While there are no extant comparative experiments either
way, their approach may be more likely to isolate the root cause
of an error (provided that the cause is present in the program text).
In general, however, our work is not directly concerned with auto-
matically synthesizing a perfect error explanation but instead with
adding information to an error report in order to get that report ad-
dressed.

A second point of comparison with Groce et al. is that while
both approaches work on general (model-checking) backtraces, the
typical domains are quite different. For example, their approach
has been applied to critical multithreaded aircraft operating systems
code and was successfully used to explain a complicated bug with
a multiline minimal cause [28]. Our approach was designed for a
setting where there are many bugs, where the software ships with
known bugs, or where bugs must be fixed before each commit. In
such a scenario getting the developer up to speed on the bug report
is of primary importance to increasing the chance that a bug is fixed
and to decreasing the time spent fixing each bug.

7. Future Work
This work represents a first step to making automatically-generated
bug reports more likely to be addressed by developers; many av-
enues of investigation remain unexplored.

The relationship between the relevance of the produced patches
and the chosen edit distance metric should be evaluated. We se-
lected a simple metric that works well in practice, but particular do-
mains might favor others. For example, if memory leaks are known
to be much more common than double frees, a higher cost ratio
between insertions (allocations) and deletions (frees) would be rea-
sonable.

Collecting feedback from the developers would help to untan-
gle some of the reasons why bugs were addressed or were not ad-
dressed (e.g., perhaps one project had more available programmers
or the technique produced better patches for one code base than for
another). In particular, comments on the quality of the produced
patches and the reasons for not addressing a bug would be help-
ful. More insight into patch readability and understandability might
help to explain the wide variation between different projects in our
experiments. It would also be reasonable to submit fake patches or
bug reports that claim to have additional information to see if they
are also more likely to be addressed; we have not done so because
we did not wish to begin by burdening or antagonizing developers.

8. Conclusion
Many existing bug-finding analyses and tools produce (or can
be extended to produce) counterexample backtraces that witness
safety policy violations (i.e., bugs) in programs. These backtraces
are included in bug reports that are presented to developers. In prac-

188

tice software ships with known bugs and not all bug reports are
addressed.

We present an algorithm for automatically constructing an ex-
planatory patch for each bug. Fuzzy string matching approaches
are used to find a valid sequence of events similar to those on the
buggy path. Using a number of existing techniques related to path
predicates and program slicing, the program is changed to incorpo-
rate the new sequence of events, but only along the violating path.
A textual patch is then created to represent the differences between
the original program and the modified program. This patch may
suggest the inclusion of new code that was not in the original pro-
gram. The patch comes with a guarantee that applying it will not
introduce any new errors along paths unrelated to the reported vio-
lation with respect to the given safety policy. The patch is used as a
starting point for understanding and addressing the problem.

We present experiments demonstrating that bug reports that also
contain explanatory patches are more likely to be addressed in
practice. In our experiments, bug reports with patches were three
times as likely to be addressed. We believe that the ultimate purpose
of bug-finding tools and software model checkers is to increase
the quality of software by getting bugs fixed. Our patch generation
algorithm works with most software bug-finding tools and serves
as a generic post-processing step that makes it more likely that
the bugs they find will actually be addressed. These enriched bug
reports make it easier for maintainers to address defects.

References
[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. Dover,
New York, ninth Dover printing, tenth GPO printing edition, 1964.

[2] A. V. Aho and T. G. Peterson. A minimum-distance error-correcting
parser for context-free languages. SIAM Journal of Computation,
1(4):305–312, Dec. 1972.

[3] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface
specifications for Java classes. In ACM Symposium on Principles of
Programming Languages, 2005.

[4] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In
Principles of Programming Languages (POPL), pages 4–16, 2002.

[5] T. Ball and J. R. Larus. Efficient path profiling. In International
Symposium on Microarchitecture, pages 46–57, 1996.

[6] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause:
localizing errors in counterexample traces. SIGPLAN Not., 38(1):97–
105, 2003.

[7] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In SPIN 2001, Workshop on Model Checking
of Software, volume 2057 of Lecture Notes in Computer Science,
pages 103–122, May 2001.

[8] L. Carter, B. Simon, B. Calder, L. Carter, and J. Ferrante. Path analysis
and renaming for predicated instruction scheduling. International
Journal of Parallel Programming, 28(6):563–588, 2000.

[9] S. Chaki, A. Groce, and O. Strichman. Explaining abstract
counterexamples. In Foundations of Software Engineering (FSE),
pages 73–82, New York, NY, USA, 2004. ACM Press.

[10] H. Chen, D. Dean, and D. Wagner. Model checking one million lines
of C code. In Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2004.

[11] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient
generation of counterexamples and witnesses in symbolic model
checking. In Conference on Design Automation (DAC), pages 427–
432, New York, NY, USA, 1995. ACM Press.

[12] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Bandera: a source-
level interface for model checking java programs. In International
Conference on Software Engineering (ICSE), pages 762–765, New
York, NY, USA, 2000. ACM Press.

[13] L. Cosmides, J. Tooby, A. Montaldi, and N. Thrall. Character counts:
Cheater detection is relaxed for honest individuals. In 11th Annual
Meeting of the Human Behavior and Evolution Society, Salt Lake
City, Utah, June 1999.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, October 1991.

[15] M. Das. Unification-based pointer analysis with directional
assignments. In Programming Language Design and Implementation
(PLDI), pages 35–46, New York, NY, USA, 2000. ACM Press.

[16] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program
verification in polynomial time. SIGPLAN Notices, 37(5):57–68,
2002.

[17] P. Degano and C. Priami. Comparison of syntactic error handling
in LR parsers. Software - Practice and Experience, 25(6):657–679,
1995.

[18] R. DeLine and M. Fähndrich. Enforcing high-level protocols in
low-level software. In ACM Conference on Programming Language
Design and Implementation, pages 59–69, 2001.

[19] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[20] D. Duggan and F. Bent. Explaining type inference. Sci. Comput.
Program., 27(1):37–83, 1996.

[21] P. Eggert, M. Haertel, D. Hayes, R. Stallman, and
L. Tower. diff - compare files line by line. In
http://www.gnu.org/software/diffutils/diffutils.html, 2005.

[22] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
Symposium on Operating Systems Design and Implementation, 2000.

[23] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for java. In Programming
Language Design and Implementation (PLDI), pages 234–245, New
York, NY, USA, 2002. ACM Press.

[24] D. Freedman, R. Pisani, and R. Purves. Statistics. Third edition. W.
W. Norton, 1998.

[25] G. Gigerenzer and K. Hug. Domain-specific reasoning: social
contracts, cheating and perspective change. In Cognition, volume 43,
pages 127–171, 1992.

[26] A. Groce. Error explanation with distance metrics. In Lecture Notes
in Computer Science, volume 2988, pages 108–122, Jan. 2004.

[27] A. Groce and D. Kroening. Making the most of bmc counterexamples.
In Electronic Notes in Theoreitcal Computer Science, volume 119,
pages 67–81, 2005.

[28] A. Groce and W. Visser. What went wrong: Explaining counterex-
amples. In Lecture Notes in Computer Science, volume 2648, pages
121–135, Jan. 2003.

[29] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Principles of Programming Languages (POPL),
pages 58–70, 2002.

[30] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Companion
to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications (OOPSLA), pages
132–136, New York, NY, USA, 2004. ACM Press.

[31] R. Jhala and R. Majumdar. Path slicing. In Programming Language
Design and Implementation (PLDI), pages 38–47, New York, NY,
USA, 2005. ACM Press.

[32] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree
search. Artificial Intelligence, 27(1):97–109, Sept. 1985.

[33] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation
exploitation in error ranking. In Foundations of Software Engineering
(FSE), pages 83–93, New York, NY, USA, 2004. ACM Press.

[34] T. Kremenek and D. Engler. Z-ranking: Using statistical analysis

189

to counter the impact of static analysis approximations. In Static
Analysis, 10th International Symposium (SAS), pages 295–315, Jan.
2003.

[35] K. R. M. Leino, T. Millstein, and J. B. Saxe. Generating error traces
from verification-condition counterexamples. In Science of Computer
Programming, volume 55, pages 209–226, Mar. 2005.

[36] U. Manber and S. Wu. Fast text search allowing errors. Communica-
tions of the ACM, 35(10):83–91, 1992.

[37] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. Pse:
Explaining program failures via postmortem static analysis. In R. N.
Taylor, editor, Foundations of Software Engineering (FSE). ACM,
nov 2004.

[38] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff.
A new foundation for control-dependence and slicing for modern
program structures. In European Symposium on Programming
(ESOP), pages 77–93, Jan. 2005.

[39] T. Robschink and G. Snelting. Efficient path conditions in dependence
graphs. In International Conference on Software Engineering (ICSE),
pages 478–488, New York, NY, USA, 2002. ACM Press.

[40] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format string vulnerabilities with type qualifiers. In USENIX Security
Symposium, pages 201–220, 2001.

[41] M. Sipser. Introduction to the Theory of Computation. Second
edition. PWS, 1997.

[42] F. Tip and T. B. Dinesh. A slicing-based approach for locating type
errors. ACM Trans. Softw. Eng. Methodol., 10(1):5–55, 2001.

[43] W. Weimer and G. Necula. Finding and preventing run-time error
handling mistakes. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Vancouver,
British Columbia, Canada, Oct. 2004.

[44] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of
object-oriented component interfaces. In International Symposium of
Software Testing and Analysis, 2002.

[45] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta:
mining temporal API rules from imperfect traces. In ICSE ’06:
Proceeding of the 28th international conference on Software
engineering, pages 282–291, New York, NY, USA, 2006. ACM
Press.

190

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

