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A b s t r a c t  

In lhis paper we propose a scheme lhai  combines type in- 
ference and run-time checking to make exisiing C programs 
type saI~. }V~ describe lhe CCured type sysiem, which ex- 
lends lhat  of C by separaiing poinier types according to 
lheir usage. This type sysiem allows boih poiniers whose 
usage can be verified siaiically to be type saI>, and poiniers 
whose sai>ty musi be checked ai run lime. }V~ prove a type 
soundness resuli and lhen we preseni a surprisingly simple 
type inference algoriihm lhai  is able lo infer lhe appropriaie 
poinier kinds for exisiing C programs. 

Our experience wiih lhe CCured sysiem shows lhai  lhe 
inference is very eft~ciive for many C programs, as ii is able 
io infer ihai  most or all of the pointers are statically ver- 
ifiable lo be type saI>. The remaining poiniers are insiru- 
menied wiih efficieni run-lime checks lo ensure lhai  lhey are 
used sai>ly. The resuliing performance loss due lo run-lime 
checks is 0 15056, which is several limes belier  lhan com- 
parable approaches lhai  use only dynamic checking. Using 
CCured we have discovered programming bugs in esiablished 
C programs such as several SPECINT95 benchmarks. 

1 I n t r o d u c t i o n  

The C programming language provides programmers wiih a 
greai deal of flexibility in lhe represeniaiion of daia and lhe 
use of poiniers. These f~aiures make C lhe language of choice 
for sysiems programming. Unforiunaiely, lhe cosi is a weak 
type sysiem and consequenlly a greai deal of "flexibility" in 
iniroducing sublle bugs in programs. 
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While in lhe 1970s sacrificing lype safely for flexibilily 
and perfbrmance mighl have been a sensible language design 
choice, today lhere are more and more siiuaiions in which 
type safety is jusi as imporiani  as, if noi more importani 
lhan, performance. Errors like array oui-of:bounds accesses 
lead boih lo painful debugging sessions chasing inadverieni 
memory updaies and lo malicious atiacks exploiiing buft>r 
overrun errors in security-criiical code. (Almost g0% of re- 
ceni CERT advisories resuli fi'om security violaiions of this 
kind [29].) Type safety is desirable for isolaiing program 
componenis in a large or exiensible sysiem, wiihoui lhe loss 
of performance of separaie address spaces. II is also valu- 
able for inter-operaiion wiih sysiems wriiien in type-saf> 
languages (such as type-saf> Java naiive meihods, for exam- 
pie). Since a great deal of useful code is already wriiien or 
being wriiien in C, ii would be useful to have a praciical 
scheme lo bring type safety lo lhese programs. 

The work described in lhis paper is based on lwo main 
premises. Firsi, we believe lhai  even in programs wriiien in 
unsaf~ languages like C, a large pari of lhe program can be 
verified siatically to be type saf~. Then lhe remaining pari 
of lhe program can be insirumenied wiih run-lime checks 
lo ensure lhai  lhe execuiion is memory saf>. The second 
premise of our work is lhai  in many applicaiions, some loss 
of performance due lo run-lime checks is an accepiable price 
for type safety, especially when compared lo lhe alternaiive 
cosi of reprogramming lhe sysiem in a type-saf~ language. 

The main coniribuiion of lhis paper is lhe CCured type 
sysiem, an exiension of lhe C type sysiem wiih explicii types 
for poiniers inio arrays, and wiih dynamic types. II exiends 
previous work on adding dynamic types lo siaiically typed 
languages: types and capabiliiies for lhe siaiically-typed el- 
emenis are known ai compile lime, while lhe dynamically- 
typed elemenis are guarded by run-lime checks. Our type 
sysiem is inspired by common C usage, and includes sup- 
pori for physical type equivalence [8] and special "sequence" 
poiniers for accessing arrays. The second coniribuiion of 
lhe paper is a simple yei eft~ciive type-inf>rence algoriihm 
lhai  can lranslaie ordinary C programs inio CCured mostly 
auiomaiically and in a mai ler  of seconds even for a0,000- 
line programs. }V~ have used lhis inference algoriihm lo 
produce type-sat~ versions of several C programs for which 
we observed a slowdown of 0 15056. In lhe process, we have 
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also found programming bugs in the analyzed code, the most 
surprising being several array out-of-bounds errors in the 
SPECINT95 compress, go and i j p e g  benchmarks. 

}V~ continue in Section 2 with an informal overview of the 
system in the context of a small example program. Then 
in Section 3 we present a simple language of pointers, with 
its type system (in Section 4) and operational semantics (in 
Section 5), t~llowed by a discussion of the type sat~ty guar- 
antees of CCured programs. In Section 6 we present a simple 
constraint-based type int>rence algorithm for CCured. }V~ 
discuss informally the extension of the language presented 
in this paper to the whole C programming language in Sec- 
tion 7, necessary source code changes in Section 8, and in 
Section 9 we relate our experience with a prototype imple- 
mentation. 

2 Overview of the Approach 

To ensure memory safety, tbr each pointer we must keep 
track of certain properties of the memory area to which it 
is supposed to point. Such properties include the area's size 
and the types of the values it contains. For some pointers 
this information can be computed precisely at compile time 
and for others we must compute it at run time, in which case 
we have to insert run-time sai~ty checks. 

These two kinds of pointers appear in the example C pro- 
gram shown in Figure 1. The program operates on a hy- 
pothetical disjoint union datatype we call "boxed integer" 
that has been efficiently implemented in C as follows: if a 
boxed integer value is odd then it represents a 31-bit integer 
in the most significant bits along with a least significant tag 
bit equal to one, otherwise it represents a pointer to another 
"boxed integer". }V~ use the C datatype i n t  • to represent 
boxed integers. The variable a is a pointer to an array of 
boxed integers. The purpose of the function is to accumu- 
late in the variable acc the sum of the first 100 boxed integers 
in the array. In line 8 we compute the address of a boxed 
integer and in line 9 we t>tch the boxed integer. The loop 
in lines 10 12 unboxes the integer. The subscripts on the 
pointer type constructors "*" have been added to simplii~v 
cross-referencing from the text. 

By inspection of the program we observe that the values 
of the variables a and p are supposed to point into the same 
array. Neither of these variables is subject to casts (and 
they have no other aliases) and thus we know that  the type 
of the values they point to is indeed " in t  *". Furthermore, 
we observe that  while the pointer a is subject to pointer 
arithmetic, the pointer p is not. This means that we must 
check uses of "a" for array out-of-bounds errors but we do 
not need to do so for the uses of "p" (assuming that a check 
is perfbrmed in line 8 where "p" is initialized). In this paper 
we rei~r to "p" as a sa]~ pointer and to "a" as a sequer~ce 
pointer. To be more precise we associate this information 
with the pointer type constructors *4 and *2 respectively. 
Sat> and sequence pointers have only aliases that  agree on 
the type of the value pointed to and thus point to memory 
areas whose contents is statically typed. 

Now we turn our attention to the pointer values of "e". 
These values are used with two incompatible types " in t  *" 
and " in t  * *". This means that we cannot count on 

iint "i *2 a; // array 

2 int i; // index 

int acc; // accumulator 

4 int *a *4 p; // elem ptr 

5 int *5 e; // unboxer 

6 a c c  = 0; 
for (i=O; i<lO0; i++) { 

p = a + i; // ptr arith 

9 e = *p; // read elem 

io while ((int) e ~ 2 == O) { // check tag 

11 e = * (int *6 "7) e; // unbox 
le } 

i~ acc += ((int)e >> I); // strip tag 

e# } 

Figure 1: A short C program fragment demonstrating sat> 
and unsat> use of pointers. 

the static type of "e" as being an accurate description of 
its values. In our type system we say that  "e" has a dy- 
narnic pointer type and we associate this inibrmation with 
the pointer type constructors *s and *r. Dynamic point- 
ers always point into memory areas whose contents do not 
have a reliable static type and must therefore store extra 
information to classii]y their contents as pointers or integers. 
Correspondingly, the aliases of dynamic pointers can only be 
other dynamic pointers; otherwise a saI~ pointer's static type 
assumptions could be violated aider a memory write through 
a dynamic pointer alias. This means that  the type construc- 
tors *l, *a and *s must also be classified as dynamic point- 
ers. In this example program, we have a mixture of pointers 
whose static type can be relied upon and thus require lit- 
tle or no access checks (the saI~ and sequence pointers), and 
also pointers whose static type is unreliable and thus require 
more extensive checking. 

Motivated by this and similar examples, the CCured lan- 
guage is essentially the union of two languages: a strongly 
typed language (containing sat> and sequence pointers), and 
an untyped language for which the type information is main- 
rained and checked at run time. 

All values and memory areas in the system are either part 
of the safe/sequence world, or part of the dynamic world, 
The only place these worlds touch is when a typed mem- 
ory area contains a pointer to untyped memory, Untyped 
memory cannot contain saf~ or sequence pointers because 
we cannot assign a reliable static type to the contents of dy- 
namic areas, ~V~ shall formalize these invariants starting in 
Section 4. Beibre then, in order to provide some intuition 
for the formal development, we summarize in Figure 2 the 
capabilities and invariants of various pointer kinds. Since 
in C the null pointer is used frequently, we allow the saI> 
pointers to be null. Similarly, we allow arbitrary integers to 
be "disguised" as sequence and dynamic pointers, but not 
as safe pointers. 
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Kind 
Safe 
pointer 
to 7- 

Sequence 
pointer 
to 7- 

Dynamic 
pointer 

Invariants maintained 
• Either 0 or a valid address containing a value 

of type w. 

• Aliases are either saf~ or sequence pointers 
of base type v. 

• Knows at run-time if it is an integer, and 
if not, knows the memory area (containing 
a number of values of type w) to which it 
points. 

• Aliases are sai~ and sequence pointers of 
base type r. 

• Knows at run-time if it is an integer, and 
if not, knows the memory area (containing 
a number of integer or dynamic pointer val- 
ues) to which it points. 

• The memory area pointed to maintains tags 
distinguishing integers fi'om pointers. 

• Aliases are dynamic pointers, 

Capabilities 
• Cast from sequence pointer 

of base type T. 

• Set to O, 

• Cast to integer, 

• Cast to sai~ pointer of base 
type 7. 

• Cast from integer. 

• Cast to integer. 

• Perform pointer arithmetic. 

• Cast to and fi'om any dy- 
namic pointer type. 

• Cast from integer, 

• Cast to integer. 

• Perform pointer arithmetic. 

Access checks required 
• Null-pointer check when 

dereihrenced. 

• Non-pointer check (sub- 
sumes null-pointer check). 

• Bounds check when deref- 
erenced or cast to SAFE. 

• Non-pointer check. 

• Bounds check when deref- 
erenced. 

• Maintain the tags in the 
pointed area when reading 
and writing. 

Figure 2; Summary of the properties and capabilities of various kinds of pointers. 

Types: T ::= int ] 7- ref SAFE ] 7- ref SEQ 
I DYNAMIC 

Expressions; e :;= at' ] n ] el opez ] (r)e 

Commands: c ::= skip ] cl;c2 ] el :=e2  

Figure 3: The syntax of a simple language with pointers, 
pointer arithmetic and casts. 

3 A Language of Pointers  

There are many constructs in the C programming language 
that can be misused to violate memory safety and type 
safety. Among them are type casts, pointer arithmetic, ar- 
rays, union types, the address-of operator, and explicit deal- 
location. To simplif]y the presentation of the key ideas be- 
hind our approach we describe it formally ibr a small lan- 
guage containing only pointers with casts and pointer arith- 
metic, and then we discuss infbrmally in Section 7 how we 
extend the approach to handle the remaining C constructs. 

Figure 3 presents the syntax of types, expressions and 
commands for a simple programming language that serves 
as the vehicle fbr fbrmalizing CCured. At the level of types 
we have retained only the integers and the pointer types. In 
C the symbol "*" is used in various syntactic roles in con- 
junction with pointer types; to avoid confusion we have in- 
stead adopted the syntax of ML reihrences for our modeling 
language. ~V~ have three flavors of pointer types correspond- 
ing to sai~, sequence and dynamic pointers respectively. The 
type DYNAMIC is a pointer type that does not carry with it the 
type of the values pointed to. This is indicative of the fact 
that we cannot count on the rei~renced type of a dynamic 
pointer. 

Among expressions we have integer literals and an assort- 
merit of binary integer operations, such as the arithmetic and 

relational operations, written generically as op. Relational 
operations on pointers are done after casting the pointers to 
integers. The binary operation @ denotes pointer arithmetic 
and the notation ! e denotes the result of reading from the 
memory location denoted by e (like *e in C). 

The language of commands is greatly simplified. The 
only notable form of commands is memory update through a 
pointer (p := e is like *p = e in C). Control flow operations 
are not interesting because our approach is flow insensitive. 
Function calls are omitted fbr simplification; instead we dis- 
cuss briefly in Section 7 how we handle function calls and 
function pointers. Among other notable omissions are vari- 
able updates and the address-of operator on variables. In- 
stead, to simpli[v the formal presentation, we consider that 
a variable that  is updated or has its address taken in C 
would be allocated on the heap and operated upon through 
its address (which is an immutable pointer variable) in our 
language. Finally, we ignore here the allocation and deal- 
location of memory (including that of stack frames). Even 
though the resulting language appears to be much simpler 
than C, it allows us to expose formally and in a succinct way 
the major ideas behind our type system, the type inference 
algorithm and the implementation. The implementation it- 
self handles the entire C language. 

Our example program from Figure 1 can be transcribed 
in this language (with the use of variable declarations and a 
f~w additional control-flow constructs) as shown in Figure 4. 
The major change in this version is that  we have replaced 
the variables i ,  ace, p and e by pointers, and the accesses 
to those variables by memory operations. (The lines 1 5 are 
technically not representable in our language. ~V~ show them 
only to provide a context for the rest of the example. ~V~ also 
ignore the initialization of these variables.) All the newly 
introduced pointer type constructors are SAFE since the cor- 
responding pointers are used only for reading and writing. 
Another change is that one or more nested dynamic pointer 
type constructors are collapsed into the DYNAMIC type, 
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i DYNAMIC ref SEQ a; / /  array 

2 int ref SAFE p_i; / /  index 

int ref SAFE p_acc; // accumulator 

4 DYNAMIC ref SAFE ref SAFE p_p; // elem ptr 

5 DYNAMIC ref SAFE p_e; // unboxer 

: p_acc := 0; 

for (p_i := 0; !p_i < I00; p_i := !p_i + I) { 

p_p := (DYNAMIC ref SAFE)(a Q !p_i); 

9 p_e := !!p_p; 

io while ((int) !p_e % 2 == 0) { 

11 p_e := !!p_e; 
le } 

la p_acc := !p_acc + ((int)!p_e >> I); 
z4 } 

Figure 4: The  program ti'om Figure  1, t rans la ted  to CCured.  

4 The  Type Sys tem 

In this section we describe the  CCured  type  system for the  
language in t roduced in the  previous section. The  purpose 
of this type  system is to main ta in  the  separat ion between 
the  stat ical ly typed  and the  un typed  worlds, and to ensure 
tha t  all wel l- typed programs can be made  to run sa%ly with  
the  addi t ion of appropr ia te  run- t ime checks. The  run- t ime 
checks are described as part  of the  operat ional  semantics in 
Section 5. For now we concentra te  on type  checking, and 
we shall assume tha t  the  program contains complete  pointer  
kind information.  

The  type  system is expressed by means of the  following 
three judgments :  

Expression typing: F ~- e : r 
C o m m a n d  typing: F ~- c 
Convert ibil i ty:  r < r '  

In these judgments  F denotes a typing envi ronment  map-  
ping variable names to types. Since we do not have declara- 
tions in our language, the  typing envi ronment  is assumed to 
be provided externally. The  derivat ion rules for the  typing 
judgmen t s  are shown in Figure 5. 

Observe in the  typing rules tha t  we check casts wi th  re- 
spect to a convert ibi l i ty relat ion on types, whose rules are 
defined at the  bo t tom of the  figure. }¥~ also have a spe- 
cial typing rule %r creat ing a safe null pointer.  Pointer  
ar i thmet ic  can be done on sequence and dynamic  pointers. 
Memory  operat ions are legal for sa% and dynamic  pointers. 
A dere%rence operat ion on a sequence pointer  can be per- 
%rmed aider the  pointer  is cast to a saI> one. Notice also 
how the  type  DYNAMIC is used both  for pointers  into un typed  
areas and %r the  values stored into those areas. 

The  type  convert ibi l i ty relat ion captures  the  s i tuat ions 
in which a cast or coercion is legal in CCured.  Notice in 
the  rules tha t  any type  can be conver ted to an integer but  
integers can be conver ted only to sequence or to dynamic  
pointers.  However, whenever  we convert  an integer into a 
sequence or a dynamic  pointer  we obtain  pointers for which 
dere%rences are prevented  by run- t ime checks. The  last con- 
version rule is used for convert ing sequence pointers  into sa% 
pointers,  in which case the  re%fenced type  cannot  change. 

If this last conversion rule is used then  our operat ional  se- 
mant ics  inserts a run- t ime check to veri(y tha t  the  pointer  
being cast is within the  bounds  of its home area. 

It is impor tan t  to point  out  tha t  in most  cases casts act 
as conversions between diRerent representat ions of values 
and in some cases they  are also accompanied by run- t ime  
checks. The  run- t ime  manipula t ions  tha t  accompany casts 
make convert ibi l i ty diRerent from subtyping in several re- 
spects. First ,  convert ibi l i ty ex tended with t rans i t iv i ty  and 
viewed as a coercion-based subtyping relation [4], would be 
incoherent.  For example,  the  series of coercions correspond- 
ing to DYNAMIC <_ int <_ DYNAMIC have a diffe-rent effe-ct fi'om 
the  ident i ty  since even if" we s tar t  wi th  a pert~ctly usable 
pointer  we end up with  a pointer  tha t  has lost its capabil i ty 
to per%rm memory  operations.  Because of lack of coherence 
we cannot  allow a general subsumpt ion  rule and instead we 
let the  program control the  use of conversions, th rough casts. 
Consequently,  we do not have a t rans i t iv i ty  rule and we rely 
instead on the  p rogrammer  to obtain  the  same eft>ct by us- 
ing a sequence of casts. 

5 Operat ional  Semantics  

In this section we describe the  run- t ime  checks tha t  are nec- 
essary fbr CCured  programs to run sa%ly. ~¥~ do this in the  
form of an operat ional  semantics for CCured.  

The  execut ion envi ronment  consists of a mapping  E fi'om 
variable names to values, a set of al located m e m o r y  areas 
H (which we call homes), and a mapping  M (the memory)  
from addresses wi thin  the  homes to values. The  mapping  

is assumed to be provided external ly jus t  like the  similar 
mapping  F from the  typing rules. In our language only the  
m e m o r y  changes during the  execution. In order to be t te r  
expose the  precise costs of using each kind of pointer  we use 
a low-level representat ion of addresses as natura l  numbers.  
A home is represented by its s tar t ing address (H  C_ N) and 
for all homes we define a function s i z e  : H -+ N whose value 
is the  size of the  home. }¥~ require the  following propert ies  
of the  set H and the  function s i z e :  

• NULL: 0 E H and s i z e (0 )  = 1. 

• D I S J O I N T : V h ,  h ' , i , ( .  ( h : f i h '  A 0 < i < s i z e ( h )  A 
0 < i ' < s i z e ( h ' ) )  ¢ h + i ¢ h ' + i ' .  

~¥~ choose the  size of the  null home to be 1 in order to 
ensure tha t  only the  null pointer  belongs to the  null home. 
V ~  write H ~ tbr the  set H \{0}. A memory  corresponding to 
a set of al located homes is a mapping  of addresses to values 
Mn  : N --~ Values such tha t  its domain consists exact ly of 
the  addresses contained in the  non-null  homes: 

D o m ( M n ) = { h + i  I h C H  ~ A 0 < i < s i z e ( h ) }  

Since the  set of homes H does not  change during the  eval- 
uat ion we oI~en omit  the  subscript  H from the  memory.  ~Y~ 
define two operat ions on memory.  ~V~ write M(n) to denote  
the  contents  of the  m e m o r y  address n, and we write M [ v / n ]  
to denote  a new m e m o r y  s ta te  obtained from M by stor- 
ing the  value v at address n. Both  of these operat ions  are 
defined only when n is a valid address (n C Dora(M)). 
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Expressions: 

F ( x )  = r 

F~-x:r F ~- n : int 

F~- el ;Tref SEQ F K e2 ; int 

F ~ e l  @ ez : r r e f  SEQ 

Commands;  

F ~ e l  ; int F ~ e2 ; int F ~ e ; T' T' < T 

F ~- e l  op  ez : i n t  F K ( r ) e  ; r F K ( r  r e f  SAFE)0 : r r e f  SAFE 

F ~  el :DYNAMIC F ~ e ~  : int F ~  e : r r e f  SAFE F ~  e:DYNAMIC 

F ~ e l  ~ e z  :DYNAMIC F ~ ! e : T  F~!e:DYNAMIC 

F ~ - c l  F~-cz  

F ~ s k i p  F ~ c l ; c z  

Convertibil i ty:  

7-_< 7- 7-_< int 

F ~  e : T r e f  SAFE F ~  e' :T F~-e:DYNAMIC F~-e' :DYNAMIC 

F ~ - e : =  e' F ~ - e : = e '  

int < ~ ref SEQ int < DYNAMIC ~ ref SEQ < ~ ref SAFE 

Figure 5: The typing judgments. 

Expressions: 

Casts: 

Pointer  ari thmetic:  

Memory reads: 

Commands:  

E, 33 k n .~ n 

E(x) = v E, 33 ~ el g 'hi E, 33 ~ e~ g 'n~ 
I N T VA t{ O P 

E , M ~ x g v  N, 31 t- el op ez g 'hi op 'n~ 

E, 33 k e g n 

E, 33 ~ ( i= t ) e  g n 

E, M t- e g n 

C1 

C3 
E, 33 k (r r e f  SEQ)e .~ (0, 'n} 

E, M F - e ~ n  

E, 33 ~ (DYNAMIC)e $ <0, 'n} 

E, M F - e g n  
C7 

E, M ~ ( r  ref SAFE)e g n 

E , M  ~ e g  (h,n} 
C2 

E, 3g ~ ( i a t ) e  g h + n 

E, M ~- e g (h, n} 

C5 

E, 33 I- e g (h, n} 

C4 
E, 33 k (r r e f  SEQ)e .~ (h, n} 

E, 33 F e .~ (h, 'n} 
C6 

E, 33 k (DYNAMIC)e $ (h, n} 

0 __< n < size(h) 

E, 33 [- (r r e f  SAFE)e .~ h + n 
C8 

E , M  F- el g (h, 'nl} E , M  F- e2 g 'n2  

E, 33 t- el Q e2 g (h, 'hi + 'n2} 
ARITH 

SAFERD DYNRD 
E, 33 F- ! e g M(n) E,33  t- !e g M ( h  + n) 

E , 3 I  ~- skip ~ 3I  

E , 3 1 K  cl ~ 3I' E ,3I '  ~ c2 ~ 3I" 
SKIP CHAIN 

E,3I  ~ cl;c2 ~ 3I" 

M ~ el ~ ' -  , , ~  ~ ,  M ~ e2 ~ v2 ~,  M ~ el ~ <h,,.> ~ 0 _< ,. < size(h) ~ ,  M ~ e~ E, V2 

SAFEWR 
E, 3II ~ el :=  e2 ~ M[v2/n]  E, 3II ~ el :=  e2 ~ M[V~h + n] 

DYNWt{ 

Figure 6: The operat ional  semantics.  The boxed premises are the run- t ime  checks that  CCured uses. 
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The  values of integer and sai~ pointer  expressions are plain 
integers (without  any representat ion overhead over C), while 
the  values of sequence and dynamic  pointer  expressions is of 
the  tbrm (h, n}: 

g . l ~ e ~  v ::= n I (h ,n>  

The  la t ter  kind of pointer  value carries with it its "iden- 
t i ty" (represented by its home).  The  home is used both  to 
check if the  pointer  is actual ly an integer conver ted to a 
pointer  (when the  home is 0), or otherwise to retr ieve the  
size of the  home while performing a bounds  check. 

The  operat ional  semantics  is defined by means  of two 
judgments .  ~V~ write  Z, M k- e g v to say tha t  in the  en- 
v i ronment  Z and in the  memory  s ta te  denoted by M the  
expression e evaluates  to value v. For commands  we use a 
similar j udgmen t  Z, M k- c ~ M '  but  in this case the  result  
is a new m e m o r y  state.  The  derivation rules for these two 
judgmen t s  are given in Figure 6. 

Notice tha t  we have eight rules ibr casts, one rule for each 
combinat ion  of dest inat ion type  and form of the  value being 
cast. The  rules C3 and C5 show tha t  an integer is conver ted 
to a sequence or to a dynamic  pointer  by using a null home. 
The  rule C7 applies when we cast the  integer 0 or a sai> 
pointer  to another  sai> pointer,  while the  rule C8 applies for 
casts from sequence pointers to safe pointers. In this la t ter  
case we must  perform a bounds  check. Here and in the  rules 
to follow we mark  such run- t ime checks with  a box around 
them. Other  instances of run- t ime  checks are for memory  
operations.  If the  m e m o r y  operat ion uses a sai> pointer  then  
only a null-pointer  check must  be done, otherwise a non- 
pointer  check and a bounds  check must  be done. 

The  typing rules from Figure 5 suggest tha t  we can per- 
form a sequence of conversions r ref SEQ _< int _< r ref SEQ 
or even a similar one where the  dest inat ion type  is 7' r e f  
SEQ. This  is indeed legal in CCured  but  the  operat ional  rules 
show tha t  when s tar t ing with  a pointer  value (h, n} we end 
up after these two conversions wi th  the  value (0, h+n},  which 
is a pointer  value tha t  cannot  be used for reading and writ- 
ing. This  proper ty  is quite  impor tan t  in practice: programs 
tha t  cast pointers into integers and then  back to pointers 
will not  be able to use the  result ing pointers as m e m o r y  ad- 
dresses. ~V~ discuss this issue fur ther  in Section 8. 

5 . 1  T y p e  S a f e t y  

The type  system described in Section 4 enforces the  separa- 
t ion between the  typed  and the  un typed  worlds. The  oper- 
ational semantics of Section 5 describes the  run- t ime checks 
we perform for each operat ion on various pointer  kinds. In 
this section we formalize and outl ine a proof  of the  result ing 
safety guarantees  we obtain  for CCured  programs. 

For each non-null  home we define its kind as ei ther 
Typed(r), meaning tha t  it contains a number  of values of 
type  r and has only sai~ and sequence pointers of base type  
r point ing to it, or as Untyped, meaning tha t  it contains a 
number  of values of type  DYNAMIC and has only pointers  of 
type DYNAMIC pointing to it, 

Then  we define for each type  r the  set Ilrll,, of valid values 
of tha t  type. As the  nota t ion  suggests, this set depends on 

the  current  set of homes: 

Ilinql,1 = 
IIDYNAMICII]i = {<h,,,~> I h ¢ H a 

(h = o v k i n d ( h )  = U,~tvped)} 
l it r e f  SEQll,, = {(h,,,~} I h ¢ H A 

(h = o v k i n d ( h )  = T y p e d ( r ) ) }  
l it  r e f  SAFV'II,, = {h  + i l h e H A 0 _< i < o i - -~ (h)  A 

(h = 0 V k i n d ( h )  = T y p e d ( r ) ) )  

}¥~ extend the  nota t ion  v ¢ Ilrlln element-wise to the  cor- 
responding nota t ion  for envi ronments  Z ¢ IIFIIn (meaning 

v,. ¢ Do~r4n). Z ( , ' )  ¢ I Ie (* ' ) l l , , ) .  
At  all t imes during the  execution,  the  contents  of each 

memory  address must  correspond to the  typing constraints  
of the  home to which it belongs. }¥~ say tha t  such a mem- 
ory is well- ibrmed (wri t ten W F ( M n  )), a p roper ty  defined as 
follows: 

WE ( Mi~ ) e ~j 

Vh ¢ H ~. Vi ¢ N. 
0 _< i < ~ize(h) 

(k ind(h)  = U,~typed ~ M ( h  + i) ¢ IIDYNAMIclI,, 
A kind(h) = Typed(r) ~ M-(h ÷ i) e Ilrll,]) 

There  are several reasons wily ti le evaluat ion of an expres- 
sion or a command  can fail. The  most  obvious is tha t  a boxed 
run- t ime  check can fail. ~¥~ actual ly consider this to be sat> 
behavior.  Another  reason for failure is tha t  operands can 
evaluate  to unexpec ted  values, such as if the  second operand 
of Q evaluates to a value of the  form (h, n}. The  th i rd  rea- 
son is tha t  the  operat ions  on m e m o r y  are undefined if they  
involve invalid addresses. ~V~ state  below two theorems say- 
ing essentially tha t  the  last two reasons for failure cannot  
happen  in well- typed CCured  programs. 

In order to s ta te  a progress theorem we want to distin- 
guish between executions tha t  stop because memory  sai~ty 
is violated (i.e. t ry ing to access an invalid m e m o r y  loca- 
tion) and executions tha t  stop because of a failed run- t ime  
check (the boxed hypotheses in the  rules of Figure  6). ~V~ 
accomplish this by int roducing a new possible ou tcome of 
evaluation. ~V~ say tha t  ~, M k- e g CheckFailed when one 
of the  run- t ime checks fails during the  evaluat ion of the  ex- 
pression e. Similarly, we say tha t  Z, M k- c ~ CheckFailed 
when the  execution of the  command  c results in a failed 
run- t ime  check. Technically, this means  tha t  we add deriva- 
t ion rules tha t  ini t iate  the  CheckFailed result  when one of 
the  run- t ime  check fails and also rules tha t  propagate  the  
CheckFailed outcome from the  subexpressions to the  enclos- 
ing expression. 

T h e o r e m  1 ( P r o g r e s s  a n d  t y p e  p r e s e r v a t i o n )  I f  F k- 

Theo rem 2 (Progress for  comnmnds)  I f F  ~ c and Z ¢ 

The prooi~ of these theorems are fairly s t ra ightforward 
induct ions on the  s t ructure  of the  typing derivations. Note  
tha t  the  progress theorems s ta te  more than  just  m e m o r y  
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Expressions and commands: 

F l - e l : r r e f q ~ - - + C 1  F I- e2 : i n t  ~--+ C2 FI-e:T '~--+C T f ~ T ~ - - ~ C  I 

FI-e~  @e2 : r r e f  q ~  C~ LIC2 L l { q ¢  SAFE} FI-  ( r ) e : r ~  C L I C '  

F I- e : r r e f  q ~--+ C F I- el : r r e f  q ~--+ C1 F ~- c2 : T2 ~--~ C2  

F ~ - ! e : T ~ C  F~-e~ : : e 2 ~ C ~ U C 2 U C s  

Convertibility: 

7-_< int ~-+ O 

FI-  ( r r e f  q)0: r r e f  q ~  0 

int ! w ref q ~-+ {q # SAFE} Ti ref ql ! w2 ref q2 ~-+ {ql _~ q2} U {ql = q2 = DYNQ V wl ~ w2} 

Figure 7: Constraint generation rules. 

sai~ty. They also imply that  well-typed computations of non- 
dynamic type are type preserving, similar to corresponding 
results for a type-sat~ language. This means that  CCured 
is memory sat~ and is also type sat~ for the non-dynamic 
fragment. 

6 Type Inference 

So far we have considered the case of a program that  is 
written using the CCured type system. Our implementation 
does allow the programmer to write such programs directly 
in C with the pointer kinds specified using the __attribute__ 
keyword of GCC. But our main goal is to be able to use 
CCured with existing, un-annotated C programs. For this 
purpose we have designed and implemented a type int~r- 
ence algorithm that, given a C program, constructs a set of 
pointer-kind qualifiers that  make the program well-typed in 
the CCured type system. 

Our int~rence algorithm can operate either on the whole 
program, or on modules whose interfaces have been anno- 
tated with pointer-kind qualifiers. ~V~ rely on the fact that  
the C program already uses types of the tbrm "7- re:f". All 
we need is to discover for each occurrence of the pointer type 
constructor whether it should be sat~, sequence or dynamic. 
To describe the int~rence algorithm we extend the CCured 
type language with the pointer type "7- ref q", where q 
is a qualifier variable ranging over the set of qualifier val- 
ues {SAFE, SEQ, DYNQ} (where DYNQ is the qualifier associated 
with the DYNAMIC type). 

The ini~rence algorithm starts by introducing a qualifier 
variable for each syntactic occurrence of the pointer type 
constructor in the C program. }V~ then scan the program 
and collect a set of constraints on these qualifier variables. 
Next we solve the system of constraints to produce a substi- 
tution $ of qualifier variables with qualifier values and finally 
we apply the substitution to the types in the C program to 
produce a CCured program. 

The substitution $ is applied to types using the following 
rules: 

S(int) = int 

~DYNAMIC if $(q) = DYNQ 

$ ( r  r e f  q) = I S ( T )  r e f  $(q) otherwise 

Note that when the qualifier q is substituted with DYNQ 
we ignore the ret~renced type (r) of the pointer, which is 

consistent with the idea that for the dynamic pointers we 
should not count on the declared ret~renced type. DYNAMIC 
pointers never point to typed areas and thus the int~rence 
algorithm is designed to inter only DYNQ qualifiers in the ref- 
erenced types of DYNQ pointers. 

The overall strategy of int~rence is to find as many SAFE 
and SEQ pointers as possible. Simply making all qualifiers 
DYNQ yields always a well-typed solution, but SAFE and SEQ 
pointers are pret~rred. 

I. C o n s t r a i n t  Co l l ec t ion .  }V~ collect constraints us- 
ing a modified typing judgment written F ~ e : T ~:+ C and 
meaning that by scanning the expression e in context F we 
int>rred type r along with a set of constraints C. }¥~ also use 
the auxiliary judgments r _< r '  ~ C to collect constraints 
corresponding to the convertibility relation, and F F- c ~ C 
to express constraint collection from commands. The intent 
is that a solution to the set of constraints C, when applied 
as a substitution to the elements appearing beibre the sym- 
bol ~ ,  yields a valid typing judgment of the corresponding 
syntactic form in CCured. The rules for the constraint col- 
lection judgments are shown in Figure 7. 

The constraints fbr pointer arithmetic are fairly straight- 
forward and those for casts are expressed as a separate con- 
vertibility judgment. For memory reads and writes, we 
must bridge the gap between the rules of C and the rules 
of CCured. Specifically, we allow memory access through 
SEQ (not just SAFE) pointers, and we allow in t s  to be read 
or written through DYNAMIC pointers. In both cases, an im- 
plicit cast is inserted to yield a valid CCured program. In a 
memory write we allow for a conversion of the value being 
written to the type of the rei~renced type. 

To express the convertibility constraints in a concise way 
we introduce a convertibility relation on qualifier values, 
which essentially says SEQ can be cast to SAFE: 

q ~ q, dcf q, 
_ = q= V (q=SEQAq' =SAFE) 

Finally, to capture the requirement that  all DYNAMIC point- 
ers point only to dynamically typed areas, for each type of 
the florin T ref qr ref q we collect a POINTST0 constraint 
q = DYNQ ~ q' = DYNQ, 
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After  constraint  generat ion we end up with a set contain- 
ing the  following four kinds of constraints:  

AKITH: q ~ SAFE 

CONV: q J q' 
POINTST0:q = DYNQ~q' = DYNQ 

TYPEEQ: q = q' = DYNQ V T-i ~7-2 

The  constraint  7-, ~ 7-2 requires tha t  a valid solution is a 
subs t i tu t ion  $ tha t  makes the  types ,5(7-:) and ,5(7-2) identi- 
cal. This  not ion is made  more precise below. 

2. C o n s t r a i n t  N o r m a l i z a t i o n .  The  next  step is to nor- 
malize the  generated constraints  into a simpler form. Notice 
tha t  the  system of constraints  we have generated so far has 
condit ional  constraints.  The  POINTST0 constraints  are easy 
to handle because we can ignore them as long as the  quali- 
fier q on the  leit is unknown, and if it becomes DYNQ, we add 
the  constraints  ,qr = DYNQ" to the  system of constraints.  If 
q remains unknown at the  end of the  normal izat ion process 
we will make it SAFE or SEQ. 

However, the  same is not  t rue  of the  TYPEEQ constraints.  
If  we postpone such constraints  and the  qualifiers involved 
remain unconstra ined we would like to make them bo th  SAFE 
or SEQ (to mimimize  the  number  of DYNAMIC pointers).  But  
to do tha t  we must  in t roduce in the  system the  type  equali ty 
constraint ,  which might  lead to contradict ions tha t  require 
backtracking.  For tuna te ly  there  is a simple solution to this 
problem. }¥~ start  by simplii~ving the  TYPEEEQ constraint  
based on the possible forms of the  types r~ and r2: 

q = q' = DYNQ V int ~ int ~-~ 0 
q = q' = DYNQ V int ~ T2 ref q2 ~-+ {q = DYNQ, 

q' = DYNQ} 

q = q' = DYNQ V 7-: ref q: ~ int ~-+ {q = DYNQ, 

q' = DYNQ} 

q = q' = DYN~ V 7-: ref q: ~ 7-2 ref q2 ~-+ {q = q'} U C 
where q: = q2 = DYNQ V 7-: ~ 7-2 ~-+ C 

The  only subt le ty  is in the  last rule. }¥~ observe tha t  
a constraint  of the  tbrm "q = q' = DYNQ V 7-: r e f  q: 
7-2 r e f  q2" arises only when the  types  "7-1 r e f  q l  r e f  q" and 
"7-2 r e f  q2 r e f  q'" appear  in the  program. This  means  tha t  
the  following POINTSTO constraints  also exist: 

q = DYNQ ~ q: = DYNQ 

q' = DYNQ ~ q2 = DYNQ 

This in tu rn  means  tha t  the  disjunct q = q' = DYNQ in the  
last reduct ion rule is redundant  and can be el iminated.  

After  simpli[ving all TYPEQ constraints,  the  normalized 
system has only the  tbllowing kinds of constraints:  

AKITH: q ~ SAFE 

CONV: q ..~ q' 
POINTST0:q = DYNQ ~ q' = DYNQ 
ISDYN: q = DYNQ 

EQ: q = q'  

3. C o n s t r a i n t  S o l v i n g .  The  final step in our a lgor i thm 
is to solve the  remaining set of constraints.  The  a lgor i thm 
is quite  simple: 

3.1 Propaga te  the  ISDYN constraints  using the  constraints  
EQ, CONV, and POINTSTO. After this is done all the other 

qualifier variables can be made  SEQ or SAFE, as follows: 

3.2 All qualifier variables involved in AKITH constraints  are 
set to SEQ and this infbrmation is propagated  using the  
constraints  EQ and CONV (in this la t ter  case the  SEQ in- 
format ion is propagated  only from q' to q, or against 
the  direction of the  cast). 

3.3 }V~ make all the  other  variables SAFE. 

Essentially, we find first the  min imum number  of DYNQ 
qualifiers. Among  the  remaining qualifiers we find those on 
which pointer  ar i thmet ic  is per tbrmed and we make them 
SEQ, and the  remaining qualifiers are SAFE. This  solution is 
the best one possible in te rms  of maximiz ing  the  number  of 
SAFE and SEQ pointers.  

The  whole type  int~rence process is linear in the  size of the  
program. A linear number  of qualifier variables is in t roduced 
(one for each syntact ic  occurrence of a pointer  type  construc- 
tor),  then  a linear number  of constraints  is created (one for 
each cast or m e m o r y  read or write in the  program).  Dur-  
ing the  simplification of the  TYPEQ constraints  the  number  
of constraints  can get mult ipl ied by the  m a x i m u m  nest ing 
depth  of a qualifier in a type. Finally, constraint  solving is 
linear in the  number  of constraints.  

7 Handling the Rest  of C 

In the  interest  of clari ty we have formalized in this paper  
only a small subset of the  CCured  dialect of C. Our imple- 
menta t ion  handles the  entire C p rogramming  language along 
with  most  of the  extensions in the  G N U  C dialect, In this 
section we discuss informally how we handle the  rest of the  
C programming  language, The  full details are presented in 
a for thcoming paper,  

In the  DYNAMIC world, s t ructures  and arrays are simply 
a l ternat ive  nota t ions  for saying how many  bytes of storage to 
allocate. In the  SAFE world, s t ructures  accesses are required 
to respect the  types  of all fields. For example,  it is possible 
to have a SAFE pointer  to a s t ruc ture  field, but  you cannot  
perform ar i thmet ic  on such a pointer.  }V~ t rea t  unions as 
syntact ic  sugar for casts. 

Explici t  deallocation is current ly  ignored, and the  Boehm- 
}V~iser conservat ive garbage collector [8] is used to reclaim 
storage. However, the  CCured  system mainta ins  enough 
type  informat ion to allow the  use of a precise collector; this 
may  be future work. 

The  address-of opera tor  in C can yield a pointer  to a stack- 
al located variable. The  variable to which the  pointer  points  
may  be interred to live in the  DYNAMIC or SAFE worlds, de- 
pending on how the  pointer  is used. The  only difficulty is 
tha t  the  storage will be deal located when the  function re- 
turns,  so the  CCured  run- t ime  checks ensure no stack pointer  
ever gets wri t ten  into the  heap or globals. This  restr ict ion 
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allows the common use of address-of to implement call-by- 
ret~rence; tbr other uses, the storage in question may have 
to be allocated on the heap instead. 

DYNAMIC function pointers and variable-argument func- 
tions are also handled in CCured, by passing a hidden argu- 
ment which specifies the types of all arguments passed. The 
hidden argument is then checked in the callee, and parame- 
ters interpreted accordingly. Among other things, this level 
of checking is sutficient to detect format string errors. 

Certain C library functions must be handled specially. 
Several functions (of which malloc is the most important) 
are treated polymorphically, lest all dynamically-allocated 
data be marked DYNAMIC. A i~w others impose constraints 
on argument qualifiers: e.g., memcpy internally does pointer 
arithmetic, and hence cannot accept SAFE pointers. 

8 Source Changes 

The CCured type system and in%rence algorithm are de- 
signed to minimize the amount of source changes required 
to contbrm to its restrictions. However, there are still a i>w 
cases in which legal C programs will stop with a failed run- 
time check. In those cases manual intervention is necessary. 

One common situation is when the program stores a 
pointer in a variable declared to hold an integer, then casts 
it back to a pointer and derei>rences the pointer. In some 
cases, it sutfices to change the variable's declaration from 
from (say) unsigned long to void*. This type will certainly 
be marked DYNAMIC, but it will work. For other programs, we 
may be able to replace casts with pointer arithmetic. For ex- 
ample, if e is a sequence or dynamic pointer expression then 
the legal CCured expression "e ~) ( n -  (int)e)" is eft>ctively 
a cast of the integer n to a pointer (with the same home as 
e). As a last resort, it is possible to query the garbage col- 
lector at run time to find the home and type of any pointer, 
but so far this has not been necessary. 

Another problem in otherwise legal C code is the interac- 
tion between s izeof  and our fat pointers: one must change 
occurrences of s i zeof  (type) to s i zeof  (exprvssion), when- 
ever type contains pointers. A typical example, allocating an 
array of 5 integer pointers, is 

i n t  **p = ( in t**)mal loc(5  * s i z e o f ( i n t * ) ) ;  
This code will always allocate space for 5 SAFE pointers, even 
if p is ini~rred to point to SEQ or DYNAMIC pointers. This code 
must be changed to 

int **p = (int**)malloc(5 * sizeof(*p)); 
so the size passed to malloc is related to the size of *p. 

While most uses of address-of are to implement call-by- 
tel>fence, some programs attempt to store stack pointers 
into memory. Among the programs we have compiled with 
CCured, only two (the SPECINT95 benchmarks l i  and 
i jpeg)  do this. The solution is to annotate certain local 
variables with a qualifier that causes them to be allocated 
on the heap. For l i ,  which makes fairly extensive use of this 
i>ature, this results in a performance penalty of about 25%. 

When CCured changes the representation of pointers, this 
can lead to problems when calling functions in libraries that 
were not compiled with CCured. The typical solution is to 
write wrapper functions which translate between two-word 
and one-word arguments and return values. The wrapper 

must do the run-time checks assocated with the pointers, 
before passing them to the underlying library. 

The wrapper solution works well tbr the standard C 5- 
brary. However, we expect to encounter difficulties when 
interoperating with third-party libraries whose interface in- 
volves passing pointers to large structures which themselves 
contain pointers. ~V~ are experimenting with an alterna- 
tive implementation scheme in which the bookkeeping infor- 
mation for sequence and dynamic pointers that escape the 
CCured world are kept in a global table so that we do not 
have to change the representation of exported data struc- 
tures. 

9 Experiments 

~V~ ran though our translator several C programs ranging 
in size f¥om 400 (treeadd) to 30,000 ( i jpeg)  lines of code 
(including whitespace and comments), with several goals. 
First, we wanted to measure the pertbrmance impact of the 
run-time checks introduced by our translator. Second, we 
wanted to see how eft~ctive our int~rence system is at elim- 
inating these checks. Finally, we investigated what changes 
to the program source are required to make the program run 
under the CCured restrictions. 

}V~ used several test cases, some from SPECINT95 [26]: 
compress is LZW data compression; go plays the board game 
Go; i j peg  compresses image flies; l i  is a Lisp interpreter; 
and some from the Olden benchmark suite [6], a collection of 
small, compute-intensive kernels: bh is an n-body simulator; 
b i s o r t  is a sorting algorithm; em3d solves an elecromag- 
netism prob]em; hea l th  simulates Colombia's hea]th care 
system; mst computes minimum spanning trees; perimeter 
computes perimeters of regions in images; power simulates 
power market prices; t reeadd simply builds a binary tree; 
t sp  uses a greedy algorithm to approximately solve random 
Traveling Salesman Problem instances; and voronoi  con- 
structs Voronoi diagrams. 

Most of the source changes needed to run these bench- 
marks were simple syntactic adjustments, such as adding (or 
correcting) prototypes and marking printf-like functions. 
A t~w benchmarks required changing s izeof  (prevalent in 
i jpeg)  or moving locals into the heap (tbr l i ) .  No pro- 
gram required changes to the data structures or other basic 
design elements. A number of remaining bugs in our imple- 
mentation prevents us t¥om applying CCured to the other 
benchmarks in the SPECINT95 suite. 

The running time (median of five) of each of the bench- 
marks is shown in Figure 8. The measurements were made 
on an otherwise quiescent 1GHz AMD Athlon, 768MB Linux 
machine, using the gcc-2 .95 .3  compiler with -02 or -03 op- 
timization level (depending on benchmark size). 

In all cases the pointer kind int~rence was pertbrmed over 
the whole program. However, because int~rence time is lin- 
ear in the size of the program (as argued in Section 6), 
we have not observed scalability problems with our whole- 
program approach. In fact, our biggest scalability problem 
is with the optimizer in the C compiler that consumes our 
output (presented as a single, large C source file). 

Most of the benchmarks have between 30% and 150% 
slowdown. To measure the effectiveness of our inference al- 
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Name Lines Orig. CCured Puri(y 
of code time sf/sq/d ra t io  ratio 

SPECINT95 
compress 1590 9.586s 87/12/0 1.25 28 
go 29315 1.191s 96/4/0 2.01 51 
ijpeg 31371 0.963s 36/1/62 2.15 30 
li 7761 0.176s 93/6/0 1.86 50 

Olden 
bh 2053 2.992s 80/18/0 1.53 94 
bisort 707 1.696s 90/10/0 1.03 42 
emad 557 0.371s 85/15/0 2.44 7 
health 725 2.769s 93/7/0 0.94 25 
rest 617 0.720s 87/10/0 2.05 5 
perimeter 395 4.711s 96/4/0 1.077 544 
power 763 1.647s 95/6/0 1.31 53 
treeadd 385 0.613s 85/15/0 1.47 500 
tsp 561 3.093s 97/4/0 1.15 66 

Figure 8: CCured versus original performance. The mea- 
surements are presented as ratios, where 2.00 means the 
program takes twice as long to run when instrumented with 
CCured. The %f/sq/d" column show the percentage of 
(static) pointer declarations which were int>rred SAFE, SEQ 
and DYNAMIC, respectively. 

gorithm we used CCured with a naive int>rence algorithm 
that makes all pointers DYNAMIC. The slowdown in this case is 
more significant (6 to 20 times slower) and it approaches that 
reported by other researchers [2, 13, 18, 19] who tried an all- 
run-tinm-checks approach to memory sat~ty for C. For exam- 
pie, the most pointer-intensive benchmark is I±, which runs 
16 times slower if all pointers are blindly marked DYNAMIC; 
however, once the ini~rence discovers that ~gg the pointers 
are SAFE or SEQ, it is only twice as slow. 

Program size has a big influence on how many of the point- 
ers can be statically verified. Small programs like the Olden 
benchmark suite tend to have f~w data types, and they are 
used in straightforward ways. Large programs, especially 
those designed to be extended in the future, use pointers 
in many ways. In the case of i jpeg,  it uses object-oriented 
downcasts throughout, and thus a large number of the point- 
ers become DYNAMIC. 

~¥~ discovered and fixed several bugs in the SPECINT95 
benchmarks: compress and i j peg  each contain one array 
bounds violation, and go has (at least) eight array bounds 
violations and one use of an uninitialized integer variable as 
an array index. In each case we verified that fixing the bug 
did not change the progranFs eventual output (for the test 
vectors considered), which partially explains how these bugs 
survived fbr so long in otherwise well-tested programs. 

Most of the bugs in go involved erroneous index arithmetic 
within large, multi-dimensional arrays. Finding these bugs 
demonstrates an advantage of our type-sensitive approach. 
If we simply marked all home areas as untyped, and only 
checked for errors when a pointer strayed out of its home 
area, we would miss errors that happen to stay within the 
intended home area. While we were originally motivated by 
performance to discover saI~ pointers, we found that doing 
so enhanced our bug-finding ability too. 

The last column in Figure 8 shows the slowdown of these 
programs when instrumented with Purit~v (version 2001A) 
[10], a tool that instruments existing C binaries to detect 
memory errors and leaks by keeping two bits of storage tbr 
each byte in the heap (unallocated, uninitialized and initial- 
ized). However, Purit]y does not catch pointer arithmetic 
that yields a pointer to a separate valid region [13], a prop- 
erty that Fischer and Patil [20] show to be important. Pu- 
ri(y tends to slow programs down by a factor of 10 or more, 
much more than CCured. Of course, Purit]y does not require 
source code, so may be applicable in more situations. Pu- 
ritzy did find the uninitialized variable in go, but none of the 
other bugs, because the accesses in question did not stray 
far enough to be noticed. 

10 R e l a t e d  Work  

Abadi et al. [1] study the theoretical aspects of adding a 
Dynamic type to the simply-typed A-calculus and discuss ex- 
tensions to polymorphism and abstract data types. Thatte 
[28] extends their system to replace the typecase expressions 
with implicit casts. Their system does not handle rei~rence 
types or memory updates and Dynamic types are introduced 
to add flexibility to the language. In contrast our system was 
designed to handle memory reads and writes, allows DYNAMIC 
values to be manipulated (e.g., via pointer arithmetic) with- 
out checking their tags, and uses DYNAMIC types to guarantee 
the sai~ty of code that cannot be statically verified. 

Chandra and Reps [8] present a method tbr physical type 
checking of C progralns based on structure layout in the pres- 
ence of casts. Their int~rence method can reason about casts 
between various structure types by considering the physical 
layout of memory. Our example in Section 2 would fail to 
type check in their system for the same reason that we must 
mark some of the pointers DYNAMIC: its safety cannot be guar- 
anteed at compile time. Sift et al. [24] identii]y that many 
casts in C programs are safe, upcasts and present a tool to 
check such casts. 

The programming languages CLU [17], Cedar/Mesa [16] 
and Modula-{2+,3} [5] include similar notions of a dynamic 
type and a typecase statement. This idea can also be seen 
in CAML's exception type [22]. 

Other related work in this area falls into three broad cat- 
egories: (1) extensions to C's type system, (2) adding run- 
time checks to C, and (3) removing run-time checks from 
LISP. 

Previous efforts to extend C's type system usually deal 
with polymorphism. Smith et al. [25] present a polymor- 
phic and provably type-sat> dialect of C that includes most 
of C's t>atures (and higher-order functions, which our cur- 
rent system handles weakly) but lacks casts and structures. 
Evans [9] describes a system in which programmer-inserted 
annotations and static checking techniques can find errors 
and anomalies in large programs. Ramalingam et al. [21] 
have presented an algorithm tbr finding the coarsest accept- 
able type tbr structures in C programs. Most such type 
systems and int~rence methods are presented as sources of 
information. In this paper we present a type and int~rence 
system with the goal of making programs safe,. 
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There have been many attempts to bring some measure of 
sat~ty to C in the past by trading space and speed for secu- 
rity. Previous techniques have been concerned with spatial 
access errors (array bounds checks and pointer arithmetic) 
and temporal access errors (touching memory that has been 
freed) but none of them use a static analysis of the ibrm 
presented here. Kaut~r et al. [14] present an interpretive 
scheme called Saber-C that can detect a rich class of errors 
(including uninitialized reads and dynamic type mismatches 
but not all temporal access errors) but runs about 200 times 
slower than normal. Austin et al. [2] store extra informa- 
tion with each pointer and achieve sai~ty at the cost of a 
large (up to 540% speed and 100% space) overhead and a 
lack of backwards compatibility. Jones and Kelly [13] store 
extra information for run-time checks in a splay tree, allow- 
ing sat~ code to work with unsat~ libraries. This results in 
a slowdown factor of 5 to 6. Fischer and Patil have pre- 
sented a system that uses a second processor to perfbrm 
the bounds checks [19]. The total execution overhead of a 
program is typically only 5% using their technique but it 
requires a dedicated second processor. Loginov et al. [18] 
store type intbrmation with each memory location, incurring 
a slowdown factor of 5 to 158. This extra intbrmation allows 
them to peribrm more detailed checks and they can detect 
when stored types mismatch declared types or union mem- 
bers are accessed out of order. While their tool and ours are 
similar in many respects their goal is to provide rich debug- 
ging intbrmation and ours is to make C programs sat~ while 
retaining efficiency. Steft~n's r t c c  compiler [27] is portable 
and adds object attributes to pointers but fails to detect 
temporal access errors and does not perform any check opti- 
mizations. In fact, beyond array bounds check elimination, 
none of these techniques use type-based static analysis to 
aggressively reduce the overhead of the instrumented code. 

Finally, much work has been done to remove dynamic 
checks and tagging operations from LISP-like languages. 
Henglein [11] details a type int~rence scheme to remove tag- 
ging and untagging operations in LISP-like languages. The 
overall structure of his algorithm is very similar to ours 
(simple syntax-direct constraint generation, constraint nor- 
malization, constraint solving) but the domain of discourse 
is quite dift~rent because his base language is dynamically 
typed. In Henglein's system each primitive type construc- 
tor is associated with exactly one tag, so there is no need 
to deal with the pointer/array ambiguity that motivates our 
SEQ pointers. In C it is sometimes necessary to allocate an 
object as having a certain type and later view it as having 
another type: Henglein's system disallows this because tags 
are set at object creation time (that is, true C-style casts 
or unions are not fully supported [12]). Henglein is also 
able to sidestep update and aliasing issues because tagging 
and untagging create a new copy of the object (to which 
~e¢! can be applied, tbr example) so one never has tagged 
and untagged aliases for the same item. His algorithm does 
not consider polymorphism or module compilation [15]. The 
CCured system uses a form of physical subtyping for point- 
ers to structures and it is not clear how to extend Henglein's 
constraint normalization procedure in such a case. 

Jagannathan et al. [12] use a more expensive and more 
precise flow-sensitive analysis called polyrr~orphic splittir~g to 

eliminate run-time checks from higher-order call-by-value 
programs. Shields et al. [23] present a system in which dy- 
namic typing and staged computation (run-time code gen- 
eration) coexist: all deterred computations have the same 
dynamic type at compile-time and can be checked precisely 
at run-time. Such a technique can handle persisting dy- 
namic data, a weakness of our current system. Sot~ type 
systems [7'] also inter types tbr procedures and data struc- 
tures in dynamically-typed programs. Advanced soft type 
systems [30] can be based on inclusion subtyping and can 
handle unions, recursive types and other complex language 
t~atures. Finally, [15] presents a practical ML-style type in- 
t~rence system for LISP. As with Henglein [11], such systems 
start with a dynamically typed language and thus tackle a 
dift~rent core problem. 

11 Conc lus ion  and Future  Work 

The C programming language is the language of choice for 
systems programming because of its flexibility and control 
over the layout of data structures and the use of pointers. 
Untbrtunately, this comes at the expense of type sat~ty. In 
this paper we propose a scheme that combines program anal- 
ysis and run-time checking to bring type sat~ty to existing 
C programs by trading off some peribrmance. 

The key insight of this work is that even in C programs 
most pointers are used in such a way that they can be verified 
to be type sat~ using typing rules similar to those of strongly 
typed languages. Furthermore the rest of the pointers can 
be checked at run-time to ensure that they are indeed used 
saiely. The entire approach hinges on the ability to inier 
accurately which pointers need to be checked at run time 
and which do not. }¥~ present a surprisingly simple type 
int~rence algorithm that is able to do just that. 

Perhaps the most surprising result of our experiments is 
that in many C programs most pointers are peri~ctly sat~ 
(and our int~rence is able to discover that), which means that 
those programs are just as sat~ as if they had been written 
in a type-sat~ language. Consequently the cost of entbrcing 
sat~ty tbr many C programs is relatively low and even with a 
prototype implementation we were able to achieve overheads 
several times smaller than those of comparable tools that rely 
exclusively on run-time checking. 

The two flavors of typed pointers that we present in this 
paper cover many of the programming paradigms encoun- 
tered in C programs. But there are still other operations 
on pointers that could be statically proven sat~, which our 
type system fails to recognize. The most important exam- 
pie is tagged union types with incompatible members, which 
the current CCured system flags as untyped; a special case 
is object-oriented "downcasts," used heavily by i jpeg.  To 
handle these situations without resorting to the DYNAMIC 
sledgehammer, it would be useful to have a more expressive 
language of pointer types than our current system provides. 
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