
Modeling Readability to Improve Unit Tests

Ermira Daka, José Campos, and
Gordon Fraser

University of Sheffield
Sheffield, UK

Jonathan Dorn and Westley Weimer
University of Virginia

Virginia, USA

ABSTRACT
Writing good unit tests can be tedious and error prone, but even
once they are written, the job is not done: Developers need to reason
about unit tests throughout software development and evolution, in
order to diagnose test failures, maintain the tests, and to understand
code written by other developers. Unreadable tests are more dif-
ficult to maintain and lose some of their value to developers. To
overcome this problem, we propose a domain-specific model of unit
test readability based on human judgements, and use this model to
augment automated unit test generation. The resulting approach can
automatically generate test suites with both high coverage and also
improved readability. In human studies users prefer our improved
tests and are able to answer maintenance questions about them 14%
more quickly at the same level of accuracy.

Categories and Subject Descriptors. D.2.5 [Software Engineer-
ing]: Testing and Debugging – Testing Tools;

Keywords. Readability, unit testing, automated test generation

1. INTRODUCTION
Unit testing is a popular technique in object oriented programming,
where efficient automation frameworks such as JUnit allow unit tests
to be defined and executed conveniently. However, producing good
tests is a tedious and error prone task, and over their lifetime, these
tests often need to be read and understood by different people. De-
velopers use their own tests to guide their implementation activities,
receive tests from automated unit test generation tools to improve
their test suites, and rely on the tests written by developers of other
code. Any test failures require fixing either the software or the
failing test, and any passing test may be consulted by developers as
documentation and usage example for the code under test. Test com-
prehension is a manual activity that requires one to understand the
behavior represented by a test — a task that may not be easy if the
test was written a week ago, difficult if it was written by a different
person, and challenging if the test was generated automatically.

How difficult it is to understand a unit test depends on many
factors. Unit tests for object-oriented languages typically consist of
sequences of calls to instantiate various objects, bring them to appro-
priate states, and create interactions between them. The particular

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’15, August 31 - September 04, 2015, Bergamo, Italy
Copyright 2015 ACM ISBN 978-1-4503-3675-8/15/08
DOI: http://dx.doi.org/10.1145/2786805.2786838 ...$15.00.

ElementName elementName0 = new ElementName("", "");
Class<Object> class0 = Object.class;
VirtualHandler virtualHandler0 = new VirtualHandler(

elementName0, (Class) class0);
Object object0 = new Object();
RootHandler rootHandler0 = new RootHandler((ObjectHandler

) virtualHandler0, object0);
ObjectHandlerAdapter objectHandlerAdapter0 = new

ObjectHandlerAdapter((ObjectHandlerInterface)
rootHandler0);

assertEquals("ObjectHandlerAdapter",
objectHandlerAdapter0.getName());

ObjectHandlerAdapter objectHandlerAdapter0 = new
ObjectHandlerAdapter((ObjectHandlerInterface) null);

assertEquals("ObjectHandlerAdapter",
objectHandlerAdapter0.getName());

Figure 1: Two versions of a test that exercise the same function-
ality but have a different appearance and readability.

choice of sequence of calls and values can have a large impact on the
resulting test. For example, consider the pair of unit tests shown in
Figure 1. Both tests exercise the same functionality with respect to
the constructor of the class ObjectHandlerAdaptor in the Xi-
neo open source project (which treats null and rootHandler0
arguments identically). Despite this identical coverage of the subject
class in practice, they are quite different in presentation.

In terms of concrete features that may affect comprehension, the
first test is longer, uses more different classes, defines more variables,
has more parentheses, and has longer lines. The visual appearance
of code in general is referred to as its readability — if code is
not readable, intuitively it will be more difficult to perform any
tasks that require understanding it. Despite significant interest from
managers and developers [8], a general understanding of software
readability remains elusive. For source code, Buse and Weimer [7]
applied machine learning on a dataset of code snippets with human
annotated ratings of readability, allowing them to predict whether
code snippets are considered readable or not. Although unit tests
are also just code in principle, they use a much more restricted
set of language features; for example, unit tests usually do not
contain conditional or looping statements. Therefore, a general code
readability metric may not be well suited for unit tests.

In this paper, we address this problem by designing a domain-
specific model of readability based on human judgements that ap-
plies to object oriented unit test cases. To support developers in
deriving readable unit tests, we use this model in an automated
approach to improve the readability of unit tests, and integrate this
into an automated unit test generation tool. We present:
• An analysis of the syntactic features of unit tests and their

importance based on human judgement (Section 2.).
• A regression model based on an optimized set of features to

predict the readability of unit tests (Section 2.).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786838

107

• A technique to automatically generate more readable tests
(Section 3.).
• An empirical comparison between code and test readability

models (Section 4.).
• An empirical evaluation of the test improvement technique

(Section 4.).
• An empirical evaluation of whether humans prefer the tests

optimized by our technique to the non-optimized versions
(Section 4.).
• An empirical study into the effects of readability on test un-

derstanding (Section 4.).
Analysis of 116 syntactic features of unit tests shows that readability
is not simply a matter of the overall test length; several features
related to individual lines, identifiers, or entropy have a stronger in-
fluence. Our optimized model using 24 of these features results in a
model with a correlation of 0.79 with the user data, which improves
over the ability of general code readability models. Our technique
to improve tests succeeds in increasing readability in more than
half of all automatically generated unit tests, and validation with
humans confirms that the optimized tests are preferred. Although
we observe a reduction in the time humans spend on understanding
these tests, our experiments point out that understandability goes
beyond readability: For example, understanding exceptional behav-
ior appears to be more difficult than understanding regular behavior,
even if a test with exceptions may be more readable. This suggests
potential for future work to improve test understandability.

2. UNIT TEST READABILITY METRIC
The source code readability metric by Buse and Weimer [7] is built
on a dataset of human annotator ratings, where each code snippet
received readability ratings in the range of 1 to 5. Our aim is to
create a predictive model that tells us how readable a given unit
test is. Whereas Buse and Weimer trained a classifier to distinguish
between readable and less readable code, our aim goes beyond this:
We would like to use the model to guide test generation in producing
more readable tests. Therefore, we desire a regression model that
predicts relative readability scores for unit tests.

Our overall approach begins with producing a dataset of tests
annotated with numeric human ratings of readability. We then
identify a range of syntactic features that may be predictive of
readability (e.g., identifier length, token entropy, etc.). We then use
supervised machine learning to construct a predictive model of test
case readability from those features. To predict the readability of a
new test case we calculate its feature values and apply the learned
model. In this paper, we use a simple linear regression learner [39],
although in principle other regression learners are also applicable
(e.g., multilayer perceptron [39]). However, in linear regression
the resulting model (which consists of weightings for individual
features) can easily be interpreted, and the learning is quick, which
facilitates the selection of suitable subsets of features.

In this section, we describe how we collected the data to learn
this model, the features of unit tests we considered, and the machine
learning we applied to create the final model.

2.1 Human Readability Annotation Data
Both the test cases considered and the human annotators chosen
influence the quality of our readability model. While it is relatively
easy to assemble a diverse group of unit tests, particular attention
must be paid to participant selection and quality in this sort of human
study. For scalability we used crowdsourcing to obtain participants,
but found that the use of a qualification test is critical for such
crowdsourced participants.

Supervised learning requires a training set. In this work we used a
number of diverse and indicative open-source Java projects: Apache

commons, poi, trove, jfreechart, joda, jdom, itext and guava. Each
of these projects comes with an extensive test suite of developer-
written unit tests. In addition, we applied the EVOSUITE [20] unit
test generation tool in its default configuration to produce a branch
coverage test suite for each of the projects. Training tests were then
selected manually with the aim to achieve a high degree of diversity
(e.g., short and long tests, tests with exceptions, if-conditions, etc.)

To collect the human annotator data, we used Amazon Mechan-
ical Turk,1 and asked crowd workers to rate unit tests on a scale
of 1 to 5 using the presentation setup of Buse and Weimer [7]. As
in previous work, annotators were not given a formal definition
of what to consider readable, and were instead instructed to rate
code purely based on their subjective interpretation of readability.
However, while the original Buse and Weimer survey involved un-
dergraduates from the same institution, we find that crowdsourcing
leads to a much broader diversity of annotator expertise which must
be accounted for to learn a useful model.

We began by assessing the utility of general crowd worker re-
sponses for this task. We selected 100 test cases from our eight
benchmark projects, including developer-written as well as automat-
ically generated tests, and collected 2,388 human ratings for these
test cases (i.e., each annotator rated 15–32 test cases). To evalu-
ate the quality of these responses, we measured the inter-annotator
agreement by calculating the average Pearson’s correlation between
each annotator and the average test scores. The inter-annotator agree-
ment in this data set, generated from participants with no expertise
requirements or filtering, is only weak, with a value of 0.25.

This low correlation could arise for many reasons, including an
unsuitable choice of test cases or insufficient qualification of the
human annotators. To investigate this issue, we manually selected
50 test cases that are examples of either very high quality (e.g.,
concise, well documented, well formatted) or very low quality (e.g.,
long, complex, badly formatted). The initial selection was made by
the first author, and this set was refined by iterations with another
author, retaining only tests with unison agreement. For these test
cases we again gathered human annotator scores and measured the
inter-annotator agreement. The results confirmed the need to require
annotator expertise. The agreement was even lower than on the
first set of tests: The inter-annotator agreement in this experiment
was only 0.2, which leads us to the conclusion that the more likely
explanation is insufficient qualification of the human annotators.

2.2 Final Annotation Data Set
Based on these pilot studies, we designed our final experiment to
use a qualification test. This qualification test consisted of four ques-
tions of understanding based on example Java code. Only human
annotators who correctly answered three out of the four questions
were allowed to participate. Our observations that crowdsourced
participants can be fruitfully used for such human studies [27, 37]
provided that care is taken to avoid participants who are simply
trying to “game the system” [23] is consistent with previous work.

Our final experiment gathered data on 450 human- and machine-
written test cases, ultimately obtaining 15,669 human readability
scores. We conducted the experiment in stages, initially focusing on
all tests equally but subsequently gathering additional annotations
on particular tests to ensure that each test feature considered (see
Section 2.3) had enough annotations for machine learning purposes.
Restricting attention to qualified participants increased the inter-
annotator agreement substantially, to 0.5. In addition, we generated
200 pairs of tests using the EVOSUITE tool, such that each pair had
the same coverage quality but a different textual representation. For
these pairs of tests we gathered a separate set of forced-choice judg-

1http://aws.amazon.com/mturk/, accessed 03/2015.

108

http://aws.amazon.com/mturk/

scores

D
e
n
s
it
y

2.0 2.5 3.0 3.5 4.0 4.5

0
.0

0
.2

0
.4

0
.6

0
.8

Figure 2: Score distribution for the human test annotation
dataset.
ments (i.e., annotators were asked to select which of the two tests
were the most readable) for use in feature selection (see Section 2.5).

Figure 2 shows the underlying frequency distribution of readabil-
ity scores for the 450 tests. The histogram shows that there are few
tests with very high or very low scores, and the majority of scores
is in the range from 3.0-4.0. We note that our distribution of test
readability is quite different from the bimodal distribution of source
code readability observed by Buse and Weimer [7], motivating the
need for a test-specific model of readability.

2.3 Features of Unit Tests
The readability of a unit test may depend on many factors. We
aggregated features by combining structural, logical complexity,
and density code factors. All features used by Buse and Weimer [7]
are included in this set, as well as the entropy and Halstead features
used by Posnett et al. [34]. Additionally, we included the following
new features:

Assertions: This feature counts the number of standard JUnit
assertions. Additionally we included a binary feature has assertions
which has value 1 if a test case contains assertions, and 0 otherwise.

Exceptions: We propose a feature to measure exceptions since
exceptional behavior is handled differently from regular behavior
in tests. As we did not encounter any tests with more than one
expected exception, we use a binary feature has exceptions.

Unused Identifiers: Unit tests are typically short and contain few
variables. In our anecdotal experience with EVOSUITE we found
that developers do not prefer tests that define but never use variables.

Comments: We count the number of lines for single-line (“//”)
and multi-line (“/* ... */”) comments. However, as EVOSUITE and
other tools generate comments mainly within the catch block of
an expected exception, where it shows the error message of the
exception, we refined the comments feature to two versions, one
that counts regular comments, and one that counts the comments
within catch blocks. Comments are removed before calculating
code-specific features (e.g., features based on numbers, classes) but
included for general presentational features (e.g., line length).

Token features: We identified several additional common syn-
tactic features not captured in past readability models. In particular,
we observe that unit test generation tools often tend to include de-
fensive (sometimes redundant) casts. Furthermore, we propose a
feature to count the overall tokens identified by the parser. Finally,
we refined the “single character occurrence” feature used by Buse
and Weimer, which counts the number of occurrences of different
special characters (parenthesis, quotation marks, etc.) with a feature
that counts all the special characters (single characters).

Datatype features: Different primitive data types have a possible
impact on readability. Hence, we propose features based on the
occurrence of the value null, Boolean values (true and false), array
accesses, type constants (e.g., Object.class), floating point numbers,
digits, strings, characters, and the length of strings. We also added
a feature measuring the “English-ness” of string literals, using the
language model of Afshan et al. [1].

Statement features: We propose features to count different types
of statements, in particular constructor calls, field accesses, and
method invocations.

Class and method diversity: In addition to diversity, as captured
by entropy features at the level of tokens and bytes, we also propose
features to capture diversity in terms of the classes, methods, and
identifiers used. For each of these, we include a feature counting the
unique number as well as the ratio of unique to total number.

Table 1 lists all the candidate features, showing which of the
features we used in terms of the total value for the unit test, the
average value per line, and its max value in any line in the test case.
In total, we considered 116 candidate features (in Section 2.5 we
use feature selection to build our model from the 24 most relevant).

To analyze the influence and predictive power of the individual
features, Table 1 shows the Pearson’s correlation between each
feature and the average test scores (ranging from a weak positive
correlation of 0.21 for average blank lines to a strong negative corre-
lation of -0.5 for the maximum line length and total identifier length),
and the result of a one-feature-at-a-time analysis. For the latter, we
train a linear regression model using only one feature, and determine
the correlation with 10-fold cross validation. We also considered
a leave-one-feature-out analysis, where one measures the effect of
a feature by in terms of the difference between a model learned
using all features and with all but the feature under consideration;
however, leave-one-out analyses are not applicable in the presence
of feature overlap and due to our very large set of related features the
results are not representative. Finally, we also applied the Relief-F
method [36], which agrees with the one-feature-at-a-time analysis
and is thus omitted for brevity.

2.4 Feature Discussion
Considering that a unit test is often simply a sequence of calls, one
would expect the length of that sequence to be one of the main
factors deciding on the readability. However, as shown in Table 1,
the number of statements (test length) on its own surprisingly only
has weak predictive power. However, other features related to the
length have a larger influence on the readability. In particular, the
line length plays an important role, both in terms of maximum line
length as well as the total line length. The maximum line length
presumably is important because a test case can have bad readability
even if most lines are short and only a single line is very long.
The “total” line length essentially amounts to the total number of
characters in the test and thus is a better representation of length
than the number of statements.

We furthermore observe that the identifiers in a test have a large
influence on its readability. This refers to features related to the num-
ber of identifiers, their length, and their diversity, and is a challenge
for test generation tools, which typically use simple heuristics to de-
rive names for variables. The diversity in general results in important
features, for example captured by byte and token entropy [34].

Only a few features are positively correlated with test readability:
comments have a weak positive correlation, as does the ratio of
blank lines (avg. blank lines). Surprisingly, exceptions also have
very weak positive correlation. We expected assertions to show a
strong influence on readability, but there is no correlation between
assertions and the test score, and the predictive power is weak.

The small influence of loops and conditional statements to some
extent may be attributed to our choice of test cases for annotation:
Many of the tests are generated by EVOSUITE, which generates
only tests that are sequences of calls. The manually written tests
with loops and conditional statements included in the dataset tend to
be short and well-formatted, contributing to the small but positive
influence of these features.

109

Table 1: Predictive power of features based on correlation and one feature at a time analysis, and optimized regression model.
Correlation One feature a time Correlation One feature a time

Feature name total max avg total max avg Feature name total max avg total max avg

identifier length -0.50 -0.42 -0.46 0.50 0.41 0.45 commas -0.15 -0.20 -0.15 0.13 0.14 0.13
line length -0.45 -0.50 -0.43 0.4 0.49 0.41 halstead difficulty -0.15 - - - - -
constructor calls -0.45 - -0.24 0.44 - 0.20 has exceptions 0.15 - - 0.11 - -
byte entropy -0.39 - - 0.31 - - identifier ratio 0.15 - - 0.11 - -
unique identifiers -0.37 -0.25 -0.14 0.36 0.22 0.11 method invocations -0.14 -0.06 -0.03 0.09 -0.00 -0.07
identifiers -0.36 -0.23 -0.29 0.36 0.20 0.27 string length -0.14 -0.24 -0.20 0.09 0.23 0.19
assignments -0.33 - -0.16 0.32 - 0.13 arrays -0.14 -0.05 -0.06 0.11 -0.05 -0.01
casts -0.33 -0.33 -0.28 0.32 0.32 0.26 indentation -0.13 0.08 -0.01 0.10 0.02 -0.25
parentheses -0.31 - -0.28 0.30 - 0.26 field accesses -0.13 -0.14 -0.17 0.11 0.11 0.15
keywords -0.30 -0.28 -0.17 0.28 0.27 0.14 halstead effort -0.13 - - 0.13 - -
halstead volume -0.27 - - 0.18 assertions -0.12 - -0.04 0.09 - -0.10
distinct methods -0.27 -0.05 0.00 0.26 -0.02 -0.18 additional assertions -0.12 - - 0.09 - -
single characters -0.26 -0.32 -0.24 0.17 0.22 0.16 nulls -0.12 -0.20 -0.15 0.06 0.19 0.12
periods -0.25 -0.22 -0.17 0.24 0.20 0.13 class ratio -0.10 - - 0.04 - -
comparison operations -0.25 - -0.23 0.24 - 0.23 blank lines 0.08 - 0.21 0.03 - 0.19
tokens -0.24 -0.28 -0.21 0.15 0.17 0.14 unused identifiers -0.07 - - 0.02 - -
digits -0.24 -0.24 -0.19 0.21 0.22 0.161 string score 0.06 - - 0.01 - -
token entropy -0.24 - - 0.17 - - strings -0.05 -0.19 -0.13 0.00 0.17 0.10
floats -0.22 -0.21 -0.17 0.20 0.19 0.14 excep. comments 0.05 - 0.15 -0.00 0.12
comments 0.20 - 0.04 - 0.18 -0.01 arithmetic operations -0.04 - 0.03 -0.07 - -0.05
test length -0.19 - - 0.13 - - branches 0.04 - 0.06 0.02 - 0.02
numbers -0.19 -0.18 -0.07 0.18 0.17 0.04 types -0.02 -0.08 -0.04 -0.11 0.05 -0.02
spaces -0.19 - -0.17 0.13 - 0.13 has assertions 0.01 - - -0.14 - -
loops 0.19 - 0.18 0.17 - 0.17 method ratio 0.01 - - -0.21 - -
booleans -0.16 -0.17 -0.01 0.14 0.13 -0.23 characters 0.00 -0.03 0.04 -0.15 -0.08 -0.01

test_score = −0.0001× total_line_length− 0.0021×max_line_length + 0.0076× total_identifiers− 0.0004× total_identifier_length− 0.0067×max_identifier_length− 0.005× avg_identifier_length
+0.0225× avg_arithmetic_operations + 0.9886× avg_branches + 0.1572× avg_loops + 0.0119× total_assertions− 0.0147× total_has_assertions + 0.1242× avg_characters

−0.043× total_class_instances− 0.0127× total_distinct_methods + 0.0026× avg_string_length + 0.1206× total_has_exceptions− 0.019× total_unique_identifiers− 0.0712×max_nulls
−0.0078× total_numbers + 0.1444× avg_nulls + 0.334× total_identifier_ratio + 0.0406× total_method_ratio− 0.0174× total_floats− 0.3917× total_byte_entropy + 5.7501

2.5 Feature Selection
Feature selection is a widely used technique that reduces the di-
mension of a dataset with respect to a given value [12]. Selecting
a subset of potential inputs from the total feature set can help on
compacting relevant information, and removing the noise in predic-
tion [31]. To improve the learning process and the generality of the
resulting model, it is thus desirable to reduce the number of features
using feature selection techniques.

Feature selection techniques are classified [15, 18] in two main
categories, called filter and wrapper models. A filter model typically
consists of removing features that are shown to have low predictive
power. For example, as a baseline we considered the use of corre-
lation and the Relief-F filter model method [36], which select 43
and 21 features leading to a correlation of 0.65 and 0.7 respectively.
We desire a higher quality feature set, however, and thus focus on
wrapper model feature selection.

A wrapper model selects subsets of variables considering the
learning method as a black box, and scoring inputs based on their
predictive power. We considered forward and backward feature se-
lection; in forward selection one starts from an empty set of features,
and iteratively adds features based on the resulting predictive power.
In backward selection the starting point is the full set of features,
and one iteratively removes individual features.

We used a steepest ascent hill climbing algorithm to perform
this feature selection. That is, for forward selection we start with a
randomly chosen feature, create a regression model using only that
feature, and calculate the correlation using 10-fold cross-validation.
Then, for each other feature, we determine the correlation of a
model trained using this and the first feature. The pair with the
highest correlation is the new starting point, and we explore all
possible variants to add another feature. This is done iteratively,
until there exists no feature that can be added while increasing the

correlation value. In our experiments, forward feature selection
achieved substantially better results than backward feature selection
and is used for our model.

To avoid overfitting the model to the training set, in addition to
standard cross-validation we used the set of 200 pairs of test cases
with human annotation data described in Section 2.2. For each of
the tests in a pair we predicted the readability score, and then ranked
the paired tests based on their score (represented with 0 or 1). Then,
we measured the agreement between the user preference (i.e., 0 or
1, depending on whether more human annotators preferred the first
or second test in the pair), using Pearson’s correlation.

We applied the forward feature selection 1,000 times (see Fig-
ure 3a), and the best configuration consisting of 16 features achieved
a correlation of 0.86. However, when measuring user agreement, the
correlation of the same configuration is only 0.49, which suggests a
certain degree of overfitting to the training data. To counter this, we
re-ran feature selection, but rather than using the correlation to guide
the hill-climbing, we used the sum of correlation and user agreement.
As Figure 3b shows, this reduces the achieved correlation slightly,
but increases the agreement substantially.

The most frequently selected feature is “total identifier length”,
which occurred in 90% of all runs; the second most frequently
selected feature is “max line length” (82% of runs), showing the
importance of this feature. Interestingly, “total exceptions” was
selected in 56% of the runs, suggesting that although the predictive
power of this feature on its own is not so strong, it appears inde-
pendent from other features. Byte entropy (52%) is selected more
frequently than token entropy (19%), which suggests that token
entropy is correlated with other features.

In the end, the overall best configuration consists of 24 features,
shown in bold in Table 1, and the resulting regression model is
shown below the table. This combination of features achieves a

110

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●●

●

●

●

●●●

●●

●
●

●

●

●●

●
●
●

●
●

●

●●●●●●●

●

●●●●
●●

●

●●
●
●

●

●

●

●●
●
●
●

●

●

●●●

●

●

●

●

●
●
●●

●

●

●
●●

●

●

●

●

●

●●

●

●●
●

●

Correlation Agreement

0
.0

0
.2

0
.4

0
.6

0
.8

(a) Selection using correla-
tion

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●
●
●●
●●●
●

●

●

●

●
●●

●

●

●●
●

●●
●

Correlation Agreement

0
.0

0
.2

0
.4

0
.6

0
.8

(b) Selection using correla-
tion and agreement

Figure 3: Results of the feature selection measured in terms of
Pearson’s correlation with 10-fold cross validation, and agree-
ment with user preferences for test pairs.
Algorithm 1 Test Case Optimization
Require: Test case t, coverage objective c
Ensure: Optimized test case t′

1: procedure OPTIMIZE(t, c)
2: T ← GENALTERNATIVES(t, c, length(t))
3: t′ ← select highest ranked t′ in T
4: return t′

5: procedure GENALTERNATIVES(t, c, start)
6: T ← {t}
7: for p← start down to 1 do
8: s← statement at position p in t
9: for all s′ ∈ get all replacements for s do

10: t′ ← replace s with s′ in t
11: if t′ satisfies c then
12: T ← T∪ GENALTERNATIVES(t′, c, p− 1)
13: return T

correlation of 0.79 with a root relative squared error rate of 61.58%,
and has a high user agreement (0.73).

3. GENERATING READABLE TESTS
Given a predictive model of test readability, we would now like
to apply this model to improve automated unit test generation. As
search-based testing is a common technique to generate unit tests,
in principle it would be possible to simply include the readability
prediction as a second objective in a multi-objective optimization,
and thus optimize tests towards both, coverage and readability, at
the same time. However, there is a dichotomy between the need
for search techniques to include redundancy in the tests to explore
the state space (i.e., statements that do not contribute to the code
coverage), and the detrimental effects of this redundancy on the read-
ability. Therefore, we use a post-processing technique to optimize
unit tests, which has the additional benefit that it is independent of
the underlying test generation technique, allowing our approach to
apply to any such black box unit test generator.

Algorithm 1 describes this post-processing algorithm: We assume
a test case t is a sequence of statements t = 〈s1, s2, . . . , sl〉 of
length l, where each statement is either a method call, a constructor
call, some other form of assignment (e.g., primitive values, public
fields, arrays, etc.) or an assertion. The algorithm is given a test
case t generated for coverage obligation c. It is assumed that t is
minimized with respect to c; that is, removing any of the statements
in t means that c is no longer satisfied.

Given these inputs, we generate the set of alternative versions of
t that still satisfy c as follows: We iterate over the statements in the
test from the last statement to the first statement (Line 7). For each
statement we determine the possible set of replacement statements
(Line 9), consisting of all possible method or constructor calls that

generate the same return type. This restriction ensures that the vari-
able defined at the statement (if any) still exists after the replacement.
We only consider replacements for statements calling constructors
or methods, but in the future, other types of transformations could
also be integrated. Any additional parameters of the replacement
call are assigned randomly chosen existing variables of the desired
types, the value null, or if no variable of the required type exists,
then an instance can also be generated by recursively inserting a
random generator for that type and satisfying its dependencies (e.g.,
based on the statement inseration in EVOSUITE [20]).

For each candidate replacement t′ we determine if it still satisfies
coverage objective c by executing t′ and observing its coverage.
If it does, then we recursively apply the replacement algorithm to
t′ starting at the position preceding the modified statement, and
keep all valid replacements. In the end, T contains the set of valid
replacements for t that still satisfy c. The tests in T are then sorted
by readability, and the most readable test in T is selected.

For example, consider the first test case in Figure 1, which was
generated to cover the constructor of ObjectHandlerAdapter:
Alternative generation would start with the last statement, which is
an assertion, and thus is not modified. The next statement considered
is the constructor call. The class ObjectHandlerAdapter has
four different constructors, but as the one called in the original
test is the coverage objective of the test, replacements with the
three other constructors no longer satisfy this objective and are
discarded. Because the algorithm is randomized it also attempts
to replace the constructor call with a new parameter assignment.
Assume it satisfies the parameter with a null reference: The coverage
obligation is still satisfied, and minimization can now remove the
first five statements of this alternative, as they are no longer used
in the constructor call, and thus not needed in order to satisfy the
coverage goal. The new test has no more statements to modify, so no
further alternatives can be generated from this test, and the algorithm
continues generating alternatives with the next statement of the
original statement, which is the constructor call of RootHandler.
In the end, the alternative that calls the constructor with a null value
has the highest readability value (3.67 vs. 3.30 for the original test),
and is chosen as replacement.

4. EMPIRICAL EVALUATION
This section contains an empirical evaluation of default test cases
(i.e, test cases generated with default parameters) and test cases
optimized for readability. In particular, we empirically aim to answer
the following research questions:
RQ1: How does the test readability metric compare to code read-

ability metrics?
RQ2: Can our test readability metric guide improvement of gener-

ated unit tests?
RQ3: Do humans prefer readability optimized tests?
RQ4: Does readability optimization improve human understand-

ing of tests?

4.1 Experimental Setup
4.1.1 Unit Test Generation Tool
We have implemented the algorithm described in Section 3. in the
EVOSUITE [20] tool for automatic unit test generation. EVOSUITE
uses search-techniques to derive test cases with the aim to maxi-
mize coverage of a chosen target criterion (e.g., line coverage or
branch coverage). After the generation, EVOSUITE applies several
post-processing steps to improve readability: For each individual
coverage objective (e.g., branch) a minimized test case is generated;
that is, removing any statement from the test will lead to the cov-
erage objective no longer being satisfied. In these minimized tests,
primitive values are inlined to reduce the number of variables, and

111

then the primitive values are minimized (i.e., strings are shortened,
and numbers are decremented as close as possible to 0 without vio-
lating the coverage objective). Finally, assertions are added to the
tests, and minimized using an approach based on mutation analy-
sis [22]. The readability optimization algorithm from Section 3. was
integrated as a further step of this chain of optimizations.

4.1.2 Experiment Procedure
For RQ1, we used the public dataset by Buse and Weimer [7], our
dataset of 450 annotated test cases (Section 2.), and the set of 200
test pairs used to support feature selection (Section 2.), and measured
the correlation and agreement of different readability models.

For RQ2-4, we manually selected 30 classes from open source
projects, with the criteria that they (1) are testable by EVOSUITE
with at least 80% code coverage, (2) do not exhibit features currently
not handled by EVOSUITE’s default configuration such as GUI com-
ponents, and (3) have less than 500 non-comment source statements
(NCSS) and few dependencies, such that they are non-trivial yet
understandable in a reasonable amount of time. For each of the
chosen classes we generated 10 tests for each coverage objective
(i.e., branch) to account for the randomness of the test generation ap-
proach, with and without the readability optimization introduced in
this paper. Furthermore, we generated an additional 10 test cases per
branch per class with both configurations, but modified EVOSUITE
to generate failing assertions (i.e., during the assertion generation us-
ing mutation analysis [22] the assertions were chosen to pass on the
mutants rather than the original class). To answer RQ2, we compare
the default and optimized tests in terms of their readability score
as predicted by our test readability model. We used the Wilcoxon-
Mann-Whitney statistical symmetry test, and the Vargha-Delaney
Âab statistics to evaluate the significance of the optimization [4].

For RQ3, we selected three random pairs of tests for each class
from the RQ2 dataset; each pair consisting of one test generated
with and one without the readability optimization, both cover the
same branch, and they differ in readability score. This resulted in a
total of 90 pairs of tests, and we used a forced-choice questionnaire
on Amazon Mechanical Turk (see Section 2.) to determine for each
pair which test is preferred by users.

For RQ4, we selected 10 out of the 30 classes with large differ-
ences in readability of its tests, and for each class chose either a
pair of passing or failing tests. (Note that our procedure to gener-
ate failing tests did not guarantee failing tests, hence the pass or
fail status within pairs is not always identical.) To recruit students
for RQ4, we invited all computer science students (undergraduate
and postgraduate) at the University of Sheffield and asked them to
perform a pre-qualification quiz. This quiz consisted of the four
questions from the Mechanical Turk qualification plus one JUnit
specific question, and we selected 30 students who answered at
least 3 questions correctly. The experiment was conducted in the
computer lab of the university’s Department of Computer Science.
All 30 selected participants received a short introduction to the ex-
periment, and then answered 10 questions in a web browser based
quiz. Each question showed a test case and provided the source
code of all classes required by the test case, and asked the students
to select if the test would pass or fail. After 60 minutes the students
were asked to submit the answers they had produced up to that point,
filled in a short survey, and were paid a fee of GBP10.

4.1.3 Threats to Validity
Construct: For RQ4, we use time and correctness of pass/fail deci-
sion to measure understanding. It is possible that using a different
task that requires understanding would give a different result. For
example, Ceccato et al. [13] reported a positive effect when using
random tests during debugging.

●

●

●

●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Buse & Weimer Simpler Test

Code Dataset Test Dataset

Figure 4: 10-fold cross-validation of code and test readability
models using different learners and data sets.

Internal: For all experiments involving humans, the tests were
assigned randomly. To avoid learning effects for RQ4, we ensured
that no two tests shown to one participant originate from the same
project. Participants without sufficient knowledge of Java and JUnit
may affect the results; to avoid this problem we only accepted
subjects who passed a qualification test. Experiment objectives
may have been unclear to participants, at least for RQ4; to counter
this threat we tested and revised all our material on a pilot study,
and interacted with the students during experiment to ensure they
understood the objectives.

External: All our experiments are based on either Amazon Me-
chanical Turk users, or students, and thus may not generalize to all
developers [27, 37]. The set of target classes used in the experiment
is the result of a manual but systematic selection process, aiming
to find classes that are understandable in the short duration of the
expriment (RQ4). The chosen classes are not small, but it may
be that the readability optimization is more important for classes
with more dependencies. Thus, to which extent our findings can be
generalised to arbitrary programming and testing tasks remains an
open question. We used EVOSUITE for experiments and to support
the generation of our data set, and tests produced by EVOSUITE
and other tools may lead to different results. However, the output of
EVOSUITE is similar to that of other tools aiming at code coverage.

Conclusion: The human study to answer RQ4 involved 30 human
subjects, which resulted in significance in only two out of the 10 test
pairs. However, obtaining more responses per test pair by reducing
the number of pairs was not possible, as this would have implied
that students would have to answer several questions related to the
same class, which would have led to undesired learning effects.

4.2 RQ1: Test vs. Code Readability
As a baseline for the success of our domain specific readability
model, we used the code readability model by Buse and Weimer [7],
as well as the extended version by Posnett et al. [34]. Both mod-
els are originally classification models, and we replicated them as
regression models. We created two versions for each model, one
trained with our dataset of 450 test cases with human annotations,
and Buse and Weimer’s original dataset of 100 code snippets with
1,200 human judgments. This allows us to distinguish between the
effects of the choice of features and the training data.

Figure 4 shows the performance using seven different learners
(Linear Regression, Multilayer Perceptron, SMOreg, M5Rules, M5P,
Additive Regression, Bagging) on the Buse & Weimer code readabil-
ity model, Posnett et al.’s Simpler model (which includes Halstead-
and entropy-based features), and our Test readability model, in
terms of the correlation using 10-fold cross validation. The Buse &
Weimer and Simpler models both perform better on code snippets
than on test snippets. In contrast, our Test model shows a poor
performance on the code dataset while achieving the overall high-
est correlation on the test dataset with a median value 0.79, which

112

Table 2: Model prediction agreement with user choices
Each model is trained with two available datasets and tested with 200 pairs of test

cases. Agreement shows the percentage of choices predicted by model agreeing with
the overall user choice. Cohen’s kappa [11] shows inter-rater agreement between the

model prediction and user choices.

Code dataset Test dataset
Cohen’s Cohen’s

Model kappa p-value Agreement kappa p-value Agreement

Buse & Weimer 0.37 <0.01 0.685 0.33 <0.01 0.665
Simpler 0.57 <0.01 0.790 0.38 <0.01 0.695
Test Readability 0.31 <0.01 0.655 0.73 0 0.865

suggests that our choice of features is well adapted to the specific
details influencing test readability. These results demonstrate the
importance of our domain-specific model of software readability.

To compare these models with respect to their agreement with
human judgement, we used the dataset of 200 pairs (Section 2.2)
and measured the agreement between each model and the majority
preference of the human annotators (i.e., percentage of matching
choices). Table 2 shows the tests used to calculate the model–user
agreement. Our test readability model trained with test case snippets
achieves a high inter-rater agreement (kappa=0.73, p-value=0), with
a correctness ratio of 0.865 over 200 test pairs. As the Table shows,
our test readability model significantly outperform previous code
readability models at this task.

RQ1: Our test readability model performs better on test snippet
datasets, achieving a higher agreement with human annotators

than previous work (kappa +28%).

4.3 RQ2: Improved Test Generation
To evaluate the success of the test optimization technique, we applied
test generation to 30 classes with 10 repetitions each, with and
without optimization, and compared the tests per branch in terms of
their readability score. That is, each pair of tests is generated for the
same coverage objective, but differs in readability score. We find
that 56% of test cases on which optimization was applied had at
least one alternative to choose from; for these tests, on average there
were 5.1 alternatives. Table 3 summarizes the overall results: On
all but three classes there is a significant increase of the readability
score, by an average of 1.9% (2.5% when considering only tests
that had alternatives). This increase may seem small, but recall that
readability scores have low variance (cf. the narrow range of values
between 3.0 and 4.0 in Figure 2), and the syntactic differences for
improvement steps are small and incremental.

The largest improvement is observable for classes where the
largest numbers of alternatives can be generated. As our algo-
rithm (see Algorithm 1) is based on varying method and constructor
calls, generation of alternatives works best when the dependency
classes have many different constructors and parameters. Further-
more, we observe that more alternatives are generated for classes
with more and simpler methods. For example, math3.complex.
Complex has 196 branches, but these are spread over 48 meth-
ods, and this results in the overall largest readability improvement
(+8.8%), with 92 alternatives per test on average. Similar exam-
ples are the class org.joda.time.Months and beanutils.
locale.converters.DateLocaleConverter. The first
one has five constructors plus many methods that also return Months
instances, and the second has twelve different constructors. This
leads to a large number of alternatives (39 for Months and 64
for DateLocaleConverter), and readability improvements of
+3.2% and +4.9%, respectively.

On the other hand, class cli.Option has three constructors
and methods that mainly take primitive values as parameters, and
thus results in just 0.79 alternative tests on average (with a signif-
icant readability improvement of +0.4%). An extreme example is

given by class codec.language.Metaphone, where the num-
ber of alternatives is close to 0.0 (see Table 3). codec.language.
Metaphone is one of the largest classes, with 211 branches, but
184 of those branches are in the same method public String
metaphone(String txt){...}, which receives and returns
a String object. Therefore, there is no other alternative of creating a
metaphone string without calling that method. For this specific class,
a better way to optimize readability may be by directly optimizing
the strings using a language model [1].

RQ2: Alternatives were generated for 56% of the unit tests,
resulting in a readability improvement of +1.9% on average.

4.4 RQ3: Do Humans Prefer Readability Op-
timized Tests?

To evaluate whether humans prefer the readability optimized test
cases to the default tests generated by EVOSUITE, we applied test
generation to 30 classes, with and without optimization. For each
class we chose the three pairs of tests with the largest difference
in readability score, and used a forced-choice survey to let human
annotators select which test cases they think are more readable. That
is, for each pair, both tests cover the same branch of the same class,
but differ only in their readability score. Table 4 shows the details
of the pairs used for this experiment, and shows the joint probability
of agreement, which is 69% overall. On average, for all 30 classes
there is a preference for the optimized tests. The average pair-wise
agreement (fraction of pairs rated by both raters on which they
agree) is 0.58; a one-sided Wilcoxon signed-rank shows that this
is significantly better (p < 0.001) than a random choice (assuming
agreement of 0.5 for random choices).

The highest agreement is observed for the first pair for class
net.n3.nanoxml.XMLElement (87%). Here, the optimized
test expects an exception and has only three statements. In contrast,
the default test has four statements and six assertions, expects no
exception, and uses random strings (e.g., “7I%d7W5Y(Ta+”).

In class org.magee.math.Rational there are two pairs for
which the users prefer the default test case. For pair 2, the optimized
test expects a NullPointerException, and we have generally
observed that exceptional tests tend to get slightly higher readability
scores. However, in this case the users disagree, possibly influenced
by the rather meaningless comment in the catch block stating that
there is “no message”. For pair 3, the tests are very similar, and
it is possible that domain knowledge influences the choice: The
default test subtracts a number from itself, whereas the optimized
test performs a syntactically similar, but mathematically slightly
more complex calculation.

RQ3: Our experiment showed an agreement of 69% between
human annotators and the readability optimization.

4.5 RQ4: Does Readability Optimization Im-
prove Human Understanding of Tests?

Table 5 summarizes the results of the controlled experiment to
answer RQ4. For seven out of the ten classes, the time participants
required to make a decision about the pass/fail status of a test was
lower for the optimized tests. The average time spent on the non-
optimized tests was 4.7 minutes, compared with 4 minutes for the
optimized tests. Overall, this suggests that improved readability
helps when making this software maintenance decision.

On the other hand, there are five classes where the ratio of correct
responses increases, and five where the ratio decreases, suggesting
that there are other factors influencing the difficulty of understanding
a test that are not captured by our readability model. For example,
the tests for class cli.Option have a substantial difference in
readability (3.55 default, 4.01 optimized), but the default one con-

113

Table 3: Readability value for the 30 classes selected based on 10 runs per branch.
For each class we report its version, the number of branches, and the readability value using default configuration. For the optimized configuration we also report its readability

value, the effect sizes (Â12 and relative average improvement) compared to the default configuration, and average number of optimized alternatives generated. Effect sizes Â12

that are statistically significant are reported in bold.

Readability Relative Average Number
Class Version Branches Default Optimized Â12 Improvement of Alternatives

java2.util2.BitSet - 288 3.8701 3.9091 0.54 +1.0% 2.03
net.n3.nanoxml.StdXMLReader 2.2.1 96 3.4257 3.4347 0.52 +0.2% 1.14
net.n3.nanoxml.XMLElement 2.2.1 165 3.6655 3.7376 0.70 +1.9% 9.72
net.xineo.xml.handler.ObjectHandlerAdapter 1.1.0 23 3.4762 3.5492 0.62 +2.0% 17.42
nu.xom.Attribute 1.2.10 201 3.7734 3.7882 0.63 +0.3% 9.79
org.apache.commons.beanutils.locale.converters.DateLocaleConverter 1.9.2 51 3.6238 3.8021 0.78 +4.9% 64.03
org.apache.commons.chain.impl.ChainBase 1.2 33 3.6404 3.6754 0.56 +0.9% 25.62
org.apache.commons.cli.CommandLine 1.2 48 3.6985 3.7176 0.57 +0.5% 0.68
org.apache.commons.cli.Option 1.2 97 3.7459 3.7639 0.54 +0.4% 0.79
org.apache.commons.cli.PosixParser 1.2 46 3.5414 3.5912 0.64 +1.4% 20.62
org.apache.commons.codec.language.Metaphone 1.1 211 3.7523 3.7539 0.50 +0.0% 0.0044
org.apache.commons.codec.language.Soundex 1.1 40 3.7959 3.8312 0.65 +0.9% 1.74
org.apache.commons.collections4.comparators.ComparatorChain 4 52 3.4294 3.5163 0.68 +2.5% 11.85
org.apache.commons.collections4.comparators.FixedOrderComparator 4 73 3.1959 3.2772 0.62 +2.5% 11.01
org.apache.commons.collections4.iterators.FilterIterator 4 21 3.7577 3.8228 0.65 +1.7% 3.12
org.apache.commons.collections4.iterators.FilterListIterator 4 51 3.5880 3.6604 0.60 +2.0% 3.92
org.apache.commons.collections.primitives.ArrayIntList 1 28 3.7554 3.7707 0.52 +0.4% 1.56
org.apache.commons.configuration.tree.MergeCombiner 1.1 29 3.2433 3.3241 0.67 +2.4% 10.66
org.apache.commons.digester3.plugins.PluginRules 3.2 47 3.7284 3.7878 0.56 +1.5% 8.49
org.apache.commons.digester3.RulesBase 3.2 39 3.5806 3.6379 0.60 +1.6% 14.79
org.apache.commons.lang3.CharRange 3.3.2 58 3.9201 3.9363 0.62 +0.4% 4.80
org.apache.commons.math3.complex.Complex 3.4.1 196 3.6501 3.9748 0.83 +8.8% 91.89
org.apache.commons.math3.fraction.Fraction 3.4.1 118 3.7660 3.8892 0.74 +3.2% 34.66
org.apache.commons.math3.genetics.ListPopulation 3.4.1 25 3.6245 3.6353 0.53 +0.2% 1.26
org.apache.commons.math3.stat.clustering.DBSCANClusterer 3.4.1 32 3.1619 3.1763 0.53 +0.4% 2.63
org.jdom2.Attribute 2.0.5 74 3.7439 3.8507 0.71 +2.8% 41.93
org.jdom2.DocType 2.0.5 21 3.8127 3.9344 0.67 +3.1% 9.62
org.joda.time.Months 2.7 69 3.8716 3.9982 0.68 +3.2% 39.38
org.joda.time.YearMonthDay 2.7 71 3.5456 3.6278 0.68 +2.3% 32.69
org.magee.math.Rational 2005-11-19 36 3.7897 3.9391 0.85 +3.9% 9.84

Average 3.6953 3.7284 0.63 +1.9% 5.09

Table 4: Readability value for the 30 classes selected based on the top three pairs that maximise the difference between default and
optimized configurations.

For each class and pair we report the readability value of each configuration and the percentage of users that agree optimized test cases are better in terms of readability.

Pair 1 Pair 2 Pair 3

Readability Readability Readability Average
Class Default Optimized Agree Default Optimized Agree Default Optimized Agree Agree

java2.util2.BitSet 3.78 3.92 71.25% 3.73 3.88 62.79% 3.83 3.90 60.71% 64.92%
net.n3.nanoxml.StdXMLReader 3.15 3.87 70.00% 3.17 3.69 67.02% 3.34 3.81 69.44% 68.82%
net.n3.nanoxml.XMLElement 3.34 3.80 87.18% 3.33 3.73 73.00% 3.40 3.78 63.00% 74.39%
net.xineo.xml.handler.ObjectHandlerAdapter 3.48 3.78 71.95% 3.39 3.67 70.45% 3.22 3.56 78.41% 73.60%
nu.xom.Attribute 3.33 3.81 69.57% 3.24 3.83 75.00% 3.24 3.75 61.96% 68.84%
org.apache.commons.beanutils.locale.converters.DateLocaleConverter 3.22 3.79 81.25% 3.34 3.85 65.69% 3.38 3.74 68.09% 71.67%
org.apache.commons.chain.impl.ChainBase 2.99 3.75 74.39% 3.27 3.86 73.81% 3.31 3.86 68.57% 72.26%
org.apache.commons.cli.CommandLine 3.34 3.75 75.00% 3.49 3.82 82.14% 3.41 3.76 69.74% 75.63%
org.apache.commons.cli.Option 3.48 4.01 70.00% 3.53 3.87 68.18% 3.59 3.92 57.14% 65.11%
org.apache.commons.cli.PosixParser 3.39 3.68 67.39% 3.35 3.72 73.81% 3.49 3.73 63.41% 68.21%
org.apache.commons.codec.language.Metaphone 3.59 3.88 77.55% 3.61 3.87 72.34% 3.67 3.82 64.58% 71.49%
org.apache.commons.codec.language.Soundex 3.76 3.92 51.96% 3.63 3.92 68.89% 3.60 3.89 75.00% 65.28%
org.apache.commons.collections4.comparators.ComparatorChain 3.27 3.92 72.22% 3.36 3.79 69.44% 3.51 3.92 66.67% 69.44%
org.apache.commons.collections4.comparators.FixedOrderComparator 2.70 3.34 69.44% 2.80 3.44 72.34% 2.63 3.12 74.42% 72.07%
org.apache.commons.collections4.iterators.FilterIterator 3.56 3.99 71.62% 3.33 3.83 67.35% 3.64 3.95 65.85% 68.27%
org.apache.commons.collections4.iterators.FilterListIterator 3.36 3.84 80.21% 3.08 3.69 84.21% 3.12 3.69 81.71% 82.04%
org.apache.commons.collections.primitives.ArrayIntList 3.35 3.72 70.41% 3.79 3.94 53.06% 3.58 3.79 66.00% 63.16%
org.apache.commons.configuration.tree.MergeCombiner 3.32 3.68 73.17% 3.28 3.55 72.50% 3.32 3.59 55.41% 67.03%
org.apache.commons.digester3.plugins.PluginRules 2.49 3.46 67.44% 3.09 3.73 57.69% 3.08 3.64 61.54% 62.22%
org.apache.commons.digester3.RulesBase 3.23 3.88 78.57% 3.13 3.71 76.60% 3.17 3.73 67.59% 74.25%
org.apache.commons.lang3.CharRange 3.82 4.04 77.27% 3.80 3.97 63.27% 3.91 4.05 76.19% 72.24%
org.apache.commons.math3.complex.Complex 3.39 3.97 78.05% 3.38 3.94 60.47% 3.54 4.01 68.18% 68.90%
org.apache.commons.math3.fraction.Fraction 2.98 3.60 63.04% 3.65 3.83 66.67% 3.53 3.88 75.53% 68.41%
org.apache.commons.math3.genetics.ListPopulation 3.43 3.83 75.00% 3.44 3.75 67.05% 3.48 3.83 72.34% 71.46%
org.apache.commons.math3.stat.clustering.DBSCANClusterer 3.28 3.65 65.91% 3.49 3.65 67.44% 3.13 3.36 76.09% 69.81%
org.jdom2.Attribute 3.57 3.86 73.40% 3.78 3.86 73.33% 3.66 3.86 63.00% 69.91%
org.jdom2.DocType 3.49 3.75 73.86% 3.71 3.85 57.45% 3.57 3.85 67.86% 66.39%
org.joda.time.Months 3.35 4.05 64.00% 3.44 4.02 61.70% 3.46 3.99 62.16% 62.62%
org.joda.time.YearMonthDay 3.25 3.81 78.95% 3.32 3.81 71.11% 3.15 3.70 75.00% 75.02%
org.magee.math.Rational 3.86 3.87 61.54% 3.68 3.95 45.00% 3.67 3.83 50.00% 52.18%

Average 69.19%

114

Table 5: Human understanding results of tests for the 10 classes randomly selected.
For each class selected we report the branch covered, the test result of each individual (pass/fail), number of asserts or fail keywords, average time to answer, and percentage of

correct responses. Effect sizes of statistically significant differences (p < 0.05) are shown in bold.

Oracle Readability Assert/Fail Time (min) Correct Answers
Class Branch Def. Optim. Def. Optim. Def. Optim. Def. Optim. Â12 Def. Optim.

net.n3.nanoxml.StdXMLReader 67 pass fail 3.40 3.79 0 / 1 0 / 1 4.35 3.76 0.57 60.00% 61.11%
nu.xom.Attribute 91 pass pass 3.33 3.81 0 / 1 0 / 1 4.69 5.75 0.43 60.00% 38.46%
org.apache.commons.chain.impl.ChainBase 5 pass pass 2.99 3.75 1 / 0 1 / 0 4.04 3.80 0.61 76.47% 54.55%
org.apache.commons.cli.Option 67 fail pass 3.55 4.01 5 / 0 0 / 1 2.21 2.69 0.34 100.00% 75.00%
org.apache.commons.collections4.comparators.FixedOrderComparator 22 pass pass 2.63 3.30 3 / 0 2 / 0 4.92 3.31 0.70 64.29% 23.08%
org.apache.commons.collections4.iterators.FilterListIterator 4 fail fail 3.10 3.73 2 / 0 1 / 0 4.75 3.00 0.73 71.43% 85.71%
org.apache.commons.digester3.plugins.PluginRules 25 pass pass 2.49 3.46 1 / 0 1 / 0 6.43 6.04 0.51 72.73% 62.50%
org.apache.commons.digester3.RulesBase 3 pass pass 2.80 3.76 1 / 0 1 / 0 4.77 3.24 0.68 90.91% 100.00%
org.apache.commons.lang3.CharRange 15 pass pass 3.82 4.04 2 / 0 1 / 0 4.35 1.93 0.92 50.00% 100.00%
org.joda.time.YearMonthDay 66 pass pass 3.25 3.81 3 / 0 0 / 1 6.06 6.49 0.48 30.77% 61.54%

Average 3.14 3.75 4.66 4.00 0.60 67.66% 66.19%

BuddhistChronology buddhistChronology0 =
BuddhistChronology.getInstance();

YearMonthDay yearMonthDay0 = new YearMonthDay((Chronology
) buddhistChronology0);

YearMonthDay.Property yearMonthDay_Property0 = new
YearMonthDay.Property(yearMonthDay0, 0);

YearMonthDay yearMonthDay1 = yearMonthDay_Property0.
addWrapFieldToCopy(0);

assertEquals("2557-02-14", yearMonthDay1.toString());
assertEquals("2557-02-14", yearMonthDay0.toString());
assertEquals(-292268511, yearMonthDay_Property0.

getMinimumValueOverall());

YearMonthDay yearMonthDay0 = null;
try {
yearMonthDay0 = new YearMonthDay(0, 0, 0);
fail("Expecting exception: IllegalFieldValueException");

} catch(IllegalFieldValueException e) {
//
// Value 0 for monthOfYear must not be smaller than 1
//

}

Figure 5: Default and optimized test case for class org.joda.
time.YearMonthDay.
tains regular assertions, whereas the optimized one expects an ex-
ception to be thrown. While all responses for the non-optimized test
were correct, only 75% of the responses for the optimized test were
correct, and the average time for responses increased from 2.21min
to 2.69min. The likely explanation for this is that, even though the
readability model suggests that exceptions improve readability, it
may be more difficult to understand exceptional control flow.

This conjecture is supported by the tests for class org.joda.
time.YearMonthDay (see Figure 5), where again the optimized
test leads to an expected exception. Here, the time to response in-
creases from 6.06min to 6.49min on average. However, in contrast
to cli.Option, the percentage of correct responses increases by
31%. Possibly, this improvement is influenced by the error message
of the expected exception, which is included as a comment: The op-
timized test calls the constructor of class YearMonthDay(day,
month, year) with value 0 and the exception message was

“Value 0 for monthOfYear must not be smaller than 1”.
The third class with an increase in time, nu.xom.Attribute,

tests exceptional behavior in both versions. Here, the percentage
of correct responses is only 39%, compared to 60% in the default
version. This reduction may again be related to the specific error
message, as the default test complains about the use of an “Illegal
initial scheme character” in a URI parameter, which apparently
is easier to understand than the “Missing scheme in absolute URI
reference” message of the optimized test.

Both default and optimized test expect a null pointer exception
for class net.n3.nanoxml.StdXMLReader. Although the

CatalogFactoryBase catalogFactoryBase0 = (
CatalogFactoryBase)CatalogFactory.getInstance();

DispatchLookupCommand dispatchLookupCommand0 = new
DispatchLookupCommand((CatalogFactory)
catalogFactoryBase0);

HashMap<Object, CopyCommand> hashMap0 = new HashMap<
Object, CopyCommand>();

ContextBase contextBase0 = new ContextBase((Map) hashMap0
);

Set set0 = contextBase0.keySet();
ChainBase chainBase0 = new ChainBase((Collection) set0);
RemoveCommand removeCommand0 = new RemoveCommand();
Command[] commandArray0 = new Command[4];
commandArray0[0] = (Command) removeCommand0;
commandArray0[1] = (Command) dispatchLookupCommand0;
commandArray0[2] = (Command) dispatchLookupCommand0;
commandArray0[3] = (Command) chainBase0;
ChainBase chainBase1 = new ChainBase(commandArray0);
assertFalse(chainBase1.equals((Object)chainBase0));

ChainBase chainBase0 = new ChainBase();
Command[] commandArray0 = chainBase0.getCommands();
ChainBase chainBase1 = new ChainBase(commandArray0);
assertNotSame(chainBase1, chainBase0);

Figure 6: Default and optimized test case for class chain.
impl.ChainBase.
rate of correct responses is comparable, here the time spent on the
optimized test is lower on average (4.35min default vs, 3.76min
optimized). This is likely related to the difference in size; the default
test has seven statements, the optimized one only two.

For comparators.FixedOrderComparator, the reduc-
tion of correct responses may be a result of uncertainty arising from
how null-values are handled in the maps underlying the class; the
default test case does not use null, the optimized one does. The
same may also hold for digester3.plugins.PluginRules,
where the optimized test case uses several null values.

These results are reflected by the participants’ opinions. In free
response questions at the end of our survey, almost every user stated
that a readable test case must be (1) minimal (no more than 5 lines
if possible); (2) have short lines; (3) not dependent on too many
classes, as for example indicated by the comment that “due to deep
inheritance and lots of underlying methods to construction, it was
somewhat hard to understand some classes under test.”

For chain.impl.ChainBase the slight reduction in correct
responses is surprising, as the optimized test case has a trivially
true assertion (assertNotSame with two objects resulting from
two different constructor invocations; cf. Figure 6). However, this
assertion form is less common and might have been interpreted
by several participants as the more common assertNotEquals,
which may contribute to the increase in wrong responses.

Finally, for FilterListIterator and CharRange there
are large improvements in the response time and in the correctness

115

CharRange charRange0 = CharRange.isNot(’#’);
Character character0 = Character.valueOf(’#’);
CharRange charRange1 = CharRange.isNotIn(’\"’, (char)

character0);
char char0 = charRange1.getStart();
assertEquals(’\"’, char0);

boolean boolean0 = charRange0.contains(’\"’);
assertTrue(boolean0);

CharRange charRange0 = CharRange.is(’ ’);
boolean boolean0 = charRange0.contains(’ ’);
assertTrue(boolean0);

Figure 7: Default and optimized test case for lang3.
CharRange.
of responses. For FilterListIterator the default test case
uses a confusing chain of calls to construct the instance of the class
under test; for the CharRange default test case this also holds,
but here maybe a different factor also plays a role. As we can see
in Figure 7 the default test case starts by constructing a negated
CharRange over a single character “#”, and later checks whether
a different character is contained in the CharRange, whereas the
optimized test case uses the same character twice, when setting up
the CharRange and when querying contains.

RQ4: In our experiments, the optimized tests reduced the response
time by 14%, but did not directly influence participant accuracy.

5. RELATED WORK
Readability Metrics. Buse and Weimer [7] introduced a metric
for code readability based on human judgements. They collected
human annotation data for code snippets and trained a classifier
based on those scores. Our work is based on the same readability
metric concept, but produces a domain-specific model for unit tests,
using dedicated test features and data, resulting in an overall better
performance and prediction power. Posnett et al. [34] used the same
dataset to learn a simpler model of code readability, using fewer
features based on size, Halstead metrics, and entropy. We replicated
this model as a regression model and applied it to test data, and saw
that the performance of our test-specific model is still better.

Readability Optimization of Tests. The problem of under-
standing tests is well known. The most common scenario where
understanding a test is necessary is if a test fails. To support de-
velopers with debugging failing tests, Leitner et al. [30] and Lei
and Andrews [29] minimised failing (randomly generated) tests
using delta-debugging in order to simplify debugging the failure
cause. Zhang et al. [42] presented an approach to synthesise natural
language documentation to explain the failure.

Often, a failing test is not a problem in the program that needs
fixing, but a maintenance problem in the test, requiring a fix in the
test code. Robinson et al. [35] discuss a range of optimizations to
apply during test generation in order to reduce the number of false
failures produced by tests and also improve their readability. Daniel
et al. [14] and Mirzaaghaei et al. [33] provide automated techniques
to fix failing tests, and Hao et al. [25] use machine learning to predict
whether a test failure is due to a code or test problem.

To avoid creating maintainability problems when writing tests,
there are established standard patterns for test design [32], and there
are certain test smells [17] that help to detect problematic tests.
However, the most discussed scenario related to understandability
of tests is when the tests are generated automatically. Automated
test generation typically uses systematic approaches, for example
to derive tests satisfying coverage criteria. In order to find faults,
automatically generated tests require a test oracle [5]; that is, some
mechanism that decides whether the test execution revealed a failure
or matched the expected behavior.

Common approaches to address the test oracle problem include an
optimization of the number of tests generated in the first place [26].
However, there have also been attempts to improve the readability of
tests systematically: Fraser and Zeller [21] learn models of common
object usage from existing code and tests, such that newly gener-
ated tests match the developer expectations. Afshan et al. [1] apply
a natural language model to optimize textual input values, which
are often simply random characters, to more English-like text. We
included this model as one of our features, but found low predictive
power for our dataset; possibly including more string-related tests
would change this. Zhang [41] describes a transformation that re-
places variables with the aim to reduce the number of statements,
which works best on un-minimized tests. In contrast, our optimiza-
tion algorithm works with already minimized tests and integrates
test generation mechanisms to replace calls and satisfy new depen-
dencies. Fraser and Zeller [22] reduce the number of assertions in a
test using mutation analysis. Xuan and Monperrus [40] split tests
into one per assertion; while the aim of this approach is to improve
fault localization, this likely also has an influence on readability.

6. CONCLUSIONS
A unit test may be written once, but it is read and interpreted by
developers many times. If a test is not readable, then it may be
more difficult to understand it. This problem is exacerbated for
unit tests generated automatically by tools, which in principle are
intended to support developers in generating high coverage test
suites, but in practice tend to generate tests that do not look as nice
as manually-written ones. To address this problem, we have built a
predictive model of test readability based on data of how humans
rate the readability of unit tests. We have applied this model in an
automated unit test generation tool, and validated that users prefer
our readability optimized tests to non-optimized tests.

Our technique to increase the readability of unit tests is still
quite limited in the scope of its changes to test appearance. For
example, variable names are chosen according to a fixed strategy
(i.e., class name in camel case, with lower caps first letter, and
numeric ID attached at the end). Our feature analysis suggests that
identifiers have a very strong influence on readability, and indeed
the participants of our experiment mentioned the choice of variable
names repeatedly in the post-experiment survey. This confirms
previous research showing the importance of identifier names in
source code [3, 6, 9, 19, 24, 28, 38], and suggests that future work
will need to address this problem for unit test generation, leveraging
existing work on improving identifiers (e.g., [2, 9, 10, 16]).

Our experiment about the effects of readability on test understand-
ing has also demonstrated the boundaries between readability and
understandability: Not all tests that look nice are also easy to un-
derstand. The inclusion of semantic features such as code coverage,
may lead to an improvement of the readability model. It is even
conceivable to use our human maintenance question data to learn a
model of understandability, rather than readability.

In summary, we proposed a domain-specific model of test read-
ability and an algorithm for producing more readable tests. We
found our model to outperform previous work in term of agreement
with humans on test case readability (0.87 vs. 0.79); we found our
approach to generate alternate optimized tests that were 2% more
readable on average; we found humans to prefer our optimized tests
69% of the time; and we found that humans can answer questions
about our tests 14% faster with no change in accuracy.

7. ACKNOWLEDGMENTS
This work was supported by the EPSRC project “EXOGEN” (EP /
K030353 / 1) and National Science Foundation grants CCF 1116289,
CCF 0954024 and CCF 0905373.

116

8. REFERENCES
[1] S. Afshan, P. McMinn, and M. Stevenson. Evolving Readable

String Test Inputs Using a Natural Language Model to Reduce
Human Oracle Cost. In International Conference on Software
Testing, Verification, and Validation (ICST), pages 352–361,
2013.

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning
Natural Coding Conventions. In International Symposium on
Foundations of Software Engineering (FSE), pages 281–293,
2014.

[3] N. Anquetil and T. Lethbridge. Assessing the Relevance of
Identifier Names in a Legacy Software System. In Conference
of the Centre for Advanced Studies on Collaborative Research
(CASCON), pages 4–, 1998.

[4] A. Arcuri and L. Briand. A Hitchhiker’s Guide to Statistical
Tests for Assessing Randomized Algorithms in Software
Engineering. Software Testing, Verification and Reliability
(STVR), 24(3):219–250, 2014.

[5] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo.
The Oracle Problem in Software Testing: A Survey. IEEE
Transactions on Software Engineering (TSE), PP(99), 2014.

[6] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and
B. Sharif. The Impact of Identifier Style on Effort and
Comprehension. Empirical Software Engineering,
18(2):219–276, 2013.

[7] R. P. L. Buse and W. R. Weimer. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering,
36(4):546–558, 2010.

[8] R. P. L. Buse and T. Zimmermann. Information Needs for
Software Development Analytics. In International Conference
on Software Engineering (ICSE), pages 987–996, 2012.

[9] B. Caprile and P. Tonella. Nomen Est Omen: Analyzing the
Language of Function Identifiers. In Working Conference on
Reverse Engineering (WCRE), pages 112–, 1999.

[10] B. Caprile and P. Tonella. Restructuring Program Identifier
Names. In International Conference on Software Maintenance
(ICSM), pages 97–, 2000.

[11] J. Carletta. Assessing Agreement on Classification Tasks: The
Kappa Statistic. Computational Linguistics, 22(2):249–254,
1996.

[12] S. Cateni, M. Vannucci, M. Vannocci, and V. Colla.
Multivariate Analysis in Management, Engineering and the
Sciences. InTech, 2013-01-09.

[13] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and
P. Tonella. An Empirical Study About the Effectiveness of
Debugging when Random Test Cases Are Used. In
International Conference on Software Engineering (ICSE),
pages 452–462, 2012.

[14] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. ReAssert:
Suggesting Repairs for Broken Unit Tests. In International
Conference on Automated Software Engineering (ASE), pages
433–444, 2009.

[15] M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature
Selection for Clustering - A Filter Solution. In International
Conference on Data Mining (ICDM), pages 115–122, 2002.

[16] F. Deißenböck and M. Pizka. Concise and Consistent Naming.
Software Quality Control, 14(3):261–282, 2006.

[17] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok.
Refactoring Test Code. Technical report, 2001.

[18] R. Duangsoithong and T. Windeatt. Relevance and
Redundancy Analysis for Ensemble Classifiers. In Machine

Learning and Data Mining in Pattern Recognition, volume
5632, pages 206–220, 2009.

[19] L. M. Eshkevari, V. Arnaoudova, M. Di Penta, R. Oliveto,
Y.-G. Guéhéneuc, and G. Antoniol. An Exploratory Study of
Identifier Renamings. In Working Conference on Mining
Software Repositories (MSR), pages 33–42, 2011.

[20] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite
Generation for Object-oriented Software. In European
Conference on Foundations of Software Engineering
(ESEC/FSE), pages 416–419, 2011.

[21] G. Fraser and A. Zeller. Exploiting Common Object Usage in
Test Case Generation. In International Conference on
Software Testing, Verification and Validation (ICST), pages
80–89, 2011.

[22] G. Fraser and A. Zeller. Mutation-Driven Generation of Unit
Tests and Oracles. IEEE Transactions on Software
Engineering, 38(2):278–292, March 2012.

[23] Z. P. Fry and W. Weimer. A Human Study of Fault
Localization Accuracy. In International Conference on
Software Maintenance (ICSM), pages 1–10, 2010.

[24] L. Guerrouj. Normalizing Source Code Vocabulary to Support
Program Comprehension and Software Quality. In
International Conference on Software Engineering (ICSE),
pages 1385–1388, 2013.

[25] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang. Is This a
Bug or an Obsolete Test? In European Conference on
Object-Oriented Programming (ECOOP), pages 602–628.
2013.

[26] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo.
Optimizing for the Number of Tests Generated in Search
Based Test Data Generation with an Application to the Oracle
Cost Problem. In International Conference on Software
Testing, Verification, and Validation Workshops (ICSTW),
pages 182–191, 2010.

[27] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing User Studies
with Mechanical Turk. In Conference on Human Factors in
Computing Systems (CHI), pages 453–456, 2008.

[28] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a
Name? A Study of Identifiers. In International Conference on
Program Comprehension (ICPC), pages 3–12, 2006.

[29] Y. Lei and J. H. Andrews. Minimization of Randomized Unit
Test Cases. In International Symposium on Software
Reliability Engineering (ISSRE), pages 267–276, 2005.

[30] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer.
Efficient Unit Test Case Minimization. In International
Conference on Automated Software Engineering (ASE), pages
417–420, 2007.

[31] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou. Sample-based
software defect prediction with active and semi-supervised
learning. Automated Software Engineering, 19(2):201–230,
2012.

[32] G. Meszaros. xUnit test patterns: Refactoring test code.
Pearson Education, 2007.

[33] M. Mirzaaghaei, F. Pastore, and M. Pezzè. Supporting Test
Suite Evolution through Test Case Adaptation. In
International Conference on Software Testing, Verification
and Validation (ICST), pages 231–240, 2012.

[34] D. Posnett, A. Hindle, and P. Devanbu. A Simpler Model of
Software Readability. In Working Conference on Mining
Software Repositories (MSR), pages 73–82, 2011.

[35] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and
N. Li. Scaling Up Automated Test Generation: Automatically

117

Generating Maintainable Regression Unit Tests for Programs.
In International Conference on Automated Software
Engineering (ASE), pages 23–32, 2011.

[36] M. Robnik-Šikonja and I. Kononenko. Theoretical and
Empirical Analysis of ReliefF and RReliefF. Machine
Learning, 53(1-2):23–69, 2003.

[37] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and
Fast—but is It Good?: Evaluating Non-expert Annotations for
Natural Language Tasks. In Empirical Methods in Natural
Language Processing (EMNLP), pages 254–263, 2008.

[38] A. A. Takang, P. A. Grubb, and R. D. Macredie. The effects of
comments and identifier names on program comprehensibility:
an experimental investigation. Journal of Program Languages,
4(3):143–167, 1996.

[39] I. H. Witten, E. Frank, and M. A. Hall. Data Mining:
Practical Machine Learning Tools and Techniques. Morgan
Kaufmann Publishers Inc., 3rd edition, 2011.

[40] J. Xuan and M. Monperrus. Test case purification for
improving fault localization. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 52–63, New York,
NY, USA, 2014. ACM.

[41] S. Zhang. Practical Semantic Test Simplification. In
International Conference on Software Engineering (ICSE),
pages 1173–1176, 2013.

[42] S. Zhang, C. Zhang, and M. D. Ernst. Automated
Documentation Inference to Explain Failed Tests. In
International Conference on Automated Software Engineering
(ASE), pages 63–72, 2011.

118

	1. INTRODUCTION
	2. UNIT TEST READABILITY METRIC
	2.1 Human Readability Annotation Data
	2.2 Final Annotation Data Set
	2.3 Features of Unit Tests
	2.4 Feature Discussion
	2.5 Feature Selection

	3. GENERATING READABLE TESTS
	4. EMPIRICAL EVALUATION
	4.1 Experimental Setup
	4.1.1 Unit Test Generation Tool
	4.1.2 Experiment Procedure
	4.1.3 Threats to Validity

	4.2 RQ1: Test vs. Code Readability
	4.3 RQ2: Improved Test Generation
	4.4 RQ3: Do Humans Prefer Readability Optimized Tests?
	4.5 RQ4: Does Readability Optimization Improve Human Understanding of Tests?

	5. RELATED WORK
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. References

