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Abstract

We present an evolutionary approach using Genetic Pro-
gramming (GP) to automatically create software repairs. By
concentrating the modifications on regions related to where
the bug occurs, we effectively minimize the search space
complexity and hence increase the performance of the GP
process. To preserve the core functionalities of the program,
we evolve programs only from code in the original program.
Early experimental results show our GP approach is able to
fix various program defects in reasonable time.

1. Motivation

Detecting and fixing software bugs remains a major
burden for the programmers even after the project is re-
leased. Despite promising results and efforts in developing
automated debugging techniques, these methods still rely on
results from rigorous automated testings to locate the errors
and require manual modifications from the programmers to
fix bugs [1].

In this paper, we propose a Genetic Programming (GP)
approach to automate the task of repairing program bugs
in existing software. Programs are evolved and evaluated
until one is found that retains the functionality of the
original program and fixes the bug that occurred. We first
process the source code of the program to produce a path
containing traces of execution procedures. This allows us
to obtain a negative execution path when an error occurs
which contains the list of executed statements. Next, the GP
algorithm creates new programs by modifying the original
code with more bias toward statements that occurred during
the negative execution path. Additional tests are incorporated
into the fitness function to retain the functionalities of the
program.

A major impediment for evolutionary algorithms like
GP is the potential exponential-size search space that the
program must explore. To address this, we constrain our
GP to only operate on the regions of the program relevant
to the error rather than the entire program; that is, we
concentrate on statements executed in the negative execution
path. Moreover, we restrict the algorithm to produce changes
that are based on other parts of the original program. We
hypothesize that most errors in the original program can
be replaced using statements found in other locations in

the program. Combining these ideas with other optimization
techniques, such as caching programs and minimizing the
results, we have created an automated software patcher that
creates repairs for more than ten real C programs in feasible
time.

This extended abstract first reviews the main ideas and
results reported in [2], [3]. Additional details and experi-
mental results are then described, especially concerning the
GP implementation technique.

2. The GP Algorithm

2.1. Preprocessing

To obtain the execution path, we use the C Intermediate
Toolkit [4] to assign unique ID’s to statements in a C pro-
gram source file. An execution path is a record of statement
ID’s that were called when the program runs against some
inputs or testcases. We define a positive testcase as one
that results in expected behavior and a negative testcase
as one that causes an error. One of the key ideas in our
approach is to focus on the regions where the error occurs.
To do this we assign a weight w to each statement in the
program, with heavier weight on statements occuring only
in the negative execution path. To preserve the contents of
the original program, we hash its statements into a code
repository and evolve new programs from there.

2.2. Genetic Programming

Our GP approach follows the traditional GP algorithm
structure. The algorithm maintains a population of chromo-
somes (programs), selects a pool of individuals based on
their fitness, and modifies them with mutation and crossover
operators. The program stops upon reaching a terminating
criterion.

The fitness function takes a program source code, com-
piles it, and runs against the set of positive and negative
testcases. Finally it returns a score indicating the accept-
ability of that program. The negative test reproduces the
bug in the original program that needs to be fixed and the
positive testcases preserve the core functionalities of the
program. The fitness score of a program is the weighted
sum of the testcases that the program passes. We assign the
fitness score of zero to programs that do not compile and



those with runtime exceeding a preset time threshold (e.g.,
five seconds).

A subset of the population is selected for reproduction
using either stochastic universal sampling or tournament
selection. Those with fitness score zero are immediately
excluded. From here we have a mating pool ready to be
modified by the crossover and mutation genetic operations.

Our first crossover preserves the contents of the original
program and concentrates on regions in the negative exe-
cution path. A single cutoff point c is chosen randomly for
both input parents. Then all statements with ID’s larger than
c are selected for crossover based on their weight values w.
The contents of the selected statement s from both parents
are replaced by the contents of statement s in the code
repository.

Our second implementation adheres to the conventional 1-
point crossover in GP by exchanging a statement from one
parent with another. Our representation of the program al-
lows a statement to contain sub-statements, e.g., conditional
and loop code contains all statements within that code blode.
These statements are chosen uniformly at random regardless
of their weights w.

We consider each statement in the negative execution path
for mutation with more bias toward those that are unique
(i.e., only happen in the negative execution path and not on
the positive one). The selected statement s is modified with
one of the three operations: delete the contents of s, replace
the contents of s with another one from code repository, or
insert a statement from the code repository after s.

The GP terminates when an acceptable solution (i.e., one
passing all the testcases) is found or it has exceeded the
maximum number of preset generations.

2.3. Bloat Control and Other Optimizations

Our GP approach deals with code bloat in several ways.
The algorithm evolves programs very similar to the original
by limiting the modifications to regions in the negative ex-
ecution path and only uses code from the original program.
Moreover, the selection routine disregards non-working pro-
grams. Hence, programs that are not well-formed or deviate
greatly from the original have a low chance of being
selected. Finally our GP process stops when a candidate
passes all the testcases, it doesn’t keep evolving to find better
solutions.

To improve the performance of our algorithm, we cache
the program (its md5sum result) and the associated fitness
score. Only programs not in the cache are evaluated by the
fitness function.

In addition, we apply ideas from structural differencing
algorithms [5] and delta debugging [6] to minimize the repair
found. Our technique generates a 1-minimal patch that, when
applied to the original program, repairs the defect without
sacrificing required functionality.

3. Experimental Results

Our GP has been shown to fix several real-world defects.
Zune-bug is our implementation of the 366th day bug which
occurs in Microsoft Zune music players. Our repair adds
in a new exit condition breaking out of the loop when
the variable days is the last day of a leap year. The look
function in svr4.0 1.1 has an infinite binary search when
the dictionary file is not sorted. Our program adds a new
exit condition to this loop. For the segfault caused by the
look dictionary function in ultrix 4.3, our fix changes the
handling of the command-line arguments, avoiding the cases
of buffer overrun in the function getword. flex, a lexical
analyzer generator, has a bug causing segfault in version
2.5.4a when the yytext variable points to an unterminated
user input. Our repair changes one of the uncontrolled input
fragments held by yytext. In atris, a graphical Tetris game,
a local stack buffer exploit happens due to an incorrect use
of sprintf to construct user-defined variables. Our program
removes the sprintf call, leaving all users with the default
global preferences.

Overall, our algorithm has successfully fixed defects in
more than ten programs, including security vulnerabilities
in lighthttpd (a webserver) and wu-ftpd (an ftp server). The
success of finding a patch ranges from 4% to 99% with
average running time ranging from half a second to ten
minutes.
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