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Abstract. Unit tests for object-oriented classes can be generated auto-
matically using search-based testing techniques. As the search algorithms
are typically guided by structural coverage criteria, the resulting unit
tests are often long and confusing, with possible negative implications
for developer adoption of such test generation tools, and the difficulty
of the test oracle problem and test maintenance. To counter this prob-
lem, we integrate a further optimization target based on a model of test
readability learned from human annotation data. We demonstrate on a
selection of classes from the Guava library how this approach produces
more readable unit tests without loss of coverage.
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1 Introduction

Search-based testing can support developers by generating unit tests for object-
oriented classes automatically. Developers need to read these generated tests
to provide test oracles, or when investigating test failures. These are difficult
manual tasks, which are influenced by the representation of the tests. For ex-
ample, consider the unit tests generated by EvoSuite [4] shown in Figure 1.
Both test cases cover the method listeningDecorator in class MoreExecutors
taken from the Guava library, but they are quite different in presentation. Which
of the two would developers prefer to see — i.e., which one of the two is more
readable?

An automated unit test generation tool would typically ignore this question,
as most tools are driven by structural criteria (e.g., branch coverage). To over-
come this issue, we introduced [2] a unit test readability model that quantifies
the readability of a unit test. The model is learned from human annotation data,
and is integrated into the search-based EvoSuite unit test generation tool, in
order to guide it to generate more readable tests. For example, even though the
first test in Figure 1 is longer, it is deemed less readable as it has very long lines
and more identifiers. In this paper, we demonstrate readability optimized unit
test generation using the Guava library.

2 Measuring Unit Test Readability

Because readability relates to human subjective experience, machine learning
has previously been applied to learn models of readability from user annota-
tions of code snippets. A classifier of code readability was learned by Buse and



Executor executor0 = MoreExecutors.directExecutor();
int int0 = 0;
ScheduledThreadPoolExecutor scheduledThreadPoolExecutor0 = new

ScheduledThreadPoolExecutor(int0);
int int1 = 0;
ScheduledExecutorService scheduledExecutorService0 =

MoreExecutors.getExitingScheduledExecutorService(scheduledThreadPoolExecutor0);
ListeningExecutorService listeningExecutorService0 =

MoreExecutors.listeningDecorator((ExecutorService) scheduledThreadPoolExecutor0);

// Undeclared exception!
try {
ListeningExecutorService listeningExecutorService0 =

MoreExecutors.listeningDecorator((ExecutorService) null);
fail("Expecting exception: NullPointerException");

} catch(NullPointerException e) {
//
// no message in exception (getMessage() returned null)
//

}

Fig. 1: Two versions of a test that exercise the same functionality in the Guava
class MoreExecutors, but have a different appearance and readability.

Weimer [1], and later refined by Posnett et al. [5], by mapping each code snippet
to a set of syntactic features and then using machine learning on the feature
vectors and user annotation.

In principle these code readability models also apply to unit tests, which are
essentially small programs. However, the features of unit tests can differ substan-
tially from regular code. For example, complex control flow is less common for
unit tests (in particular automatically-generated ones). Furthermore, the classi-
fiers used in previous work are not sufficient to guide test generation — for this
we needed a regression (numeric value predictive) model.

To generate such a model, we collected [2] 15,669 human judgments of read-
ability (in a range of 1–5) on 450 unit test cases using Amazon Mechanical Turk3.
Participants were required to pass a Java qualification test to ensure familiar-
ity with the language. The unit tests underlying this study were collected from
manually-written and automatically-generated tests for several open source Java
projects (Apache commons, poi, trove, jfreechart, joda, jdom, itext and guava).
We defined a set of 116 initial syntactic features of unit tests, and through fea-
ture selection ultimately learned a formal model based on 24 features, including
line width, aspects of the identifiers, and byte entropy. The model’s ratings are
predictive of human annotator judgments of test case readability.

For a given unit test we can extract a vector of values for these features, which
allows the application of machine learning techniques. The model is trained on
the feature vectors together with the user ratings, and when used for prediction
the model produces a readability rating for a given feature vector.

3http://aws.amazon.com/mturk/

http://aws.amazon.com/mturk/


3 Generating Readability Optimized Tests

EvoSuite [4] uses a genetic algorithm to evolve individual unit tests or sets of
unit tests, typically with the aim to maximize code coverage of a chosen test
criterion. Over the time, we have collected ample anecdotal evidence of aspects
developers disliked about the automatically-generated tests, and EvoSuite now
by default applies a range of different optimizations to the tests generated by
the genetic algorithm. For example, redundant statements in the sequences of
statements are removed, numerical and string values are minimized, unnecessary
variables are removed, etc. However, the readability of a test may be an effect
of the particular choice of parameters and calls, such that only generating a
completely different test, rather than optimizing an existing one, would maximize
readability.

To integrate the unit test readability model into EvoSuite, we explored the
following approaches: (1) As code coverage remains a primary objective for the
test generation, the readability model can be integrated as a secondary objec-
tive. If two individuals of the population have the same fitness value, during rank
selection the one with the better readability value is preferred. (2) Because read-
ability and code coverage may be conflicting goals (e.g., adding a statement may
improve coverage, but decrease readability), classical multi-objective algorithms
(e.g., NSGA-II [3]) can be used with coverage and readability as independent
objectives.

However, EvoSuite’s post-processing steps may complicate initial readabil-
ity judgments: An individual that seems unreadable may become more readable
through the post-processing (and vice-versa). Therefore, we consider the follow-
ing solutions: (1) Measure the readability of tests not on the search individu-
als, but on the result of the post-processing steps. That is, the fitness value is
measured in the style of Baldwinian optimization [6] on the improved pheno-
type, without changing the genotype. This can be applied to the scenario of
a secondary objective as well as to multi-objective optimization. (2) Optimize
readability as another post-processing step, using an algorithm that generates
alternative candidates and ranks them by readability [2].

4 Generating Readable Tests for Guava

To study these approaches for readability optimization in detail, we selected
five classes from Guava randomly, and generated tests as described in the pre-
vious section. Figure 2 summarizes the overall results (over 5 runs) in terms of
the modeled readability scores for these five different classes with and without
optimization with both post-processing and no post-processing techniques. Fur-
thermore, the readability values of the manually-written tests for these classes
are included for reference.

The first three boxes of each plot show substantial improvement over the de-
fault configuration by including the readability model as a secondary objective or
as a second fitness function. In all five classes, the multi-objective optimization
achieves the most readable tests. However, note that without post-processing,
these tests do not yet have assertions (which according to the model have a neg-



base.Splitter math.DoubleMath

net.PercentEscaper primitives.UnsignedBytes

util.concurrent.MoreExecutors
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Fig. 2: Readability scores of manually-written and automatically-generated test
cases in 7 different configurations.

ative effect on readability). Despite this, in all five classes the average readability
of the manually written tests (fourth box) is slightly higher.

Boxes 5–7 show a similar pattern when applying EvoSuite’s post-processing
steps. However, we can see the large effects EvoSuite’s many post-processing
steps have, as the generated tests approach the readability of manual tests. For
Splitter and DoubleMath the improvement over the default is significant at α =
0.05 (calculated by using Wilcoxon test), on UnsignedBytes and MoreExecutors

there is an improvement although not significant. On PercentEscaper there is
no significant difference. The final box shows the results of a post-processing
step driven by the readablity model, which is generally slightly below NSGA-II,
but on the other hand is computationally much cheaper. We note that using
the readability model in a post-processing step is generally on par with the
multi-objective optimization.

These results demonstrate that our search-based approach can produce test
cases that are competitive with manual tests in terms of modeled readability.

4.1 User Agreement

To validate whether users agree with these optimizations, we selected 50 pairs of
test cases for the selected 5 classes, where the tests in each pair cover the same
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(a) Splitter
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(c) PercentEscaper
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Fig. 3: Percentage of users preferring the optimized test cases

coverage objective, and each pair consists of one test generated using EvoSuite’s
default configuration, whereas the other one is optimized. Half of the pairs were
selected from the configurations that do use post-processing, and half from the
configurations that do not. We used Amazon Mechanical Turk to run a forced-
choice survey, showing a random subset of pairs to each participant. As when
building the model, participants were required to pass a Java qualification test.

Figure 3 summarizes the 2,250 responses we received from 79 different par-
ticipants. The error bars indicate the 95% confidence interval around the rate
at which the participants preferred the optimized test. Overall, the participants
preferred the optimized test 59% of the time (p < 0.01 calculated with Fleiss’
kappa test). In four of the classes (Splitter, DoubleMath, UnsignedBytes, and
MoreExecutors) we can see this preference at the level of individual tests. For
example, we have 95% confidence that participants preferred the UnsignedBytes
tests generated without post-processing at a rate higher than random chance.
For pairs generated without post-processing the preference is generally clearer
than for those with post-processing, where for these classes the difference in
readability is generally small.

Notably, there is one pair of tests for class PercentEscaper where the users
preferred the default version to the one optimized using the readability model.
The model predicts that the shorter, optimized test is preferable to the longer
test produced by EvoSuite’s default configuration, which contains an exception.
However, this exception has a clear and easily to interpret message shown in a



comment in the test, which the users seem to count as readable — which is not
something a syntactic readability model could do.

Although human preference for our tests is modest, it is present, and our
readability improvements are orthogonal to the structural coverage of the gen-
erated test suite.

4.2 Test Suite Generation

To see how results generalize, we generated test suites for all 359 top-level,
public classes in Guava. Because the use of post-processing steps during fitness
evaluation has high computational costs, we applied the readability optimization
as a post-processing step, and compare the result to the default configuration
with the regular post-processing steps. Calculated after 20 repetitions, there
are 235 out of the 359 classes where the optimization leads to higher average
readability values, and 162 cases are significant at α = 0.05; there are 38 classes
where readability is worse, with 8 of them being significant. On average, the
readability score (averaged over all tests in a test suite) is increased by 0.14
(Â12 = 0.76), without affecting code coverage.

5 Conclusions

While there has been significant research interest in test input generation in gen-
eral and test case generation in particular, the readability of the resulting tests is
rarely considered. Anecdotal evidence suggests that readability is a factor in the
adoption of automatically-generated tests. We evaluate multiple approaches to
incorporate a learned model of test readability, based on human annotations, into
a test suite generation algorithm. We find that post processing approaches are
competitive with more expensive search strategies. We can produce test suites
that are equally powerful with respect to structural coverage metrics but are
more readable. In a modest but statistically significant manner, humans prefer
our readability-optimized test cases.
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