Claire Le Goues — Research Statement

I often feel as though the possibilities for modern software are limitless. It’s therefore a particular shame
that software developers spend so much energy keeping current systems running. Put frankly, software is
riddled with defects, new vulnerabilities come to light daily, and bugs cost the economy tens of billions of
dollars annually. Researchers have developed techniques for bug prevention, prediction, detection, localiza-
tion, and triage. However, actually patching a defect remains a predominantly manual (and thus expensive)
process.

My research is among the first to tackle this problem directly: I devise methods to automatically, generi-
cally, and efficiently fix bugs in legacy software. I believe that the complexity of modern software is exciting
because it allows us to adapt knowledge about other types of complex systems (e.g., biological immune
systems) to software maintenance. At the same time, because my work concerns a practical problem space
(maintaining real software), I strive to develop scalable methods and evaluate on real systems of indicative
size. I also strongly value reproducible empirical work, and thus release my tools, data, and benchmarks to
the community at large. These principles — studying software as a complex system, guided by real-world
problems — underlie my previous work and motivate my future research plans.

GenProg: Automatic Program Repair

Imagine that a test case for a large, established codebase has failed. What’s a novice developer to do? In
many cases, the first step is to use analyses (like “printf debugging”) to localize the failure to a smaller set of
problematic lines. Step two is often to incrementally change the code, perhaps by reordering the buggy code
or copying lines from other, likely correct, places. The modified program may be repeatedly re-tested to
see if it approaches correctness. The effort required to manually inspect code and devise and test candidate
solutions is one of the major reasons that software bugs are so expensive.

My current research focuses on GenProg, an algorithm that automatically repairs bugs in off-the-shelf
programs by combining genetic programming with lightweight program analyses. At a high level, Gen-
Prog conducts an evolutionary search for a patch that corrects buggy behavior while maintaining required
functionality. Throughout my work, I try to retain and simulate important benefits of human ingenuity:

e Expressive power. Just as humans are flexible, GenProg is designed to be generic and can repair many
different types of bugs. This is important because new vulnerability classes regularly gain prominence.

e Scalability. Humans regularly repair bugs in large, legacy systems. GenProg similarly applies to pro-
grams of millions of lines of code and does not require special coding practices or annotations.

I exploit two key insights to achieve both expressivity and scalabilityEI

First, external guarantees that a program implementation adheres to its specification provide
useful insight into program behavior. Such guarantees can take the forms of proof obligations or, more
commonly, test suites, either developer-written or automatically-generated. These guarantees encode both
the bug under repair as well as the other program functionality that a patch must maintain. This enables
expressivity because test cases can flexibly capture a broad set of complex behaviors. Additionally, just as
developers run their programs using “printf debugging” and other analyses to localize a fault, GenProg uses
test cases to identify which statements are more likely to be associated with the bug. This reduces the search
space of possible program changes, increasing scalability.

Second, existing program behavior contains the seeds of many repairs. GenProg reuses code
from non-buggy portions of the program when generating candidate repairs. This approach leverages domain-
specific programmer expertise encoded in the rest of the program, increasing the likelihood that GenProg
will succeed; fundamentally, most developers program correctly most of the time (e.g., a forgotten bounds
check is typically implemented correctly elsewhere in the same program). Code reuse also reduces the space
of possible changes.

Real-world evaluation

In addition to being expressive and scalable, GenProg is designed to be human-competitive in terms of
real-world cost and utility. This last concern is increasingly important, especially in light of some questions

1By contrast, most previous automatic repair techniques are limited in their expressivity because they only apply to a
predefined set of bug types; most repair memory overflows exclusively. They are also often limited in their scalable legacy
applicability because they problematically increase code size, run-time, or both.

commonly posed by industry practitioners: if I gave you the last 100 bugs from my project, how many could
GenProg fix? How long would it take, and how much would it cost?

Answering these questions required innovations in both experimental and algorithmic design. We needed
a large benchmark set, and we wanted the bugs in the set to be indicative of the ones developers deal
with “in the wild.” We leveraged version control and regression test suites in large, open-source projects to
systematically find 105 reproducible bugs in eight C programs totaling 5.1 MLOC and including over 10,000
test cases. This evaluation is the largest currently available of its kind, and is two orders of magnitude
larger than previous work in terms of either code or test suite size or defect count. We also improved the
algorithm to run within the demanding resource constraints of a commodity cloud computing environment
(which are becoming increasingly commonplace). This experimental approach required us to actually pay
for the repair experiments, which in turn provided a direct and grounded way to estimate the real-world
time and monetary cost of fixing a bug with GenProg.

In a controlled study, GenProg repaired over 50% of the 105 defects for $7.32 each, in 96 minutes, on
average. We have confirmed that GenProg can repair at least 8 different bug classes, including standard
engineering errors (infinite loops, incorrect output, segmentation faults, etc.) as well as security vulnera-
bilities taken from public reports. 1 consider these results strongly competitive in terms of both GenProg’s
expressive power and its time and monetary cost (by contrast, on average it takes weeks for developers to
fix reported bugs in open-source software) and believe that they speak to the promise of automatic repair as
a research area.

Given these automatically-produced repairs, quality is an important concern, especially with a technique
that does not guarantee soundness. We qualitatively and quantitatively evaluated patch quality using in-
dicative workloads and industrial practices for validating security-critical patches (e.g., following Microsoft).
We found that the patches truly addressed the underlying defect (instead of just masking symptoms) while
maintaining normal functionality. These results held even when inspection showed the repairs differed from
the developer fixes. I found this especially interesting, because it suggests that software, like many biological
systems, can be robust in the face of random mutations.

I am also excited about the possibilities cloud resources represent for software engineering research,
especially in enabling grounded economic arguments. Another positive side-effect of our methodology is
push-button reproducibility, and our publicly-available virtual machine images and bug packages allow other
investigators to pay the same cloud prices and reproduce our results.

Recognition

My research has been well-received by both the software engineering and evolutionary computation commu-
nities. GenProg was the subject of an invited Research Highlight in the Communications of the ACM, with
a readership of over 90,000. My publications have received four distinguished paper awards: two conference
best papers, one workshop best short paper, and one distinguished article designation in a top journal. One
of those papers also received the 2009 IFIP TC2 Manfred Paul Award for “excellence in software: the-
ory and practice” (with a prize of 1,024€), which is awarded annually to one paper selected from one of
several conferences. We won the gold and bronze awards in the 2009 and 2012 ACM SIGEVO “Humie”
awards for human-competitive results produced by genetic and evolutionary computation (with $10,000 and
$2,000 prizes, respectively). This critical validation provides additional confidence that the overall approach
represents a promising research direction.

Future Work

My long-term research goal is to improve software correctness and reliability by understanding software as
a complex adaptive system and leveraging the analogies between it and other such systems. I think one
reason GenProg works is that software shares certain underlying principles with the biological systems on
which evolutionary algorithms are based: program source code is robust to random mutations, patches are
evolvable, and alternative pathways can provide the same program functionality. This line of thinking admits
a number of opportunities for future research.

Patch security

I would like to leverage diversity to practically improve software security. Diversity is an important source of
robustness in biological systems, providing protection against the spread of disease and alternative pathways
that allow functionality to be maintained when one is disrupted. By contrast, most copies of an application
on a given platform are exactly the same (leading to a software monoculture). I want to develop techniques
for automatic patch diversification or hardening to counter the ability of hackers to reverse-engineer publicly-
released security patches (and attacking unpatched systems). With colleagues, I am currently investigating
patch diversification through cryptographic hashing or hoisting and code movement. We are especially inter-
ested in protocols that trade off scalability with mathematical guarantees: we seek sufficient computational
complexity that a hacker must wait a provable amount of time before learning of the patch vector (giving
users time to patch their systems). This line of research also admits investigations into software robustness
and N-variant systems, and the types of guarantees they provide in terms of proactive diversity in the face
of unknown defects.

Repair templates

I am interested in researching new ways for GenProg to construct patches to admit more natural repairs
or repairs of new bug types. GenProg currently explores very coarse-grained, generic edits. Although this
generality is good, at the same time, code and source control history often contain examples of repeated or
common repairs for particular programs. Crashes in an image manipulation library for example, may often
be patched by inserting a particular bounds check. This problem has parallels in computational models of
vertebrate immune systems, which successfully balance the tradeoff between remembering past attacks with
memory T-cells, and countering new ones with generalist T-cells.

I think program repair can be improved by mining and learning templates of candidate changes from
program code and version control histories. I have successfully used information mined from such sources in
previous work on specification mining; I believe that a similarly lightweight approach mining approach can
be used to learn project-specific change patterns. I hypothesize that learning from the existing system in a
grounded way can allay the tradeoff between bug-specific and general mutations.

Medical device safety

I am interested in improving medical device system safety by expanding the scope of existing fault and
verification analyses. Unlike many desktop applications, safety critical medical systems are often assumed
to operate in very controlled environments (e.g., the software in an insulin pump is not currently expected
to interface with possibly-buggy device drivers). As a result, existing verification protocols can make very
limiting assumptions about the user and the way the device is integrated into the patient’s life. By con-
trast, the “software system” under study includes not only the software and hardware, but also the user,
the decisions made by the user and medical team, and the environment in which the various components
operate. As medical devices increase in complexity and move from the clinic into patient homes, we need
new verification and validation techniques to mitigate threats to patient safety.

I have therefore begun collaborating with safety-critical systems researchers to extend existing procedures
such as fault tree analysis to the entire patient-device interaction. Other researchers have begun initial
investigations in this field by applying model checking to medical processes such as blood transfusion, with
clinical success. I think this field is wide open, and I look forward to applying what the software engineering
community knows about building and verifying safe software to other types of complex, human-centered
systems.

