
7 Completeness of the Hoare rules

In this chapter it is discussed what it means for the Hoare rules to be complete. Codel's

Incompleteness Theorem implies there is no complete proof system for establishing pre­

cisely the valid assertions. The Hoare rules inherit this incompleteness. However by

separating incompleteness of the assertion language from incompleteness due to inade­

quacies in the axioms and rules for the programming language constructs, we can obtain

relative completeness in the sense of Cook. The proof that the Hoare rules are relatively

complete relies on the idea of weakest liberal precondition, and leads into a discussion of

verification-condition generators.

1.1 Godel's Incompleteness Theorem

Look again at the proof rules for partial correctness assertions, and in particular at the

consequence rule. Knowing we have a rule instance of the consequence rule requires that

we determine that certain assertions in Assn are valid. Ideally, of course, we would

like a proof system of axioms and rules for assertions which enabled us to prove all the

assertions of Assn which are valid, and none which are invalid. Naturally we would

like the proof system to be effective in the sense that it is a routine matter to check

that something proposed as a rule instance really is one. It should be routine in the

sense that there is a computable method in the form of a program which, with input

a real rule instance, returns a confirmation that it is, and returns no confirmation on

inputs which are not rule instances, without necessarily even terminating. Lacking such

a computable method we might well have a proof derivation without knowing it because

it uses a step we cannot check is a rule instance. We cannot claim that the proof system

of Hoare rules is effective because we do not have a computable method for checking

instances of the consequence rule. Having such depends on having a computable method

to check that assertions of Assn are valid. But here we meet an absolute limit. The

great Austrian logician Kurt Codel showed that it is logically impossible to have an

effective proof system in which one can prove precisely the valid assertions of Assn.

This remarkable result, called Codel's Incompleteness Theorem 1 is not so hard to prove

nowadays, if one goes about it via results from the theory of computability. Indeed a

proof of the theorem, stated now, will be given in Section 7.3 based on some results from

computability. Any gaps or shortcomings there can be made up for by consulting the

Appendix on computability and undecidability based on the language of while programs,

IMP.

IThe Incompleteness Theorem is not to be confused with Godel's Completeness Theorem which says
that the proof system for predicate calculus generates precisely those assertions which are valid for all
interpretations.

100 Chapter 7

Theorem 7.1 Cadel's Incompleteness Theorem {1931}:

There is no effective proof system for Assn such that the theorems coincide with the valid

assertions of Assn.

This theorem means we cannot have an effective proof system for partial correctness

assertions. As F B iff F {true}skip{B}, if we had an effective proof system for partial

correctness it would reduce to an effective proof system for assertions in Assn, which is

impossible by G6del's Incompleteness Theorem. In fact we can show there is no effective

proof system for partial correctness assertions more directly.

Proposition 7.2 There is no effective proof system for partial correctness assertions

such that its theorems are precisely the valid partial correctness assertions.

Proof: Observe that F {true }c{ false} iff the command c diverges on all states. If we

had an effective proof system for partial correction assertions it would yield a computable

method of confirming that a command c diverges on all states. But this is known to be

impossible-see Exercise A.13 of the Appendix. 0

Faced with this unsurmountable fact, we settle for the proof system of Hoare rules

in Section 6.4 even though we know it to be not effective because of the nature of

the consequence rule; determining that we have an instance of the consequence rule is

dependent on certain assertions being valid. Still, we can inquire as to the completeness

of this system. That it is complete was established by S. Cook in [33]. If a partial

correctness assertion is valid then there is a proof of it using the Hoare rules, i. e. for any

partial correctness assertion {A }c{ B},

F {A}c{B} implies f-- {A}c{B},

though the fact that it is a proof can rest on certain assertions in Assn being valid. It is

as if in building proofs one could consult an oracle at any stage one needs to know if an

assertion in Assn is valid. For this reason Cook's result is said to establish the relative

completeness of the Hoare rules for partial correctness-their completeness is relative to

being able to draw from the set of valid assertions about arithmetic. In this way one

tries to separate concerns about programs and reasoning about them from concerns to

do with arithmetic and the incompleteness of any proof system for it.

7.2 Weakest preconditions and expressiveness

The proof of relative completeness relies on another concept. Consider trying to prove

{A}co; C1 {B}.

Completeness of the Hoare rules 101

In order to use the rule for composition one requires an intermediate assertion C so that

{A}co{C} and {C}ct{B}

are provable. How do we know such an intermediate assertion C can be found? A

sufficient condition is that for every command c and postconditions B we can express

their weakest precondition 2 in Assn.

Let c E Com and B E Assn. Let I be an interpretation. The weakest precondition

wpI[c, B] of B with respect to c in I is defined by:

wl[c,B] = {O" E 2:.L I C[c]O" 1=1 B}.

It's all those states from which the execution of c either diverges or ends up in a final

state satisfying B. Thus if 1=1 {A}c{B} we know

AI ~ wpI[c, B]

and vice versa. Thus 1=1 {A }c{ B} iff A I ~ wpI [c, Ell.
Suppose there is an assertion Ao such that in all interpretations I,

Then

1=1 {A}c{B} iff 1=1 (A "* Ao),

for any interpretation I i. e.

1= {A}c{B} iff 1= (A "* Ao).

So we see why it is called the weakest precondition, it is implied by any precondition

which makes the partial correctness assertion valid. However it's not obvious that a

particular language of assertions has an assertion Ao such that A& = wpI[c, B].

Definition: Say Assn is expressive iff for every command c and assertion B there is an

assertion Ao such that A& = wpI[c, B] for any interpretation I.

In showing expressiveness we will use G6del's (3 predicate to encode facts about se­

quences of states as assertions in Assn. The (3 predicate involves the operation a mod b

which gives the remainder of a when divided by b. We can express this notion as an

assertion in Assn. For x = a mod b we write

2What we shall call weakest precondition is generally called weakest liberal precondition, the term
weakest precondition referring to a related notion but for total correctness.

102 Chapter 7

a:::::O 1\ b:::::O 1\

:Jk.[k ::::: 0 1\ k X b 5, a 1\ (k + 1) x b> a 1\ x = a - (k x b)].

Lemma 7.3 Let f3(a, b, i, x) be the predicate over natural numbers defined by

f3(a, b, i, x) {=}de! X = a mod(l + (1 + i) x b).

For any sequence no, ... ,nk of natural numbers there are natural numbers n, m such

that for all j, 0 5, j 5, k, and all x we have

f3(n,m,j,x) {=} x = nj.

Proof: The proof of this arithmetical fact is left to the reader as a small series of exercises

at the end of this section. 0

The f3 predicate is important because with it we can encode a sequence of k natural

numbers no," " nk as a pair n, m. Given n, m, for any length k, we can extract a

sequence, viz. that sequence of numbers no, ... ,nk such that

for 0 ~ j 5, k. Notice that the definition of f3 shows that the list no,'" ,nk is uniquely

determined by the choice of n, m. The lemma above asserts that any sequence no, ... ,nk

can be encoded in this way.

We must now face a slight irritation. Our states and our language of assertions can

involve negative as well as positive numbers. We are obliged to extend Godel's f3 predicate

so as to encode sequences of positive and negative numbers. Fortunately, this is easily

done by encoding positive numbers as the even and negative numbers as the odd natural

numbers.

Lemma 7.4 Let F(x,y) be the predicate over natural numbers x and positive and neg­

ative numbers y given by

Define

F(x, y)

:Jz ::::: O.

x::::: 0 &

[(x = 2 x z =? Y = z) &

(x = 2 x z + 1 =? Y = -z)]

f3±(n,m,j,y) {=}de! 3x.(f3(n,m,j,x) I\F(x,y)).

Completeness of the Hoare rules 103

Then for any sequence no, ... ,nk of positive or negative numbers there are natural num­

bers n, m such that for all j, 0 ::; j ::; k, and all x we have

f3±(n,m,j,x) {o} x = nj.

Proof: Clearly F(n, m) expresses the 1-1 correspondence between natural numbers m E

wand n E N in which even m stand for non-negative and odd m for negative numbers.

The lemma follows from Lemma 7.3. 0

The predicate f3± is expressible in Assn because f3 and F are. To avoid introducing a

further symbol, let us write f3± for the assertion in Assn expressing this predicate. This

assertion in Assn will have free integer variables, say n, m, j, x, understood in the same

way as above, i. e. n, m encodes a sequence with jth element x. We will want to use

other integer variables besides n, m, j, x, so we write f3± (n', m', j', x') as an abbreviation

for f3±[n'/n,m'/m,j'fj,x'/x], got by substituting the the integer variable n' for n, m'

for m, and so on. We have not give a formal definition of what it means to substitute

integer variables in an assertion. The definition of substitution in Section 6.2.2 only

defines substitutions A[a/i] of arithmetic expressions a without integer variables, for an

integer variable i in an assertion A. However, as long as the variables n', m' , l' ,x' are

"fresh" in the sense of their being distinct and not occurring (free or bound) in f3 ±, the

same definition applies equally well to the substitution of integer variables; the assertion

f3± [n' In, m' /m, j' fj, x' /x] is that given by f3± [n' /n][m' /m][j' fj][x' /x] using the definition

of Section 6.2.2.3

Now we can show:

Theorem 7.5 Assn is expressive.

Proof: We show by structural induction on commands c that for all assertions B there

is an assertion w[c, B] such that for all interpretations I

WpI [c, B] = w[c, B] I,

for all commands c.

Note that by the definition of weakest precondition that, for I an interpretation, the

equality wpI[c, B] = w[c, B]f amounts to

a- pJ w[c, B] iff C[c]a- FI B,

3To illustrate the technical problem with substitution of integer variables which are not fresh, consider
the assertion A == (:li'. 2 x i' = i) which means "i is even." The naive definition of A[i'li] yields the

assertion (:li'. 2 x i' = i') which happens to be valid, and so certainly does not mean "i is even."

104 Chapter 7

holding for all states 0-, a fact we shall use occasionally in the proof.

C == skip: In this case, take w[skip, B~ == B. Clearly, for all states 0- and interpretations

I,

0- E wpI [skip, BD iff C[skip~o- pI B

iff 0- pI B

iff 0- pI w[skip, Bl

C == (X := a) : In this case, define w[X := a, Bn == B[a/ X]. Then

0- E wpI[X := a, ED iff o-[A[ano-/ X] pI B

iff 0- pI B[a/ X] by Lemma 6.9

iff 0- pI w[X := a, Bl

C == co; Cl : Inductively define w[co; Cl, Bn == w[co, W[Cl' BnD- Then, for 0- E ~ and

interpretation I,

0- E wpI [Co; Cl, Bn iff C[co; Clno- pI B

iff C[ClTI(C[COno-) pI B

iff C[cono- pI W[Cl, Bn, by induction,

iff 0- pI w[co, W[Cl' Bn], by induction,

iff 0- pI W[Co; Cl, Bn.

C == if b then Co else Cl : Define

w[if b then Co else Cl, B] == [(b A w[co, Bm V (-,b A W[Cl' Bn)].

Then, for 0- E ~ and interpretation I,

0- E wpI [c, Bn iff C[c]o- 1=1 B

iff ([8[b]0- = true & C[co]o- pI B] or

[8[b]o- = false & C[Cl]o- 1=1 BD

iff ([0- 1=1 b & 0- 1=1 w[co, B]) or

[0- 1=1 -,b & 0- 1=1 W[Cl, Bm, by induction,

iff 0-1=1 [(bA w[cQ,B]]) V (-,bA W[Cl' Bn)]

iff 0- 1=1 w[c, B].

Completeness of the Hoare rules 105

c == while b do co: This is the one difficult case. For a state a and interpretation I, we

have (from Exercise 5.8) that a E wpI[c,B] iff

'Vk 'Vao, ... ,ak E ~.

[a = ao &

'Vi(O :::; i < k). (ai FI b &

(1)

As it stands the mathematical characterisation of states a in wpI[c, B] is not an as­

sertion in Assn; in particular it refers directly to states ao,"', ak. However we show

how to replace it by an equivalent description which is. The first step is to replace all

references to the states ao, ... , ak by references to the values they contain at the locations

mentioned in c and B. Suppose X = Xl, ... ,Xl are the locations mentioned in c and

B-the values at the remaining locations are irrelevant to the computation. We make

use of the following fact:

Suppose A is an assertion in Assn which mentions only locations from X = Xl, ... , Xl.

For a state a, let Si = a(Xi), for 1 :::; i :::; t, and write S = Sl,"', Sl. Then

for any interpretation I. The assertion A[s/ Xl is that obtained by the simultaneous

substitution of s for X in A. This fact can be proved by structural induction (Exercise!).

Using the fact (*) we can convert (1) into an equivalent assertion about sequences. For

i 2: 0, let Si abbreviate Si1, ... , Sil, a sequence in N. We claim: a E wpI[c, B] iff

'Vk'VSO, ... ,Sk EN.

[a FI X = So &

'Vi (0:::; i < k). (F I b[sdXl &

We have used X = So to abbreviate Xl = SOl /I. ... /I. Xl = SOL.

(2)

106 Chapter 7

To prove the claim we argue that (1) and (2) are equivalent. Parts of the argument

are straightforward. For example, it follows directly from (*) that, assuming state 0" i has

values Si at X,

for an interpretation I. The hard part hinges on showing that assuming 0" i and O"i+l have

values Si and Si+l, respectively, at X and agree elsewhere, we have

for an interpretation I. To see this we first observe that

C[CO]O"i = O"i+l iff O"i E wpl[cO, X = Si+d & C[CO]O"i is defined.

(Why?) From the induction hypothesis we obtain

I - -
O"i E wp [co, X = si+d

C[CO]O"i is defined iff

iff O"i 1=1 (w[co, X = si+d, and

O"i 1=1 ...,w[co, false]

-recall that O"i E wpl [co, false] iff Co diverges on O"i. Consequently,

This covers the difficulties in showing (1) and (2) equivalent.

Finally, notice how (2) can be expressed in Assn, using the Godel predicate j3 ±. For

simplicity assume I = 1 with X = X. Then we can rephrase (2) to get: 0" E wpI[c, B] iff

0" FI VkVm,n ~ 0.

[j3±(n,m,O,X) /I.

Vi (0:::; i < k). ("Ix. j3±(n,m,i,x) ==} b[x/X]) /I.

"Ix, y. (j3±(n, m,i,x) /I. j3±(n, m, i + 1, y) ==}

(w[co,X = y] /I.""w[co,false])[x/X])]

==} (j3± (n, m, k, x) ==} (b V B)[x / Xl)

This is the assertion we take as w[c, B] in this case. (In understanding this assertion

compare it line-for-line with (2), bearing in mind that j3±(n,m,i,x) means that x is the

Completeness of the Hoare rules 107

ith element of the sequence encoded by the pair n, m.) The form of the assertion in the

general case, for arbitrary I, is similar, though more clumsy, and left to the reader.

This completes the proof by structural induction. D

As Assn is expressive for any command c and assertion B there is an assertion w[c, B]

with the property that

for any interpretation I. Of course, the assertion w[c, B] constructed in the proof of

expressiveness above, is not the unique assertion with this property (Why not?). However

suppose Ao is another assertion such that Al = wpI [c, B] for all I. Then

F (w[c,B] {::::::::> Ao)·

So the assertion expressing a weakest precondition is unique to within logical equivalence.

The useful key fact about such an assertion w[c, B] is that, from the definition of weakest

precondition, it is characterised by:

a FI w[c, B] iff C[c]a FI B,

for all states a and interpretations I.

From the expressiveness of Assn we shall prove relative completeness. First an im­

portant lemma.

Lemma 7.6 For c E Com and B E Assn, let w[c, B] be an assertion expressing the

weakest precondition i. e. w[c, B] I = wpI [c, B] (the assertion w[c, B] need not be neces­

sarily that constructed by Theorem 7.5 above). Then

f- {w[c,B]}c{B}.

Proof: Let w[c, B] be an assertion which expresses the weakest precondition of a com­

mand c and postcondition B. We show by structural induction on c that

f- {w[c, B]}c{B} for all B E Assn,

for all commands c.

(In all but the last case, the proof overlaps with that of Theorem 7.5.)

c == skip : In this case F w[skip, B] {::::::::> B, so f- {w[skip, B]}skip{ B} by the

consequence rule.

108

c == (X := a) : In this case

CT E wpI[c,B] iff CT[.A[a]CT/X] FI B

iff CT FI B[a/ X].

Chapter 7

Thus F (w[c, B] ~ B[a/ Xl). Hence by the rule for assignment with the consequence

rule we see f-- {w[c, B]}c{ B} in this case.

c == co; Cl : In this case, for CT E ~ and interpretation I,

CT FI w[co; Cl, B] iff C[co; Cl]CT FI B

iff C[cI](C[CO]CT) FI B

iff C[CO]CT FI W[C1, B]

iff CT FI w[co, W[Cl, Bn
Thus F w[co; C1, B] ~ w[co, W[Cl, B]]. By the induction hypothesis

f-- {w[co, W[Cl, B]nco{ W[Cl, Bn and

f-- {w[cl,B]}cdB}.

Hence, by the rule for sequencing, we deduce

f-- {w[co, W[Cl, B]] }co; C1 {B}

By the consequence rule we get

C == if b then Co else Cl : In this case, for CT E ~ and interpretation I,

Hence

CT FI w[c, B] iff C[C]CT FI B

iff ([8[b]CT = true & C[CO]CT FI B] or

[8[b]CT = false & C[CI]CT FI BD

iff ([CT FI b & CT FI w[co, B]] or

[CT FI -.b & CT FI W[Cl, Bm

iff CT FI [(b A w[co, B]]) V (-.b A W[Cl, B])].

F w[c,B] ~ [(bA w[co,B]]) V (-.bA w[cl,B])].

Completeness of the Hoare rules

Now by the induction hypothesis

I- {w[eo, Bneo{B} and I- {w[el' BnCl {B}.

But
1= (w[e,B]t\b) {:==} w[eo,B] and

F (w[e, B] t\,b) {:==} w[el' B].

So by the consequence rule

I- {w[e, B] t\ b}eo{B} and I- {w[e, B] t\,b }et{ B}.

By the rule for conditionals we obtain I- {w[e, Bne{ B} in this case.

Finally we consider the case:

c == while b do Co : Take A == w[e, B]. We show

(1) 1= {A t\ b}eo{A},

(2) 1= (A t\,b) =? B.

109

Then, from (1), by the induction hypothesis we obtain I- {A t\ b}co{A}, so that by the

while-rule I- {A}e{A t\,b}. Continuing, by (2), using the consequence rule, we obtain

I- {A}c{B}. Now we prove (1) and (2).

(1) Let 0' 1=1 A t\ b, for an interpretation I. Then 0' 1=1 w[e, B] and 0' 1=1 b, i.e.

C[e]O' 1=1 Band 0' 1=1 b. But C[e] is defined so

C[e] = C[if b then Co; c else skip],

which makes C[eo; e]O' 1=1 B, i.e. C[e](C[eo]O') 1=1 B. Therefore C[eo]O' 1=1 w[e, B], i.e.

C[eo]O' 1=1 A. Thus 1= {A t\ b}eo{A}.

(2) Let 0' 1=1 A t\,b, for an interpretation I. Then C[e]O' 1=1 Band 0' 1=1,b. Again

note C[e] = C[if b then co; e else skip], so C[e]O' = 0'. Therefore 0' 1=1 B. It follows

that 1=1 A t\.....,b =? B. Thus 1= A t\.....,b =? B, proving (2).

This completes all the cases. Hence, by structural induction, the lemma is proved. 0

Theorem 7.7 The proof system for partial correctness is relatively complete, i. e. for

any partial correctness assertion {A}e{B},

I- {A}e{B} if 1= {A}e{B}.

110 Chapter 7

Proof: Suppose 1= {A}c{B}. Then by the above lemma f-- {w[c, B]}c{B} where w[c, B] I ::::

wpI[c, B] for any interpretation I. Thus as 1= (A =? w[c, B]), by the consequence rule,

we obtain f-- {A}c{B}. 0

Exercise 7.8 (The G6del f3 predicate)

(a) Let no, ... ,nk be a sequence of natural numbers and let

m = (max {k,no, .. · ,nd)!

Show that the numbers

Pi = 1 + (1 + i) x m, for 0 :::; i :::; k

are coprime (i.e., gcd(Pi,pj) = 1 for i f. j) and that ni < Pi·

(b) Further, define

Ci = Po x ... X Pk/pi, for 0 :::; i :::; k.

Show that for all i, 0 :::; i :::; k, there is a unique d i , 0 :::; di < Pi, such that

(c) In addition, define

Show that

when 0 :::; i :::; k.

(d) Finally prove lemma 3.

k

n = L Ci X di x ni·

i=O

ni = nmodpi

7.3 Proof of Godel's Theorem

o

G6del's Incompleteness Theorem amounts to the fact that the subset of valid assertions

in Assn is not recursively enumerable (i. e. , there is no program which given assertions

as input returns a confirmation precisely on the valid assertions-see the Appendix on

computability for a precise definition and a more detailed treatment).

Theorem 7.9 The subset of assertions {A E Assn I 1= A} is not recursively enumer­

able.

Completeness of the Hoare rules 111

Proof: Suppose on the contrary that the set {A E Assn I 1= A} is recursively enumer­

able. Then there is a computable method to confirm that an assertion is valid. This

provides a computable method to confirm that a command c diverges on the zero-state

<70, in which each location X has contents 0:

Construct the assertion w[c, false] as in the proof of Theorem 7.5. Let X consist of all

the locations mentioned in w[c, false]. Let A be the assertion w[c, false] [0/ XL obtained

by replacing the locations by zeros. Then the divergence of c on the zero-state can be

confirmed by checking the validity of A, for which there is assumed to be a computable

method.

But it is known that the commands c which diverge on the zero-state do not form

a recursively enumerable set-see Theorem A.12 in the Appendix. This contradiction

shows {A E Assn I 1= A} to not be recursively enumerable. D

As a corollary we obtain Godel's Incompleteness Theorem:

Theorem 7.10 (Theorem 7.1 restated) (Gadel's Incompleteness Theorem):

There is no effective proof system for Assn such that its theorems coincide with the

valid assertions of Assn.

Proof: Assume there were an effective proof system such that for an assertion A, we

have A is provable iff A is valid. The proof system being effective implies that there is a

computable method to confirm precisely when something is a proof. Searching through

all proofs systematically till a proof of an assertion A is found provides a computable

method of confirming precisely when an assertion A is valid. Thus there cannot be an

effective proof system. D

Although we have stated Godel's Theorem for assertions Assn the presence of locations

plays no essential role in the results. Godel's Theorem is generally stated for the smaller

language of assertions without locations-the language of arithmetic. The fact that

the valid assertions in this language do not form a recursively enumerable set means

that the axiomatisation of arithmetic is never finished-there will always be some fact

about arithmetic which remains unprovable. Nor can we hope to have a program which

generates an infinite list of axioms and effective proof rules so that all valid assertions

about arithmetic follow. If there were such a program there would be an effective proof

system for arithmetical assertions, contradicting Godel's Incompleteness Theorem.

Godel's result had tremendous historical significance. Godel did not have the concepts

of computability available to him. Rather his result stimulated logicians to research dif­

ferent formulations of what it meant to be computable. The original proof worked by

expressing the concept of provability of a formal system for assertions as an assertion

112 Chapter 7

itself, and constructing an assertion which was valid iff it was not provable. It should

be admitted that we have only considered Godel's First Incompleteness Theorem; there

is also a second which says that a formal system for arithmetic cannot be proved free of

contradiction in the system itself. It was clear to Godel that his proofs of incompleteness

hinged on being able to express a certain set of functions on the natural numbers by

assertions-the set has come to be called the primitive recursive functions. The reali­

sation that a simple extension led to a stable notion of computable function took some

years longer, culminating in the Church-TUring thesis. The incompleteness theorem dev­

astated the programme set up by Hilbert. As a reaction to paradoxes like Russell's in

mathematical foundations, Hilbert had advocated a study of the finitistic methods em­

ployed when reasoning within some formal system, hoping that this would lead to proofs

of consistency and completeness of important proof systems, like one for arithmetic.

Godel's Theorem established an absolute limit on the power ot finitistic reasoning.

7.4 Verification conditions

In principle, the fact that Assn is expressive provides a method to reduce the demonstra­

tion that a partial correctness assertion is valid to showing the validity of an assertion in

Assn; the validity of a partial correctness assertion of the form {A }c{ B} is equivalent to

the validity of the assertion A =? w[c, B], from which the command has been eliminated.

In this way, given a theorem prover for predicate calculus we might hope to derive a the­

orem prover for IMP programs. Unfortunately, the method we used to obtain w[c, B]

was convoluted and inefficient, and definitely not practical.

However, useful automated tools for establishing the validity of partial correctness

assertions can be obtained along similar lines once we allow a little human guidance. Let

us annotate programs by assertions. Define the syntactic set of annotated commands by:

c ::=skip I X := a I co; (X := a) I co; {D}cl I

if b then Co else Cl I while b do {D}c

where X is a location, a an arithmetic expression, b is a boolean expression, c, co, Cl

are annotated commands and D is an assertion such that in co; {D}cl, the annotated

command Cl, is not an assignment. The idea is that an assertion at a point in an

annotated command is true whenever flow of control reaches that point. Thus we only

annotate a command of the form co; CI at the point where control shifts from Co to CI.

lt is unnecessary to do this when Cl is an assignment X := a because in that case an

annotation can be derived simply from a postcondition. An annotated while-loop

while b do {D}e

Completeness of the Hoare rules 113

contains an assertion D which is intended to be an invariant.

An annotated partial correctness assertion has the form

{A}c{B}

where c is an annotated command. Annotated commands are associated with ordinary

commands, got by ignoring the annotations. It is sometimes convenient to treat an­

notated commands as their associated commands. In this spirit, we sayan annotated

partial correctness assertion is valid when its associated (unannotated) partial correctness

assertion is.

An annotated while-loop

{A}while b do {D}c{B}

contains an assertion D, which we hope has been chosen judiciously so D is an invariant.

Being an invariant means that

{D 1\ b}c{D}

is valid. In order to ensure

{A} while b do {D}c{B}

is valid, once it is known that D is an invariant, it suffices to show that both assertions

A =? D, D 1\ -,b =? B

are valid. A quick way to see this is to notice that we can derive {A }while b do c{ B}

from {D 1\ b}c{D} using the Hoare rules which we know to be sound. As is clear, not

all annotated partial correctness assertions are valid. To be so it is sufficient to establish

the validity of certain assertions, called verification conditions for which all mention of

commands is eliminated. Define the verification conditions (abbreviated to vc) of an

annotated partial correctness assertion by structural induction on annotated commands:

vc({A}skip{B})

vc({A}X:= a{B})

vc({A}co;X:= a{B})

vc({A }co; {D}CI {B})

vc({A }if b then Co else CI {B})

vc({A}while b do {D}c{B})

{A =? B}

{A =? B[a/X]}

vc({A}co{B[a/ X]})

vc({A }co{ D}) U vc({D}CI {B})

where clis not an assignment

vc({A 1\ b }co{ B}) U vc({A 1\ -,b }CI {B})

vc({D 1\ b}c{D}) U {A =? D}

U{DI\-,b=?B}

114 Chapter 7

Exercise 7.11 Prove by structural induction on annotated commands that for all an­

notated partial correctness assertions {A }c{ B} if all assertions in vc({A }c{ B}) are valid

then {A }c{ B} is valid. (The proof follows the general line of Lemma 7.6. A proof can

be found in [42], Section 3.5.) D

Thus to show the validity of an annotated partial correctness assertion it is sufficient

to show its verification conditions are valid. In this way the task of program verification

can be passed to a theorem prover for predicate calculus. Some commercial program­

verification systems, like Gypsy [41], work in this way.

Note, that while the validity of its verification conditions is sufficient to guarantee

the validity of an annotated partial correctness assertion, it is not necessary. This can

occur because the invariant chosen is inappropriate for the pre and post conditions. For

example, although

{true }while false do {false }skip{ true}

is certainly valid with false as an invariant, its verification conditions contain

true =} false,

which is certainly not a valid assertion.

We conclude this section by pointing out a peculiarity in our treatment of annotated

commands. Two commands, built up as (Ci X := al)i X := a2 and Ci (X := ali X := a2),

are understood in essentially the same waYi indeed in many imperative languages they

would both be written as:
C· ,

X :=ali

X :=a2

However the two commands support different annotations according to our syntax of

annotated commands. The first would only allow possible annotations to appear in

C whereas the second would be annotated as Ci {D}(X := aliX := a2). The rules

for annotations do not put annotations before a single assignment but would put an

annotation in before any other chain of assignments. This is even though it is still easily

possible to derive the annotation from the postcondition, this time through a series of

substitutions.

Exercise 7.12 Suggest a way to modify the syntax of annotated commands and the

definition of their verification conditions to address this peculiarity, so that any chain of

assignments or skip is treated in the same way as a single assignment is presently. D

Completeness of the Hoare rules 115

Exercise 7.13 A larger project is to program a verification-condition generator (e.g.in

standard ML or prolog) which, given an annotated partial correctness assertion as input,

outputs a set, or list, of its verification conditions. (See Gordon's book [42] for a program

in lisp.) 0

7.5 Predicate transformers

This section is optional and presents an abstract, rather more mathematical view of

assertions and weakest preconditions. Abstractly a command is a function f : L; ---> L;.l

from states to states together with an element .1, standing for undefined; such functions

are sometimes called state transformers. They form a cpo, isomorphic to that of the

partial functions on states, when ordered pointwise. Abstractly, an assertion for partial

correctness is a subset of states which contains..1, so we define the set of partial correctness

predicates to be

Pred(L;) = {Q I Q ~ L;.l & ..1 E Q}.

We can make predicates into a cpo by ordering them by reverse inclusion. The cpo of

predicates for partial correctness is

(Pred(L;), 2).

Here, more information about the final state delivered by a command configuration

corresponds to having bounded it to lie within a smaller set provided its execution halts.

In particular the very least information corresponds to the element ..1 Pred = L; U {..1}.

We shall use simply Pred(L;) for the cpo of partial-correctness predicates.

The weakest precondition construction determines a continuous function on the cpo of

predicates-a predicate transformer. 4

Definition: Let f : ~ ---> L;.l be a partial function on states. Define

W f : Pred(L;) ---> Pred(L;);

(W f)(Q) = U- 1Q) U {..1}

i.e., (W f)(Q) = {a E ~.l I f(O') E Q} U {..1}.

A command c can be taken to denote a state transformer C[c] : ~ ---> L;.l with the

convention that undefined is represented by ..i. Let B be an assertion. According to this

understanding, with respect to an interpretation I,

(W(C[C]))(BI) = wl[c, B].

4This term is generally used for the corresponding notion when considering total correctness.

116 Chapter 7

Exercise 7.14 Write ST for the cpo of state transformers [E 1- -1- E1-] and PT for the

cpo of predicate transformers [Pred(E) - Pred(E)].

Show W : ST - 1- PT and W is continuous (Care! there are lots of things to check here).

Show W(Id~.J = IdPred(~) i.e., W takes the identity function on the cpo of states to

the identity function on predicates Pred(E).

Show W(f 0 g) = (Wg) 0 (WI). 0

In the context of total correctness Dijkstra has argued that one can specify the meaning

of a command as a predicate transformer [36]. He argued that to understand a command

amounts to knowing the weakest precondition which ensures a given postcondition. We

do this for partial correctness. As we now have a cpo of predicates we also have the cpo

[Pred(E) - Pred(E)]

of predicate transformers. Thus we can give a denotational semantics of commands

in IMP as predicate transformers, instead of as state transformers. We can define a

semantic function

Pt: Com - [Pred(E) - Pred(E)]

from commands to predicate transformers. Although this denotational semantics, in

which the denotation of a command is a predicate transformer is clearly a different

denotational semantics to that using partial functions, if done correctly it should be

equivalent in the sense that two commands denote the same predicate transformer iff

they denote the same partial function. You may like to do this as the exercise below.

Exercise 7.15 (Denotations as predicate transformers)

Define a semantic function

by

Pt: Com- PT

Pt[X := a]Q = {a E E1- I a[A[a]a / X] E Q}

Pt[skip]Q = Q

Pt[eo; Cl]Q = Pt[Co] (Pt[Cl]Q)

Pt[if b then Co else Cl]Q = Pt[co](iJ n Q) U Pt[Cl](...,b n Q)

where b = {a I a = ..1 or 8[b]a = true} for any boolean b

Pt[while b do c]Q = fix(G)

where G : PT - PT is given by G(p)(Q) = (b n Pt[eo] (P(Q)) U (...,b n Q).

Show G is continuous.

Completeness of the Hoare rules 117

Show W(C[clJ = Pt[c] for any command c. Observe

WJ=WJ'=>J=J'

for two strict continuous functions J, J' on 2:.L. Deduce

C[c] = C[c'] iff Pt[c] = Pt[c']

for any commands c, c' .

Recall the ordering on predicates. Because it is reverse inclusion:

nEw

This suggests that if we were to allow infinite conjunctions in our language of assertions,

and did not have quantifiers, we could express weakest preconditions directly. Indeed

this is so, and you might like to extend Bexp by infinite conjunctions, to form another

set of assertions to replace Assn, and modify the above semantics to give an assertion,

of the new kind, which expresses the weakest precondition for each command. Once we

have expressiveness a proof of relative completeness follows for this new kind of assertion,

in the same way as earlier in Section 7.2. 0

1.6 Further reading

The book "What is mathematical logic?" by Crossley et al [34] has an excellent expla­

nation of Godel's Incompleteness Theorem, though with the details missing. The logic

texts by Kleene [54], Mendelson [61] and Enderton [38] have full treatments. A treatment

aimed at Computer Science students is presented in the book [11] by Kfoury, Moll and

Arbib. Cook's original proof of relative completeness in [33] used "strongest postcondi­

tions" instead of weakest preconditions; the latter are used instead by Clarke in [23] and

his earlier work. The paper by Clarke has, in addition, some negative results showing

the impossibility of having sound and relatively complete proof systems for programming

languages richer than the one here. Apt's paper [8] provides good orientation. Alter­

native presentations of the material of this chapter can be found in [58], [13]. Gordon's

book [42] contains a more elementary and detailed treatment of verification conditions.

	7 Completeness of the Hoare rules��
	7.1 Codel's Incompleteness Theorem���
	7.2 Weakest preconditions and expressiveness���
	7.3 Proof of Codel's Theorem�����������������������������������
	7.4 Verification conditions����������������������������������
	7.5 Predicate transformers���������������������������������
	7.6 Further reading��������������������������

