
7 Completeness of the Hoare rules 

In this chapter it is discussed what it means for the Hoare rules to be complete. Codel's 

Incompleteness Theorem implies there is no complete proof system for establishing pre­

cisely the valid assertions. The Hoare rules inherit this incompleteness. However by 

separating incompleteness of the assertion language from incompleteness due to inade­

quacies in the axioms and rules for the programming language constructs, we can obtain 

relative completeness in the sense of Cook. The proof that the Hoare rules are relatively 

complete relies on the idea of weakest liberal precondition, and leads into a discussion of 

verification-condition generators. 

1.1 Godel's Incompleteness Theorem 

Look again at the proof rules for partial correctness assertions, and in particular at the 

consequence rule. Knowing we have a rule instance of the consequence rule requires that 

we determine that certain assertions in Assn are valid. Ideally, of course, we would 

like a proof system of axioms and rules for assertions which enabled us to prove all the 

assertions of Assn which are valid, and none which are invalid. Naturally we would 

like the proof system to be effective in the sense that it is a routine matter to check 

that something proposed as a rule instance really is one. It should be routine in the 

sense that there is a computable method in the form of a program which, with input 

a real rule instance, returns a confirmation that it is, and returns no confirmation on 

inputs which are not rule instances, without necessarily even terminating. Lacking such 

a computable method we might well have a proof derivation without knowing it because 

it uses a step we cannot check is a rule instance. We cannot claim that the proof system 

of Hoare rules is effective because we do not have a computable method for checking 

instances of the consequence rule. Having such depends on having a computable method 

to check that assertions of Assn are valid. But here we meet an absolute limit. The 

great Austrian logician Kurt Codel showed that it is logically impossible to have an 

effective proof system in which one can prove precisely the valid assertions of Assn. 

This remarkable result, called Codel's Incompleteness Theorem 1 is not so hard to prove 

nowadays, if one goes about it via results from the theory of computability. Indeed a 

proof of the theorem, stated now, will be given in Section 7.3 based on some results from 

computability. Any gaps or shortcomings there can be made up for by consulting the 

Appendix on computability and undecidability based on the language of while programs, 

IMP. 

IThe Incompleteness Theorem is not to be confused with Godel's Completeness Theorem which says 
that the proof system for predicate calculus generates precisely those assertions which are valid for all 
interpretations. 
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Theorem 7.1 Cadel's Incompleteness Theorem {1931}: 

There is no effective proof system for Assn such that the theorems coincide with the valid 

assertions of Assn. 

This theorem means we cannot have an effective proof system for partial correctness 

assertions. As F B iff F {true}skip{B}, if we had an effective proof system for partial 

correctness it would reduce to an effective proof system for assertions in Assn, which is 

impossible by G6del's Incompleteness Theorem. In fact we can show there is no effective 

proof system for partial correctness assertions more directly. 

Proposition 7.2 There is no effective proof system for partial correctness assertions 

such that its theorems are precisely the valid partial correctness assertions. 

Proof: Observe that F {true }c{ false} iff the command c diverges on all states. If we 

had an effective proof system for partial correction assertions it would yield a computable 

method of confirming that a command c diverges on all states. But this is known to be 

impossible-see Exercise A.13 of the Appendix. 0 

Faced with this unsurmountable fact, we settle for the proof system of Hoare rules 

in Section 6.4 even though we know it to be not effective because of the nature of 

the consequence rule; determining that we have an instance of the consequence rule is 

dependent on certain assertions being valid. Still, we can inquire as to the completeness 

of this system. That it is complete was established by S. Cook in [33]. If a partial 

correctness assertion is valid then there is a proof of it using the Hoare rules, i. e. for any 

partial correctness assertion {A }c{ B}, 

F {A}c{B} implies f-- {A}c{B}, 

though the fact that it is a proof can rest on certain assertions in Assn being valid. It is 

as if in building proofs one could consult an oracle at any stage one needs to know if an 

assertion in Assn is valid. For this reason Cook's result is said to establish the relative 

completeness of the Hoare rules for partial correctness-their completeness is relative to 

being able to draw from the set of valid assertions about arithmetic. In this way one 

tries to separate concerns about programs and reasoning about them from concerns to 

do with arithmetic and the incompleteness of any proof system for it. 

7.2 Weakest preconditions and expressiveness 

The proof of relative completeness relies on another concept. Consider trying to prove 

{A}co; C1 {B}. 
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In order to use the rule for composition one requires an intermediate assertion C so that 

{A}co{C} and {C}ct{B} 

are provable. How do we know such an intermediate assertion C can be found? A 

sufficient condition is that for every command c and postconditions B we can express 

their weakest precondition 2 in Assn. 

Let c E Com and B E Assn. Let I be an interpretation. The weakest precondition 

wpI[c, B] of B with respect to c in I is defined by: 

wl[c,B] = {O" E 2:.L I C[c]O" 1=1 B}. 

It's all those states from which the execution of c either diverges or ends up in a final 

state satisfying B. Thus if 1=1 {A}c{B} we know 

AI ~ wpI[c, B] 

and vice versa. Thus 1=1 {A }c{ B} iff A I ~ wpI [c, Ell. 
Suppose there is an assertion Ao such that in all interpretations I, 

Then 

1=1 {A}c{B} iff 1=1 (A "* Ao), 

for any interpretation I i. e. 

1= {A}c{B} iff 1= (A "* Ao). 

So we see why it is called the weakest precondition, it is implied by any precondition 

which makes the partial correctness assertion valid. However it's not obvious that a 

particular language of assertions has an assertion Ao such that A& = wpI[c, B]. 

Definition: Say Assn is expressive iff for every command c and assertion B there is an 

assertion Ao such that A& = wpI[c, B] for any interpretation I. 

In showing expressiveness we will use G6del's (3 predicate to encode facts about se­

quences of states as assertions in Assn. The (3 predicate involves the operation a mod b 

which gives the remainder of a when divided by b. We can express this notion as an 

assertion in Assn. For x = a mod b we write 

2What we shall call weakest precondition is generally called weakest liberal precondition, the term 
weakest precondition referring to a related notion but for total correctness. 
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a:::::O 1\ b:::::O 1\ 

:Jk.[k ::::: 0 1\ k X b 5, a 1\ (k + 1) x b> a 1\ x = a - (k x b)]. 

Lemma 7.3 Let f3(a, b, i, x) be the predicate over natural numbers defined by 

f3(a, b, i, x) {=}de! X = a mod(l + (1 + i) x b). 

For any sequence no, ... ,nk of natural numbers there are natural numbers n, m such 

that for all j, 0 5, j 5, k, and all x we have 

f3(n,m,j,x) {=} x = nj. 

Proof: The proof of this arithmetical fact is left to the reader as a small series of exercises 

at the end of this section. 0 

The f3 predicate is important because with it we can encode a sequence of k natural 

numbers no," " nk as a pair n, m. Given n, m, for any length k, we can extract a 

sequence, viz. that sequence of numbers no, ... ,nk such that 

for 0 ~ j 5, k. Notice that the definition of f3 shows that the list no,'" ,nk is uniquely 

determined by the choice of n, m. The lemma above asserts that any sequence no, ... ,nk 

can be encoded in this way. 

We must now face a slight irritation. Our states and our language of assertions can 

involve negative as well as positive numbers. We are obliged to extend Godel's f3 predicate 

so as to encode sequences of positive and negative numbers. Fortunately, this is easily 

done by encoding positive numbers as the even and negative numbers as the odd natural 

numbers. 

Lemma 7.4 Let F(x,y) be the predicate over natural numbers x and positive and neg­

ative numbers y given by 

Define 

F(x, y) 

:Jz ::::: O. 

x::::: 0 & 

[(x = 2 x z =? Y = z) & 

(x = 2 x z + 1 =? Y = -z)] 

f3±(n,m,j,y) {=}de! 3x.(f3(n,m,j,x) I\F(x,y)). 
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Then for any sequence no, ... ,nk of positive or negative numbers there are natural num­

bers n, m such that for all j, 0 ::; j ::; k, and all x we have 

f3±(n,m,j,x) {o} x = nj. 

Proof: Clearly F(n, m) expresses the 1-1 correspondence between natural numbers m E 

wand n E N in which even m stand for non-negative and odd m for negative numbers. 

The lemma follows from Lemma 7.3. 0 

The predicate f3± is expressible in Assn because f3 and F are. To avoid introducing a 

further symbol, let us write f3± for the assertion in Assn expressing this predicate. This 

assertion in Assn will have free integer variables, say n, m, j, x, understood in the same 

way as above, i. e. n, m encodes a sequence with jth element x. We will want to use 

other integer variables besides n, m, j, x, so we write f3± (n', m', j', x') as an abbreviation 

for f3±[n'/n,m'/m,j'fj,x'/x], got by substituting the the integer variable n' for n, m' 

for m, and so on. We have not give a formal definition of what it means to substitute 

integer variables in an assertion. The definition of substitution in Section 6.2.2 only 

defines substitutions A[a/i] of arithmetic expressions a without integer variables, for an 

integer variable i in an assertion A. However, as long as the variables n', m' , l' ,x' are 

"fresh" in the sense of their being distinct and not occurring (free or bound) in f3 ±, the 

same definition applies equally well to the substitution of integer variables; the assertion 

f3± [n' In, m' /m, j' fj, x' /x] is that given by f3± [n' /n][m' /m][j' fj][x' /x] using the definition 

of Section 6.2.2.3 

Now we can show: 

Theorem 7.5 Assn is expressive. 

Proof: We show by structural induction on commands c that for all assertions B there 

is an assertion w[c, B] such that for all interpretations I 

WpI [c, B] = w[c, B] I, 

for all commands c. 

Note that by the definition of weakest precondition that, for I an interpretation, the 

equality wpI[c, B] = w[c, B]f amounts to 

a- pJ w[c, B] iff C[c]a- FI B, 

3To illustrate the technical problem with substitution of integer variables which are not fresh, consider 
the assertion A == (:li'. 2 x i' = i) which means "i is even." The naive definition of A[i'li] yields the 

assertion (:li'. 2 x i' = i') which happens to be valid, and so certainly does not mean "i is even." 
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holding for all states 0-, a fact we shall use occasionally in the proof. 

C == skip: In this case, take w[skip, B~ == B. Clearly, for all states 0- and interpretations 

I, 

0- E wpI [skip, BD iff C[skip~o- pI B 

iff 0- pI B 

iff 0- pI w[skip, Bl 

C == (X := a) : In this case, define w[X := a, Bn == B[a/ X]. Then 

0- E wpI[X := a, ED iff o-[A[ano-/ X] pI B 

iff 0- pI B[a/ X] by Lemma 6.9 

iff 0- pI w[X := a, Bl 

C == co; Cl : Inductively define w[co; Cl, Bn == w[co, W[Cl' BnD- Then, for 0- E ~ and 

interpretation I, 

0- E wpI [Co; Cl, Bn iff C[co; Clno- pI B 

iff C[ClTI(C[COno-) pI B 

iff C[cono- pI W[Cl, Bn, by induction, 

iff 0- pI w[co, W[Cl' Bn], by induction, 

iff 0- pI W[Co; Cl, Bn. 

C == if b then Co else Cl : Define 

w[if b then Co else Cl, B] == [(b A w[co, Bm V (-,b A W[Cl' Bn)]. 

Then, for 0- E ~ and interpretation I, 

0- E wpI [c, Bn iff C[c]o- 1=1 B 

iff ([8[b]0- = true & C[co]o- pI B] or 

[8[b]o- = false & C[Cl]o- 1=1 BD 

iff ([0- 1=1 b & 0- 1=1 w[co, B]) or 

[0- 1=1 -,b & 0- 1=1 W[Cl, Bm, by induction, 

iff 0-1=1 [(bA w[cQ,B]]) V (-,bA W[Cl' Bn)] 

iff 0- 1=1 w[c, B]. 
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c == while b do co: This is the one difficult case. For a state a and interpretation I, we 

have (from Exercise 5.8) that a E wpI[c,B] iff 

'Vk 'Vao, ... ,ak E ~. 

[a = ao & 

'Vi(O :::; i < k). ( ai FI b & 

(1) 

As it stands the mathematical characterisation of states a in wpI[c, B] is not an as­

sertion in Assn; in particular it refers directly to states ao,"', ak. However we show 

how to replace it by an equivalent description which is. The first step is to replace all 

references to the states ao, ... , ak by references to the values they contain at the locations 

mentioned in c and B. Suppose X = Xl, ... ,Xl are the locations mentioned in c and 

B-the values at the remaining locations are irrelevant to the computation. We make 

use of the following fact: 

Suppose A is an assertion in Assn which mentions only locations from X = Xl, ... , Xl. 

For a state a, let Si = a(Xi ), for 1 :::; i :::; t, and write S = Sl,"', Sl. Then 

for any interpretation I. The assertion A[s/ Xl is that obtained by the simultaneous 

substitution of s for X in A. This fact can be proved by structural induction (Exercise!). 

Using the fact (*) we can convert (1) into an equivalent assertion about sequences. For 

i 2: 0, let Si abbreviate Si1, ... , Sil, a sequence in N. We claim: a E wpI[c, B] iff 

'Vk'VSO, ... ,Sk EN. 

[a FI X = So & 

'Vi (0:::; i < k). (F I b[sdXl & 

We have used X = So to abbreviate Xl = SOl /I. ... /I. Xl = SOL. 

(2) 
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To prove the claim we argue that (1) and (2) are equivalent. Parts of the argument 

are straightforward. For example, it follows directly from (*) that, assuming state 0" i has 

values Si at X, 

for an interpretation I. The hard part hinges on showing that assuming 0" i and O"i+l have 

values Si and Si+l, respectively, at X and agree elsewhere, we have 

for an interpretation I. To see this we first observe that 

C[CO]O"i = O"i+l iff O"i E wpl[cO, X = Si+d & C[CO]O"i is defined. 

(Why?) From the induction hypothesis we obtain 

I - -
O"i E wp [co, X = si+d 

C[CO]O"i is defined iff 

iff O"i 1=1 (w[co, X = si+d, and 

O"i 1=1 ...,w[co, false] 

-recall that O"i E wpl [co, false] iff Co diverges on O"i. Consequently, 

This covers the difficulties in showing (1) and (2) equivalent. 

Finally, notice how (2) can be expressed in Assn, using the Godel predicate j3 ±. For 

simplicity assume I = 1 with X = X. Then we can rephrase (2) to get: 0" E wpI[c, B] iff 

0" FI VkVm,n ~ 0. 

[j3±(n,m,O,X) /I. 

Vi (0:::; i < k). ("Ix. j3±(n,m,i,x) ==} b[x/X]) /I. 

"Ix, y. (j3±(n, m,i,x) /I. j3±(n, m, i + 1, y) ==} 

(w[co,X = y] /I.""w[co,false])[x/X])] 

==} (j3± (n, m, k, x) ==} (b V B)[x / Xl) 

This is the assertion we take as w[c, B] in this case. (In understanding this assertion 

compare it line-for-line with (2), bearing in mind that j3±(n,m,i,x) means that x is the 
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ith element of the sequence encoded by the pair n, m.) The form of the assertion in the 

general case, for arbitrary I, is similar, though more clumsy, and left to the reader. 

This completes the proof by structural induction. D 

As Assn is expressive for any command c and assertion B there is an assertion w[c, B] 

with the property that 

for any interpretation I. Of course, the assertion w[c, B] constructed in the proof of 

expressiveness above, is not the unique assertion with this property (Why not?). However 

suppose Ao is another assertion such that Al = wpI [c, B] for all I. Then 

F (w[c,B] {::::::::> Ao)· 

So the assertion expressing a weakest precondition is unique to within logical equivalence. 

The useful key fact about such an assertion w[c, B] is that, from the definition of weakest 

precondition, it is characterised by: 

a FI w[c, B] iff C[c]a FI B, 

for all states a and interpretations I. 

From the expressiveness of Assn we shall prove relative completeness. First an im­

portant lemma. 

Lemma 7.6 For c E Com and B E Assn, let w[c, B] be an assertion expressing the 

weakest precondition i. e. w[c, B] I = wpI [c, B] (the assertion w[c, B] need not be neces­

sarily that constructed by Theorem 7.5 above). Then 

f- {w[c,B]}c{B}. 

Proof: Let w[c, B] be an assertion which expresses the weakest precondition of a com­

mand c and postcondition B. We show by structural induction on c that 

f- {w[c, B]}c{B} for all B E Assn, 

for all commands c. 

(In all but the last case, the proof overlaps with that of Theorem 7.5.) 

c == skip : In this case F w[skip, B] {::::::::> B, so f- {w[skip, B]}skip{ B} by the 

consequence rule. 
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c == (X := a) : In this case 

CT E wpI[c,B] iff CT[.A[a]CT/X] FI B 

iff CT FI B[a/ X]. 

Chapter 7 

Thus F (w[c, B] ~ B[a/ Xl). Hence by the rule for assignment with the consequence 

rule we see f-- {w[c, B]}c{ B} in this case. 

c == co; Cl : In this case, for CT E ~ and interpretation I, 

CT FI w[co; Cl, B] iff C[co; Cl]CT FI B 

iff C[cI](C[CO]CT) FI B 

iff C[CO]CT FI W[C1, B] 

iff CT FI w[co, W[Cl, Bn 
Thus F w[co; C1, B] ~ w[co, W[Cl, B]]. By the induction hypothesis 

f-- {w[co, W[Cl, B]nco{ W[Cl, Bn and 

f-- {w[cl,B]}cdB}. 

Hence, by the rule for sequencing, we deduce 

f-- {w[co, W[Cl, B]] }co; C1 {B} 

By the consequence rule we get 

C == if b then Co else Cl : In this case, for CT E ~ and interpretation I, 

Hence 

CT FI w[c, B] iff C[C]CT FI B 

iff ([8[b]CT = true & C[CO]CT FI B] or 

[8[b]CT = false & C[CI]CT FI BD 

iff ([CT FI b & CT FI w[co, B]] or 

[CT FI -.b & CT FI W[Cl, Bm 

iff CT FI [(b A w[co, B]]) V (-.b A W[Cl, B])]. 

F w[c,B] ~ [(bA w[co,B]]) V (-.bA w[cl,B])]. 
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Now by the induction hypothesis 

I- {w[eo, Bneo{B} and I- {w[el' BnCl {B}. 

But 
1= (w[e,B]t\b) {:==} w[eo,B] and 

F (w[e, B] t\ .....,b) {:==} w[el' B]. 

So by the consequence rule 

I- {w[e, B] t\ b}eo{B} and I- {w[e, B] t\ .....,b }et{ B}. 

By the rule for conditionals we obtain I- {w[e, Bne{ B} in this case. 

Finally we consider the case: 

c == while b do Co : Take A == w[e, B]. We show 

(1) 1= {A t\ b}eo{A}, 

(2) 1= (A t\ .....,b) =? B. 
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Then, from (1), by the induction hypothesis we obtain I- {A t\ b}co{A}, so that by the 

while-rule I- {A}e{A t\ .....,b}. Continuing, by (2), using the consequence rule, we obtain 

I- {A}c{B}. Now we prove (1) and (2). 

(1) Let 0' 1=1 A t\ b, for an interpretation I. Then 0' 1=1 w[e, B] and 0' 1=1 b, i.e. 

C[e]O' 1=1 Band 0' 1=1 b. But C[e] is defined so 

C[e] = C[if b then Co; c else skip], 

which makes C[eo; e]O' 1=1 B, i.e. C[e](C[eo]O') 1=1 B. Therefore C[eo]O' 1=1 w[e, B], i.e. 

C[eo]O' 1=1 A. Thus 1= {A t\ b}eo{A}. 

(2) Let 0' 1=1 A t\ .....,b, for an interpretation I. Then C[e]O' 1=1 Band 0' 1=1 .....,b. Again 

note C[e] = C[if b then co; e else skip], so C[e]O' = 0'. Therefore 0' 1=1 B. It follows 

that 1=1 A t\.....,b =? B. Thus 1= A t\.....,b =? B, proving (2). 

This completes all the cases. Hence, by structural induction, the lemma is proved. 0 

Theorem 7.7 The proof system for partial correctness is relatively complete, i. e. for 

any partial correctness assertion {A}e{B}, 

I- {A}e{B} if 1= {A}e{B}. 
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Proof: Suppose 1= {A}c{B}. Then by the above lemma f-- {w[c, B]}c{B} where w[c, B] I :::: 

wpI[c, B] for any interpretation I. Thus as 1= (A =? w[c, B]), by the consequence rule, 

we obtain f-- {A}c{B}. 0 

Exercise 7.8 (The G6del f3 predicate) 

(a) Let no, ... ,nk be a sequence of natural numbers and let 

m = (max {k,no, .. · ,nd)! 

Show that the numbers 

Pi = 1 + (1 + i) x m, for 0 :::; i :::; k 

are coprime (i.e., gcd(Pi,pj) = 1 for i f. j) and that ni < Pi· 

(b) Further, define 

Ci = Po x ... X Pk/pi, for 0 :::; i :::; k. 

Show that for all i, 0 :::; i :::; k, there is a unique d i , 0 :::; di < Pi, such that 

(c) In addition, define 

Show that 

when 0 :::; i :::; k. 

(d) Finally prove lemma 3. 

k 

n = L Ci X di x ni· 

i=O 

ni = nmodpi 

7.3 Proof of Godel's Theorem 

o 

G6del's Incompleteness Theorem amounts to the fact that the subset of valid assertions 

in Assn is not recursively enumerable (i. e. , there is no program which given assertions 

as input returns a confirmation precisely on the valid assertions-see the Appendix on 

computability for a precise definition and a more detailed treatment). 

Theorem 7.9 The subset of assertions {A E Assn I 1= A} is not recursively enumer­

able. 
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Proof: Suppose on the contrary that the set {A E Assn I 1= A} is recursively enumer­

able. Then there is a computable method to confirm that an assertion is valid. This 

provides a computable method to confirm that a command c diverges on the zero-state 

<70, in which each location X has contents 0: 

Construct the assertion w[c, false] as in the proof of Theorem 7.5. Let X consist of all 

the locations mentioned in w[c, false]. Let A be the assertion w[c, false] [0/ XL obtained 

by replacing the locations by zeros. Then the divergence of c on the zero-state can be 

confirmed by checking the validity of A, for which there is assumed to be a computable 

method. 

But it is known that the commands c which diverge on the zero-state do not form 

a recursively enumerable set-see Theorem A.12 in the Appendix. This contradiction 

shows {A E Assn I 1= A} to not be recursively enumerable. D 

As a corollary we obtain Godel's Incompleteness Theorem: 

Theorem 7.10 (Theorem 7.1 restated) (Gadel's Incompleteness Theorem): 

There is no effective proof system for Assn such that its theorems coincide with the 

valid assertions of Assn. 

Proof: Assume there were an effective proof system such that for an assertion A, we 

have A is provable iff A is valid. The proof system being effective implies that there is a 

computable method to confirm precisely when something is a proof. Searching through 

all proofs systematically till a proof of an assertion A is found provides a computable 

method of confirming precisely when an assertion A is valid. Thus there cannot be an 

effective proof system. D 

Although we have stated Godel's Theorem for assertions Assn the presence of locations 

plays no essential role in the results. Godel's Theorem is generally stated for the smaller 

language of assertions without locations-the language of arithmetic. The fact that 

the valid assertions in this language do not form a recursively enumerable set means 

that the axiomatisation of arithmetic is never finished-there will always be some fact 

about arithmetic which remains unprovable. Nor can we hope to have a program which 

generates an infinite list of axioms and effective proof rules so that all valid assertions 

about arithmetic follow. If there were such a program there would be an effective proof 

system for arithmetical assertions, contradicting Godel's Incompleteness Theorem. 

Godel's result had tremendous historical significance. Godel did not have the concepts 

of computability available to him. Rather his result stimulated logicians to research dif­

ferent formulations of what it meant to be computable. The original proof worked by 

expressing the concept of provability of a formal system for assertions as an assertion 
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itself, and constructing an assertion which was valid iff it was not provable. It should 

be admitted that we have only considered Godel's First Incompleteness Theorem; there 

is also a second which says that a formal system for arithmetic cannot be proved free of 

contradiction in the system itself. It was clear to Godel that his proofs of incompleteness 

hinged on being able to express a certain set of functions on the natural numbers by 

assertions-the set has come to be called the primitive recursive functions. The reali­

sation that a simple extension led to a stable notion of computable function took some 

years longer, culminating in the Church-TUring thesis. The incompleteness theorem dev­

astated the programme set up by Hilbert. As a reaction to paradoxes like Russell's in 

mathematical foundations, Hilbert had advocated a study of the finitistic methods em­

ployed when reasoning within some formal system, hoping that this would lead to proofs 

of consistency and completeness of important proof systems, like one for arithmetic. 

Godel's Theorem established an absolute limit on the power ot finitistic reasoning. 

7.4 Verification conditions 

In principle, the fact that Assn is expressive provides a method to reduce the demonstra­

tion that a partial correctness assertion is valid to showing the validity of an assertion in 

Assn; the validity of a partial correctness assertion of the form {A }c{ B} is equivalent to 

the validity of the assertion A =? w[c, B], from which the command has been eliminated. 

In this way, given a theorem prover for predicate calculus we might hope to derive a the­

orem prover for IMP programs. Unfortunately, the method we used to obtain w[c, B] 

was convoluted and inefficient, and definitely not practical. 

However, useful automated tools for establishing the validity of partial correctness 

assertions can be obtained along similar lines once we allow a little human guidance. Let 

us annotate programs by assertions. Define the syntactic set of annotated commands by: 

c ::=skip I X := a I co; (X := a) I co; {D}cl I 

if b then Co else Cl I while b do {D}c 

where X is a location, a an arithmetic expression, b is a boolean expression, c, co, Cl 

are annotated commands and D is an assertion such that in co; {D}cl, the annotated 

command Cl, is not an assignment. The idea is that an assertion at a point in an 

annotated command is true whenever flow of control reaches that point. Thus we only 

annotate a command of the form co; CI at the point where control shifts from Co to CI. 

lt is unnecessary to do this when Cl is an assignment X := a because in that case an 

annotation can be derived simply from a postcondition. An annotated while-loop 

while b do {D}e 



Completeness of the Hoare rules 113 

contains an assertion D which is intended to be an invariant. 

An annotated partial correctness assertion has the form 

{A}c{B} 

where c is an annotated command. Annotated commands are associated with ordinary 

commands, got by ignoring the annotations. It is sometimes convenient to treat an­

notated commands as their associated commands. In this spirit, we sayan annotated 

partial correctness assertion is valid when its associated (unannotated) partial correctness 

assertion is. 

An annotated while-loop 

{A}while b do {D}c{B} 

contains an assertion D, which we hope has been chosen judiciously so D is an invariant. 

Being an invariant means that 

{D 1\ b}c{D} 

is valid. In order to ensure 

{A} while b do {D}c{B} 

is valid, once it is known that D is an invariant, it suffices to show that both assertions 

A =? D, D 1\ -,b =? B 

are valid. A quick way to see this is to notice that we can derive {A }while b do c{ B} 

from {D 1\ b}c{D} using the Hoare rules which we know to be sound. As is clear, not 

all annotated partial correctness assertions are valid. To be so it is sufficient to establish 

the validity of certain assertions, called verification conditions for which all mention of 

commands is eliminated. Define the verification conditions (abbreviated to vc) of an 

annotated partial correctness assertion by structural induction on annotated commands: 

vc( {A}skip{B}) 

vc({A}X:= a{B}) 

vc({A}co;X:= a{B}) 

vc( {A }co; {D}CI {B}) 

vc( {A }if b then Co else CI {B}) 

vc({A}while b do {D}c{B}) 

{A =? B} 

{A =? B[a/X]} 

vc( {A}co{B[a/ X]}) 

vc( {A }co{ D}) U vc( {D}CI {B}) 

where clis not an assignment 

vc( {A 1\ b }co{ B}) U vc( {A 1\ -,b }CI {B}) 

vc( {D 1\ b}c{D}) U {A =? D} 

U{DI\-,b=?B} 
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Exercise 7.11 Prove by structural induction on annotated commands that for all an­

notated partial correctness assertions {A }c{ B} if all assertions in vc( {A }c{ B}) are valid 

then {A }c{ B} is valid. (The proof follows the general line of Lemma 7.6. A proof can 

be found in [42], Section 3.5.) D 

Thus to show the validity of an annotated partial correctness assertion it is sufficient 

to show its verification conditions are valid. In this way the task of program verification 

can be passed to a theorem prover for predicate calculus. Some commercial program­

verification systems, like Gypsy [41], work in this way. 

Note, that while the validity of its verification conditions is sufficient to guarantee 

the validity of an annotated partial correctness assertion, it is not necessary. This can 

occur because the invariant chosen is inappropriate for the pre and post conditions. For 

example, although 

{true }while false do {false }skip{ true} 

is certainly valid with false as an invariant, its verification conditions contain 

true =} false, 

which is certainly not a valid assertion. 

We conclude this section by pointing out a peculiarity in our treatment of annotated 

commands. Two commands, built up as (Ci X := al)i X := a2 and Ci (X := ali X := a2), 

are understood in essentially the same waYi indeed in many imperative languages they 

would both be written as: 
C· , 

X :=ali 

X :=a2 

However the two commands support different annotations according to our syntax of 

annotated commands. The first would only allow possible annotations to appear in 

C whereas the second would be annotated as Ci {D}(X := aliX := a2). The rules 

for annotations do not put annotations before a single assignment but would put an 

annotation in before any other chain of assignments. This is even though it is still easily 

possible to derive the annotation from the postcondition, this time through a series of 

substitutions. 

Exercise 7.12 Suggest a way to modify the syntax of annotated commands and the 

definition of their verification conditions to address this peculiarity, so that any chain of 

assignments or skip is treated in the same way as a single assignment is presently. D 
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Exercise 7.13 A larger project is to program a verification-condition generator (e.g.in 

standard ML or prolog) which, given an annotated partial correctness assertion as input, 

outputs a set, or list, of its verification conditions. (See Gordon's book [42] for a program 

in lisp.) 0 

7.5 Predicate transformers 

This section is optional and presents an abstract, rather more mathematical view of 

assertions and weakest preconditions. Abstractly a command is a function f : L; ---> L;.l 

from states to states together with an element .1, standing for undefined; such functions 

are sometimes called state transformers. They form a cpo, isomorphic to that of the 

partial functions on states, when ordered pointwise. Abstractly, an assertion for partial 

correctness is a subset of states which contains..1, so we define the set of partial correctness 

predicates to be 

Pred(L;) = {Q I Q ~ L;.l & ..1 E Q}. 

We can make predicates into a cpo by ordering them by reverse inclusion. The cpo of 

predicates for partial correctness is 

(Pred(L;), 2). 

Here, more information about the final state delivered by a command configuration 

corresponds to having bounded it to lie within a smaller set provided its execution halts. 

In particular the very least information corresponds to the element ..1 Pred = L; U {..1}. 

We shall use simply Pred(L;) for the cpo of partial-correctness predicates. 

The weakest precondition construction determines a continuous function on the cpo of 

predicates-a predicate transformer. 4 

Definition: Let f : ~ ---> L;.l be a partial function on states. Define 

W f : Pred(L;) ---> Pred(L;); 

(W f)(Q) = U- 1Q) U {..1} 

i.e., (W f)(Q) = {a E ~.l I f(O') E Q} U {..1}. 

A command c can be taken to denote a state transformer C[c] : ~ ---> L;.l with the 

convention that undefined is represented by ..i. Let B be an assertion. According to this 

understanding, with respect to an interpretation I, 

(W(C[C]))(BI) = wl[c, B]. 

4This term is generally used for the corresponding notion when considering total correctness. 
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Exercise 7.14 Write ST for the cpo of state transformers [E 1- -1- E1-] and PT for the 

cpo of predicate transformers [Pred(E) - Pred(E)]. 

Show W : ST - 1- PT and W is continuous (Care! there are lots of things to check here). 

Show W(Id~.J = IdPred(~) i.e., W takes the identity function on the cpo of states to 

the identity function on predicates Pred(E). 

Show W(f 0 g) = (Wg) 0 (WI). 0 

In the context of total correctness Dijkstra has argued that one can specify the meaning 

of a command as a predicate transformer [36]. He argued that to understand a command 

amounts to knowing the weakest precondition which ensures a given postcondition. We 

do this for partial correctness. As we now have a cpo of predicates we also have the cpo 

[Pred(E) - Pred(E)] 

of predicate transformers. Thus we can give a denotational semantics of commands 

in IMP as predicate transformers, instead of as state transformers. We can define a 

semantic function 

Pt: Com - [Pred(E) - Pred(E)] 

from commands to predicate transformers. Although this denotational semantics, in 

which the denotation of a command is a predicate transformer is clearly a different 

denotational semantics to that using partial functions, if done correctly it should be 

equivalent in the sense that two commands denote the same predicate transformer iff 

they denote the same partial function. You may like to do this as the exercise below. 

Exercise 7.15 (Denotations as predicate transformers) 

Define a semantic function 

by 

Pt: Com- PT 

Pt[X := a]Q = {a E E1- I a[A[a]a / X] E Q} 

Pt[skip]Q = Q 

Pt[eo; Cl]Q = Pt[Co] (Pt[Cl]Q) 

Pt[if b then Co else Cl]Q = Pt[co](iJ n Q) U Pt[Cl]( ...,b n Q) 

where b = {a I a = ..1 or 8[b]a = true} for any boolean b 

Pt[while b do c]Q = fix(G) 

where G : PT - PT is given by G(p)(Q) = (b n Pt[eo] (P(Q)) U (...,b n Q). 

Show G is continuous. 
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Show W(C[clJ = Pt[c] for any command c. Observe 

WJ=WJ'=>J=J' 

for two strict continuous functions J, J' on 2:.L. Deduce 

C[c] = C[c'] iff Pt[c] = Pt[c'] 

for any commands c, c' . 

Recall the ordering on predicates. Because it is reverse inclusion: 

nEw 

This suggests that if we were to allow infinite conjunctions in our language of assertions, 

and did not have quantifiers, we could express weakest preconditions directly. Indeed 

this is so, and you might like to extend Bexp by infinite conjunctions, to form another 

set of assertions to replace Assn, and modify the above semantics to give an assertion, 

of the new kind, which expresses the weakest precondition for each command. Once we 

have expressiveness a proof of relative completeness follows for this new kind of assertion, 

in the same way as earlier in Section 7.2. 0 

1.6 Further reading 

The book "What is mathematical logic?" by Crossley et al [34] has an excellent expla­

nation of Godel's Incompleteness Theorem, though with the details missing. The logic 

texts by Kleene [54], Mendelson [61] and Enderton [38] have full treatments. A treatment 

aimed at Computer Science students is presented in the book [11] by Kfoury, Moll and 

Arbib. Cook's original proof of relative completeness in [33] used "strongest postcondi­

tions" instead of weakest preconditions; the latter are used instead by Clarke in [23] and 

his earlier work. The paper by Clarke has, in addition, some negative results showing 

the impossibility of having sound and relatively complete proof systems for programming 

languages richer than the one here. Apt's paper [8] provides good orientation. Alter­

native presentations of the material of this chapter can be found in [58], [13]. Gordon's 

book [42] contains a more elementary and detailed treatment of verification conditions. 
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