
6 The axiomatic semantics of IMP 

In this chapter we turn to the business of systematic verification of programs in IMP. 

The Hoare rules for showing the partial correctness of programs are introduced and shown 

sound. This involves extending the boolean expressions to a rich language of assertions 

about program states. The chapter concludes with an example of verification conducted 

within the framework of Hoare rules. 

6.1 The idea 

We turn to consider the problem of how to prove that a program we have written in 

IMP does what we require of it. 

Let's start with a simple example of a program to compute the sum of the first hundred 

numbers, the naive way. Here is a program in IMP to compute Ll::;m::;lOo m (The 

notation Ll::;m::;100 m means 1 + 2 + ... + 100). 

S :=0; 

N:= 1; 

(while -,(N = 101) do S := S + N; N := N + 1) 

How would we prove that this program, when it terminates, is such that the value of S 

. '" 7 
IS L....l::;m::;100 m. 

Of course one thing we could do would be to run it according to our operational 

semantics and see what we get. But suppose we change our program a bit, so that instead 

of "while -,(N = 101) do ... " we put "while -.(N = P + 1) do ... " and imagine 

making some arbitrary assignment to P before we begin. In this case the resulting value 

of S after execution should be Ll::;m::;P m, no matter what the value of P. As P can 

take an infinite set of values we cannot justify this fact simply by running the program 

for all initial values of P. We need to be a little more clever, and abstract, and use some 

logic to reason about the program. 

We'll end up with a formal proof system for proving properties of IMP programs, 

based on proof rules for each programming construct of IMP. Its rules are called Hoare 

rules or Floyd-Hoare rules. Historically R.W.Floyd invented rules for reasoning about 

flow charts, and later C.A.R.Hoare modified and extended these to give a treatment of 

a language like IMP but with procedures. Originally their approach was advocated not 

just for proving properties of programs but also as giving a method for explaining the 

meaning of program constructs; the meaning of a construct was specified in terms of 

"axioms" (more accurately rules) saying how to prove properties of it. For this reason, 

the approach is traditionally called axiomatic semantics. 

For now let's not be too formal. Let's look at the program and reason informally about 
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it, for the moment based on our intuitive understanding of how it behaves. Straigr taway 

we see that the commands S := 0; N := 1 initialise the values in the locations. So we 

can annotate our program with a comment: 

S:= O;N:= 1 

{S=O 1\ N=l} 

(while -.(N = 101) do S:= S + N; N := N + 1) 

with the understanding that S = 0 for example means the location S has value 0, as in 

the treatment of boolean expressions. We want a method to justify the final comment 

in: 
S:= O;N:= 1 

{S = 0 1\ N = I} 

(while -.(N = 101) do S := S + N; N := N + 1) 

{S= L m} 
l:5m:5lDO 

-meaning that if S = 0 1\ N = 1 before the execution of the while-loop then S = 

2:1:5m90o m after its execution. 

Looking at the boolean, one fact we know holds after the execution of the while-loop is 

that we cannot have N =I- 101; because if we had -.(N = 101) then the while-loop would 

have continued running. So, at the end of its execution we know N = 101. But we want 

to know S! 

Of course, with a simple program like this we can look and see what the values of S 

and N are the first time round the loop, S = 1, N = 2. And the second time round the 

loop S = 1 + 2, N = 3 ... and so on, until we see the pattern: after the i th time round 

the loop S = 1 + 2 + ... + i and N = i + 1. From which we see, when we exit the loop, 

that S = 1 + 2 + ... + 100, because when we exit N = 101. 

At the beginning and end of each iteration of the while-loop we have 

S = 1 + 2 + 3 + ... + (N - 1) (1) 

which expresses the key relationship between the value at location S and the value at 

location N. The assertion I is called an invariant of the while-loop because it remains 

true under each iteration of the loop. So finally when the loop terminates I will hold at 

the end. We shall say more about invariants later. 

For now it appears we can base a proof system on assertions of the form 

{A}c{B} 
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where A and B are assertions like those we've already seen in Bexp and c is a command. 

The precise interpretation of such a compound assertion is this: 

for all states 1.7 which satisfy A if the execution c from state 1.7 terminates in state 

1.7' then 1.7' satisfies B. 

Put another way, {A}c{B} means that any successful (i.e., terminating) execution of c 

from a state satisfying A ends up in a state satisfying B. The assertion A is called the 

precondition and B the postcondition of the partial correctness assertion {A}c{B}. 

Assertions of the form {A }c{ B} are called partial correctness assertions because they 

say nothing about the command c if it fails to terminate. As an extreme example consider 

c == while true do skip. 

The execution of c from any state does not terminate. According to the interpretation 

we give above the following partial correctness assertion is valid: 

{ true} c{ false} 

simply because the execution of c does not terminate. More generally, because c loops, 

any partial correctness assertion {A }c{ B} is valid. Contrast this with another notion, 

that of total correctness. Sometimes people write 

[A]c[B] 

to mean that the execution of c from any state which satisfies A will terminate in a state 

which satisfies B. In this book we shall not be concerned much with total correctness 

assertions. 

Warning: There are several different notations around for expressing partial and total 

correctness. When dipping into a book make doubly sure which notation is used there. 

We have left several loose ends. For one, what kinds of assertions A and B do we 

allow in partial correctness assertions {A}c{B}? We say more in a moment, and turn to 

a more general issue. 

The next issue can be regarded pragmatically as one of notation, though it can be 

viewed more conceptually as the semantics of assertions for partial correctness--see the 

"optional" Section 7.5 on denotational semantics using predicate transformers. Firstly 

let's introduce an abbreviation to mean the state 1.7 satisfies assertion A, or equivalently 

the assertion A is true at state 1.7. We abbreviate this to: 

1.7 1= A. 
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Of course, we'll need to define it, though we all have an intuitive idea of what it means. 

Consider our interpretation of a partial correctness assertion {A}c{B}. As a command 

c denotes a partial function from initial states to final states, the partial correctness 

assertion means: 

Va. (a 1= A & C[c]a is defined) =} C[c]a 1= B. 

It is awkward working so often with the proviso that C[c]a is defined. Recall Chapter 5 

on the denotational semantics of IMP. There we suggested that we use the symbol J.. 

to represent an undefined state (or more strictly, null information about the state). For 

a command c we can write C[c]a = J.. whenever C[c]a is undefined, and, in accord with 

the composition of partial functions, take C[c]J.. = J... If we adopt the convention that 

J.. satisfies any assertion, then our work on partial correctness becomes much simpler 

notationally. With the understanding that 

for any assertion A, we can describe the meaning of {A}c{B} by 

Va E 2::. a 1= A =} C[c]a 1= B. 

Because we are dealing with partial correctness this convention is consistent with our 

previous interpretation of partial correctness assertions. It's quite intuitive too; diverging 

computations denote J.. and as we've seen they satisfy any postcondition. 

6.2 The assertion language Assn 

What kind of assertions do we wish to make about IMP programs? Because we want 

to reason about boolean expressions we'll certainly need to include all the assertions in 

Bexp. Because we want to make assertions using the quantifiers "Vi· .. " and ":li· .. " we 

will need to work with extensions of Bexp and Aexp which include integer variables i 

over which we can quantify. Then, for example, we can say that an integer k is a mUltiple 

of another 1 by writing 

:li. k = i x l. 

It will be shown in reasonable detail how to introduce integer variables and quantifiers for 

a particular language of assertions Assn. In principle, everything we'll do with assertions 

can be done in Assn-it is expressive enough-but in examples and exercises we will 

extend Assn in various ways, without being terribly strict about it. (For instance, in one 

example we'll use the notation n! = n x (n - 1) x ... x 2 x 1 for the factorial function.) 
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Firstly, we extend Aexp to include integer variables i, j, k, etc .. This is done simply by 

extending the BNF description of Aexp by the additional rule which makes any integer 

variable i, j, k, ... an integer expression. So the extended syntactic category Aexpv of 

arithmetic expressions is given by: 

a ::= n I X I i I ao + al I ao - al I ao x al 

where 
n ranges over numbers, N 

X ranges over locations, Loc 

i ranges over integer variables, Intvar. 

We extend boolean expressions to include these more general arithmetic expressions 

and quantifiers, as well as implication. The rules are: 

A ::= true I false I ao = al I ao ::::: al I Ao 1\ Al I Ao V Al I ....,A I Ao => Al I Vi.A I ::li.A 

We call the set of extended boolean assertions, Assn. 

At school we have had experience in manipulating expressions like those above, though 

in those days we probably wrote mathematics down in a less abbreviated way, not using 

quantifiers for instance. When we encounter an integer variable i we think of it as 

standing for some arbitrary integer and do calculations with it like those "unknowns" 

x, y,' .. at school. An implication like Ao => Al means if Ao then AI, and will be true if 

either Ao is false or Al is true. We have used implication before in our mathematics, and 

now we have added it to our set of formal assertions Assn. We have a "commonsense" 

understanding of the expressions and assertions (and this should be all that is needed 

when doing the exercises). However, because we want to reason about proof systems 

based on assertions, not just examples, we shall be more formal, and give a theory of the 

meaning of expressions and assertions with integer variables. This is part of the predicate 

calculus. 

6.2.1 Free and bound variables 

We sayan occurrence of an integer variable i in an assertion is bound if it occurs in the 

scope of an enclosing quantifier Vi or ::li. If it is not bound we say it is free. For example, 

in 

::li. k = i x I 

the occurrence of the integer variable i is bound, while those of k and I are free-the 

variables k and I are understood as standing for particular integers even if we are not 
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precise about which. The same integer variable can have different occurrences in the 

same assertion one of which is free and another bound. For example, in 

(i + 100 -:::: 77) f\ (Vi. j + 1 = i + 3) 

the first occurrence of i is free and the second bound, while the sole occurrence of j is 

free. 

Although this informal explanation will probably suffice, we can give a formal defini

tion using definition by structural induction. Define the set FV(a) of free variables of 

arithmetic expressions, extended by integer variables, a E Aexpv, by structural induc-

tion 
FV(n) = FV(X) = 0 

FV(i) = {i} 

FV(ao + ad = FV(ao - ad = FV(ao x aI) = FV(ao) U FV(ad 

for all n E N, X E Loc, i E Intvar, and ao, al E Aexpv. Define the free variables 

FV(A) of an assertion A by structural induction to be 

FV(true) = FV(false) = 0 

FV(ao = aI) = FV(ao -:::: ad = FV(ao) U FV(ad 

FV(Ao f\ AI) = FV(Ao V AI) = FV(Ao => Ad = FV(Ao) U FV(Ad 

FVC-,A) = FV(A) 

FV(Vi.A) = FV(3i.A) = FV(A) \ {i} 

for all aO,aI E Aexpv, integer variables i and assertions Ao,Al,A. Thus we have made 

precise the notion of free variable. Any variable which occurs in an assertion A and yet 

is not free is said to be bound. An assertion with no free variables is closed. 

6.2.2 Substitution 

We can picture an assertion A as 

---i --- i--

say, with free occurrences of the integer variable i. Let a be an arithmetic expression, 

which for simplicity we assume contains no integer variables. Then 

Ala/i]:::::: ---a ---a--

is the result of substituting a for i. If a contained integer variables then it might be 

necessary to rename some bound variables of A in order to avoid the variables in a 

becoming bound by quantifiers in A-this is how it's done for general substitutions. 
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We describe substitution more precisely in the simple case. Let i be an integer variable 

and a be an arithmetic expression without integer variables, and firstly define substitution 

into arithmetic expressions by the following structural induction: 

n[a/i] == n X[a/i] == X 

j[a/i] == j i[a/i] == a 

(ao + ad [a/i] == (ao[a/i] + ada/iJ) 

(ao - at) [a/i] == (ao[a/i] - al[a/iJ) 

(ao x at) [a/i] == (ao[a/i] x al[a/iJ) 

where n is a number, X a location, j is an integer variable with j =f:. i and ao, al E Aexpv. 

Now we define substitution of a for i in assertions by structural induction-remember a 

does not have any free variables so we need not take any precautions to avoid its variables 

becoming bound: 

true[a/i] == true false[a/i] == false 

(ao = at) [a/i] == (ao[a/i] = al[a/iJ) (ao :S ad [a/i] == (ao[a/i] :S ada/iJ) 

(Ao 1\ Ad [a/i] == (Ao[a/i] 1\ Al [a/iJ) (Ao V At) [a/i] == (Ao[a/i] V AJ[a/iJ) 

(-,A)[a/i] == -,(A[a/iJ) (Ao =? Ad[a/i] == (Ao[a/i] =? Al [a/iJ) 

(Vj.A)[a/i] == Vj.(A[a/iJ) (Vi.A)[a/i] == Vi.A 

(:3j.A)[a/i] == :3j.(A[a/iJ) (:3i.A)[a/i] == :3i.A 

where ao, al E Aexpv, Ao, Al and A are assertions and j is an integer variable with 

j =f:. i. 

As was mentioned, defining substitution A[a/i] in the case where a contains free vari

ables is awkward because it involves the renaming of bound variables. Fortunately we 

don't need this more complicated definition of substitution for the moment. 

We use the same notation for substitution in place of a location X, so if an assertion 

A == ---X -- then A[a/X] = ---a --, putting a in place of X. This time the 

(simpler) formal definition is left to the reader. 

Exercise 6.1 Write down an assertion A E Assn with one free integer variable i which 

expresses that i is a prime number, i.e. it is required that: 

(J 1=1 A iff J(i) is a prime number. 

o 

Exercise 6.2 Define a formula LCM E Assn with free integer variables i, j and k, which 

means "i is the least common multiple of j and k," i.e. it is required that: 
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U 1=1 LCM iff I(k) is the least common multiple of I(i) and I(j). 

(Hint: The least common multiple of two numbers is the smallest non-negative integer 

divisible by both.) 0 

6.3 Semantics of assertions 

Because arithmetic expressions have been extended to include integer variables, we can

not adequately describe the value of one of these new expressions using the semantic 

function A of earlier. We must first interpret integer variables as particular integers. 

This is the role of interpretations. 

An interpretation is a function which assigns an integer to each integer variable i. e. a 

function I : Intvar ---> N. 

The meaning of expressions, Aexpv 

Now we can define a semantic function Av which gives the value associated with an 

arithmetic expression with integer variables in a particular state in a particular interpre

tation; the value of an expression a E Aexpv in a an interpretation I and a state u is 

written as Av[a]Iu or equivalently as (Av[a](I))(u). Define, by structural induction, 

Av[n]Iu = n 

Av[X]Iu = u(X) 

Av[i]Iu = I(i) 

Av[ao + al]Iu = Av[ao]Iu + Av[adIu 

Av[ao - adI u = Av[ao]I u - Av[al]I u 

Av[ao x al]I u = Av[ao]I u x Av[al]I u 

The definition of the semantics of arithmetic expressions with integer variables extends 

the denotational semantics given in Chapter 5 for arithmetic expressions without them. 

Proposition 6.3 For all a E Aexp (without integer variables), for all states u and for 

all interpretations I 

A[a]u = Av[a]I u. 

Proof: The proof is a simple exercise in structural induction on arithmetic expressions. 

o 
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The meaning of assertions, Assn 

Because we include integer variables, the semantic function requires an interpretation 

function as a further argument. The role of the interpretation function is solely to 

provide a value in N which is the interpretation of integer variables. 

Notation: We use the notation I[n/i] to mean the interpretation got from interpretation 

I by changing the value for integer-variable i to n i. e. 

I[n/i](j) = {;(j) if j == i, 

otherwise. 

We could specify the meanings of assertions in Assn in the same way we did for expres

sions with integer variables, but this time taking the semantic function from assertions 

to functions which, given an interpretation and state as an argument, returned a truth 

value. We choose an alternative though equivalent course. Given an interpretation I we 

define directly those states which satisfy an assertion. 

In fact, it is convenient to extend the set of states 2:; to the set 2:;.1 which includes 

the value 1.- associated with a nonterminating computation-so 2:;.1 =def 2:; U {1.-}. For 

A E Assn we define by structural induction when 

a pI A 

for a state a E 2:;, in an interpretation I, and then extend it so 1.- pIA. The relation 

a pI A means state a satisfies A in interpretation I, or equivalently, that assertion 

A is true at state a, in interpretation I. By structural induction on assertions, for an 

interpretation I, we define for all a E 2:;: 

a pI true, 

a pI (ao = ad if Av[ao]Ia = Av[al]Ia, 

a pI (ao :s: ad if Av[ao]Ia :s: Av[al]Ia, 

a pI A 1\ B if a pI A and a pI B, 

a pI A V B if a pI A or a pI B, 

a pI -,A if not a pI A, 

a pI A=} B if (not a pI A) or a pI B, 

a pI Vi.A if a pI[n/i] A for all n E N, 

a pI 3i.A if a pI[n/i] A for some n E N 

1.- pI A. 
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Note that, not 0" FI A is generally written as 0" ~I A. 

The above tells us formally what it means for an assertion to be true at a state once 

we decide to interpret integer variables in a particular way fixed by an interpretation. 

The semantics of boolean expressions provides another way of saying what it means for 

certain kinds of assertions to be true or false at a state. We had better check that the 

two ways agree. 

Proposition 6.4 For bE Bexp, 0" E L;, 

for any interpretation I. 

8[b]0" = true iff 0" FI b, and 

8[b]0" = false iff 0" ~I b 

Proof: The proof is by structural induction on boolean expressions, making use of 

Proposition 6.3. o 

Exercise 6.5 Prove the above proposition. o 

Exercise 6.6 Prove by structural induction on expressions a E Aexpv that 

Av[a]I[n/i]O" = Av[a[n/i]]IO". 

(N ote that n occurs as an element of N on the left and as the corresponding number in 

N on the right.) 

By using the fact above, prove 

0" FI Vi.A iff (J FI A[n/i] for all n E Nand 

0" FI :=Ii.A iff 0" FI A[n/i] for some n E N. 

The extension of an assertion 

o 

Let I be an interpretation. Often when establishing properties about assertions and 

partial correctness assertions it is useful to consider the extension of an assertion with 

respect to I i. e. the set of states at which the assertion is true. 

Define the extension of A, an assertion, with respect to an interpretation I to be 
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Partial correctness assertions 

A partial correctness assertion has the form 

{A}c{B} 

where A, B E Assn and c E Com. Note that partial correctness assertions are not in 

Assn. 

Let I be an interpretation. Let a E I;.L. We define the satisfaction relation between 

states and partial correctness assertions, with respect to I, by 

for an interpretation I. In other words, a state a satisfies a partial correctness assertion 

{A}c{B}, with respect to an interpretation I, iff any successful computation of c from a 

ends up in a state satisfying B. 

Validity 

Let I be an interpretation. Consider {A}c{B} . We are not so much interested in this 

partial correctness assertion being true at a particular state so much as whether or not 

it is true at all states i. e. 

Va E I;.L. a FJ {A}c{B}, 

which we can write as 

pJ {A}c{B}, 

expressing that the partial correctness assertion is valid with respect to the interpretation 

I, because {A }c{ B} is true regardless of which state we consider. Further, consider e.g. 

{i < X}X := X + l{i < X} 

We are not so much interested in the particular value associated with i by the inter

pretation I. Rather we are interested in whether or not it is true at all states for all 

interpretations I. This motivates the notion of validity. Define 

F {A}c{B} 

to mean for all interpretations I and all states a 

a FI {A}c{B}. 

When F {A}c{B} we say the partial correctness assertion {A}c{B} is valid. 
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Similarly for any assertion A, write F A iff for all interpretations I and states a, 

a F' A. Then say A is valid. 

Warning: Although closely related, our notion of validity is not the same as the notion of 

validity generally met in a standard course on predicate calculus or "logic programming." 

There an assertion is called valid iff for all interpretations for operators like +, x···, 

numerals 0, 1,···, as well as free variables, the assertion turns out to be true. We are 

not interested in arbitrary interpretations in this general sense because IMP programs 

operate on states based on locations with the standard notions of integer and integer 

operations. To distinguish the notion of validity here from the more general notion we 

could call our notion arithmetic-validity, but we'll omit the "arithmetic." 

Example: Suppose F (A::::} B). Then for any interpretation I, 

Va E ~. ((a F' A) ::::} (a FI B)) 

i. e. A I ~ B'. In a picture: 

: •••••••• w •••••••••••••••••••••••••••••••••••• o ••••••••••••••••••••••••• ~ 

tJ BI) 
~J, ................................................................. . 

So F (A::::} B) iff for all interpretations I, all states which satisfy A also satisfy B. 0 

Example: Suppose F {A}c{B}. Then for any interpretation I, 

Va E ~. ((a FI A) ::::} (C[c]a FI B)), 

i.e. the image of A under C[c] is included in B i.e. 

In a picture: 

~J, ................................................................. : 
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So F {A}c{B} iff for all interpretations J, if c is executed from a state which satisfies A 

then if its execution terminates in a state that state will satisfy B. 1 0 

Exercise 6.7 In an earlier exercise it was asked to write down an assertion A E Assn 

with one free integer variable i expressing that i was prime. By working through the 

appropriate cases in the definition of the satisfaction relation F I between states and 

assertions, trace out the argument that FI A iff J(i) is indeed a prime number. 0 

6.4 Proof rules for partial correctness 

We present proof rules which generate the valid partial correctness assertions. The proof 

rules are syntax-directed; the rules reduce proving a partial correctness assertion of a 

compound command to proving partial correctness assertions of its immediate subcom

mands. The proof rules are often called Hoare rules and the proof system, consisting of 

the collection of rules, Hoare logic. 

Rule for skip: 

Rule for assignments: 

Rule for sequencing: 

Rule for conditionals: 

Rule for while loops: 

Rule of consequence: 

{A}skip{A} 

{B[ajX]}X:= arB} 

{A}co{C} {C}Cl {B} 

{A}co; Cl {B} 

{A 1\ b}co{B} {A 1\ -,b}Cl {B} 

{A}if b then Co else cdB} 

{A 1\ b}c{A} 

{A}while b do c{A 1\ -,b} 

F (A '* A') {A'}c{B'} F (B' '* B) 

{A}c{B} 

IThe picture suggests, incorrectly, that the extensions of assertions .41 and Bl are disjoint; they will 
both always contain 1., and perhaps have other states in common. 
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Being rules, there is a notion of derivation for the Hoare rules. In this context the Hoare 

rules are thought of as a proof system, derivations are called proofs and any conclusion 

of a derivation a theorem. We shall write f-- {A}c{B} when {A}c{B} is a theorem. 

The rules are fairly easy to understand, with the possible exception of the rules for 

assignments and while-loops. If an assertion is true of the state before the execution of 

skip it is certainly true afterwards as the state is unchanged. This is the content of the 

rule for skip. 

For the moment, to convince that the rule for assignments really is the right way round, 

it can be tried for a particular assertion such as X = 3 for the simple assignment like 

X :=X +3. 

The rule for sequential compositions expresses that if {A}co{C} and {C}cdB} are 

valid then so is {A}co; Cl {B}: if a successful execution of Co from a state satisfying A 

ends up in one satisfying C and a successful execution of c 1 from a state satisfying C 

ends up in one satisfying B, then any successful execution of Co followed by Cl from a 

state satisfying A ends up in one satisfying B. 

The two premises in the rule for conditionals cope with two arms of the conditional. 

In the rule for while-loops while b do c, the assertion A is called the invariant because 

the premise, that {A 1\ b }c{ A} is valid, says that the assertion A is preserved by a full 

execution of the body of the loop, and in a while loop such executions only take place 

from states satisfying b. From a state satisfying A either the execution of the while-loop 

diverges or a finite number of executions of the body are performed, each beginning in 

a state satisfying b. In the latter case, as A is an invariant the final state satisfies A and 

also -,b on exiting the loop. 

The consequence rule is peculiar because the premises include valid implications. Any 

instance of the consequence rule has premises including ones of the form 1= (A '* A') 

and 1= (B' '* B) and so producing an instance of the consequence rule with an eye 

to applying it in a proof depends on first showing assertions (A '* A ') and (B' '* 
B) are valid. In general this can be a very hard task-such implications can express 

complicated facts about arithmetic. Fortunately, because programs often do not involve 

deep mathematical facts, the demonstration of these validities can frequently be done 

with elementary mathematics. 
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6.5 Soundness 

We consider for the Hoare rules two very general properties of logical systems: 

Soundness: Every rule should preserve validity, in the sense that if the assumptions 

in the rule's premise is valid then so is its conclusion. When this holds of a rule it is 

called sound. When every rule of a proof system is sound, the proof system itself is 

said to be sound. It follows then by rule-induction that every theorem obtained from 

the proof system of Hoare rules is a valid partial correctness assertion. (The comments 

which follow the rules are informal arguments for the soundness of some of the rules.) 

Completeness: Naturally we would like the proof system to be strong enough so that 

all valid partial correctness assertions can be obtained as theorems. We would like the 

proof system to be complete in this sense. (There are some subtle issues here which we 

discuss in the next chapter.) 

The proof of soundness of the rules depends on some facts about substitution. 

Lemma 6.8 Let I be an interpretation. Let a, ao E Aexpv. Let X E Loc. Then for all 

interpretations I and states (J 

Av[ao[a/XJ]I(J = Av[ao]I(J[Av[a]I(J/X]. 

Proof: The proof is by structural induction on ao--€xercise! o 

Lemma 6.9 Let I be an interpretation. Let B E Assn, X E Loc and a E Aexp. For 

all states (J E I; 

(J 1=1 B[a/X] iff (J[A[a](J/Xll=l B. 

Proof: The proof is by structural induction on B--€xercise! 

Exercise 6.10 Provide the proofs for the lemmas above. 

Theorem 6.11 Let {A}c{B} be a partial correctness assertion. 

Iff-- {A}c{B} then 1= {A}c{B}. 

o 

o 

Proof: Clearly if we can show each rule is sound (i. e. preserves validity in the sense 

that if its premise consists of valid assertions and partial correctness assertions then so 

is its conclusion) then by rule-induction we can see that every theorem is valid. 

The rule for skip: Clearly f= {A}skip{A} so the rule for skip is sound. 
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The rule for assignments: Assume c == (X := a). Let I be an interpretation. We have 

(11=1 B[a/X] iff (I[A[a~(I/X]1=1 B, by Lemma 6.9. Thus 

(11=1 B[a/X]:::} C[X:= a~(I 1=1 B, 

and hence 1= {B[a/X]}X:= a{B}, showing the soundness of the assignment rule. 

The rule for sequencing: Assume 1= {A}c{}OC and 1= {C}c{}lB. Let I be an in

terpretation. Suppose (I 1=1 A. Then C[co~(I 1=1 C because 1=1 {A }chOC. Also 

C[Cl~(C[CO~(I) 1=1 B because 1=1 {C}ch1B. Hence 1= {A}co; C1 {B}. 

The rule for conditionals: Assume 1= {A 1\ b}co{B} and 1= {A 1\ -,b}cI{B}. Let I be 

an interpretation. Suppose (I 1= I A. Either (I 1=1 b or (I 1=1 -,b. In the former case 

(11=1 Al\b so C[co](I 1=1 B, as 1=1 {Al\b}co{B}. In the latter case (11=1 AI\-,b so 

C[C1~(I 1=1 B, as 1=1 {A 1\ -,b}C1 {B}. This ensures 1= {A}if b then Co else C1 {B}. 

The rule for while-loops: Assume 1= {A 1\ b}c{A}, i.e. A is an invariant of 

w == while b do e. 

Let I be an interpretation. Recall that C[w~ = UnEw On where 

00 = 0, 

OnH = {((I, (I') I 13 [b] (I = true & ((I, (I') E On 0 C[en U {((I, (I) I 13[b]CJ = false.} 

We shall show by mathematical induction that Pen) holds where 

Pen) ¢=:} det'V(I, (I' E E. ((I, (I') E On & 

(I 1=1 A :::} (I' 1=1 A 1\ -,b 

for all nEw. It then follows that 

for all states (I, and hence that 1= {A}w{A 1\ -,b}, as required. 

Base case n = 0: When n = 0, 00 = 0 so that induction hypothesis P(O) is vacuously 

true. 

Induction Step: We assume the induction hypothesis Pen) holds for n :::: ° and attempt 

to prove Pen + 1). Suppose ((I, (I') E On+1 and (I 1=1 A. Either 

(i) 13[b](I = true and ((I, (I') E On 0 C[c], or 

(ii) 13[b](I = false and (I' = (I. 
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We show in either case that a ' 1=1 A A ---,b. 

Assume (i). As 8[b]a = true we have a 1=1 b and hence a 1=1 A A b. Also (a, a") E C[c] 

and (a", u' ) E en for some state a". We obtain a" 1=1 A, as 1= {A A b }c{ A}. From the 

assumption P(n), we obtain u' 1=1 A A ---,b. 

Assume (ii). As 8[b]a = false we have a 1=[ ---,b and hence a 1=1 A A ---,b. But a' = a. 

This establishes the induction hypothesis P(n + 1). By mathematical induction we 

conclude P(n) holds for all n. Hence the rule for while loops is sound. 

The consequence rule: Assume 1= (A =} A') and 1= {A'}C{B'} and 1= (B' =} B). Let I 

be an interpretation. Suppose u 1=1 A. Then a 1=1 A', hence C[c]a 1=1 B' and hence 

C[c]a 1=1 B. Thus 1= {A}c{B}. The consequence rule is sound. 

By rule-induction, every theorem is valid. o 

Exercise 6.12 Prove the above using only the operational semantics, instead of the 

denotational semantics. What proof method is used for the case of while-loops? 0 

6.6 Using the Hoare rules-an example 

The Hoare rules determine a notion of formal proof of partial correctness assertions 

through the idea of derivation. This is useful in the mechanisation of proofs. But in 

practice, as human beings faced with the task of verifying a program, we need not be 

so strict and can argue at a more informal level when using the Hoare rules. (Indeed 

working with the more formal notion of derivation might well distract from getting the 

proof; the task of producing the formal derivation should be delegated to a proof assistant 

like LCF or HOL [74], [43].) 

As an example we show in detail how to use the Hoare rules to verify that the command 

w == (while X > 0 do Y:= X x Y; X := X-I) 

does indeed compute the factorial function n! = n x (n - 1) x (n - 2) x ... x 2 x 1, with 

O! understood to be 1, given that X = n, a nonnegative number, and Y = 1 initially. 2 

More precisely, we wish to prove: 

{X = nAn ~ 0 A Y = l}w{Y = n!}. 

To prove this we must clearly invoke the proof rule for while-loops which requires an 

invariant. Take 

1== (Y x X! = n! A X ~ 0). 

2For this example, we imagine our syntax of programs and assertions to be extended to include> and 
the factorial function which strictly speaking do not appear in the boolean and arithmetic expressions 
defined earlier. 
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We show f is indeed an invariant i. e. 

{I AX> O}Y:= X x Y;X:= X -1{I}. 

From the rule for assignment we have 

{f[(X - l)/X]}X:= X - 1{I} 

where f[(X - 1)/ Xl == (Y x (X - I)! = n! A (X - 1) ~ 0). Again by the assignment rule: 

{X x Y x eX -I)! = n! A (X -1) ~ O}Y:= X x Y{f[(X -l)jX]}. 

Thus, by the rule for sequencing, 

Clearly 

{X x Y x (X - I)! = n! A (X -1) ~ O}Y := X x Y; X := eX - 1){I}. 

fAX > 0 =}Y x X! = n! A X ~ 0 A X> 0 

=}YxX!=n!AX~l 

=}X x Y x (X - I)! = n! A (X - 1) ~ o. 

Thus by the consequence rule 

{I AX> O}Y:= X x Y;X:= (X -1){I} 

establishing that f is an invariant. 

Now applying the rule for while-loops we obtain 

{I}w{I A X 1 O}. 

Clearly (X = n) A (n ~ 0) A (Y = 1) =} f, and 

fAX10=}YxX!=n!AX~OAX10 

=}YxX!=n!AX=O 

=}Y x O! = Y = n! 

Thus by the consequence rule we conclude 

{(X = n) A (Y = l)}w{Y = n!}. 

There are a couple of points to note about the proof given in the example. Firstly, in 

dealing with a chain of commands composed in sequence it is generally easier to proceed 
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in a right-to-left manner because the rule for assignment is of this nature. Secondly, our 

choice of I may seem unduly strong. Why did we include the assertion X ;:::: 0 in the 

invariant? Notice where it was used, at (*), and without it we could not have deduced 

that on exiting the while-loop the value of X is O. In getting invariants to prove what 

we want they often must be strengthened. They are like induction hypotheses. One 

obvious way to strengthen an invariant is to specify the range of the variables and values 

at the locations as tightly as possible. Undoubtedly, a common difficulty in examples 

is to get stuck on proving the "exit conditions". In this case, it is a good idea to see 

how to strengthen the invariant with information about the variables and locations in 

the boolean expression. 

Thus it is fairly involved to show even trivial programs are correct. The same is true, 

of course, for trivial bits of mathematics, too, if one spells out all the details in a formal 

proof system. One point of formal proof systems is that proofs of properties of programs 

can be automated as in e.g. [74][41]-see also Section 7.4 on verification conditions in the 

next chapter. There is another method of application of such formal proof systems which 

has been advocated by Dijkstra and Gries among others, and that is to use the ideas 

in the study of program correctness in the design and development of programs. In his 

book "The Science of Programming" [44], Gries says 

"the study of program correctness proofs has led to the discovery and elucidation 

of methods for developing programs. Basically, one attempts to develop a program 

and its proof hand-in-hand, with the proof ideas leading the way!" 

See Gries' book for many interesting examples of this approach. 

Exercise 6.13 Prove, using the Hoare rules, the correctness of the partial correctness 

assertion: 
{I :S N} 

P:=O; 

C:= 1; 

(while C:S N do P:= P + M; C:= C + 1) 

{P = M x N} 

o 

Exercise 6.14 Find an appropriate invariant to use in the while-rule for proving the 

following partial correctness assertion: 

{i = Y}while -'(Y = 0) do Y:= Y -l;X:= 2 x X{X = 2i} 

o 
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Exercise 6.15 Using the Hoare rules, prove that for integers n, m, 

{X = m /I. Y = n /I. Z = l}c{Z = mn} 

where c is the while-program 

while .(Y = 0) do 

((while even(Y) do X := X x X; Y := Y/2); 

Z:= Z x X;Y:= Y -1) 

Chapter 6 

with the understanding that Y /2 is the integer resulting from dividing the contents of Y 

by 2, and even(Y) means the content of Y is an even number. 

(Hint: Use mn = Z x X Y as the invariants.) 0 

Exercise 6.16 

(i) Show that the greatest common divisor, gcd(n, m) of two positive numbers n, m 

satisfies: 
(a) n > m =} gcd(n, m) = gcd(n - m, m) 

(b) gcd(n, m) = gcd(m, n) 

(c) gcd(n, n) = n. 

(ii) Using the Hoare rules prove 

where 

{N = n/l. M = m/l.l:-:; n 1\ 1:-:; m}Euclid{X = gcd(n,m)} 

Euclid == while .(M = N) do 

if M:-:; N 

then N:= N-M 

else M := M - N. 

Exercise 6.17 Provide a Hoare rule for the repeat construct and prove it sound. 

o 

(cf. Exercise 5.9.) 0 

6.7 Further reading 

The book [44] by Gries has already been mentioned. Dijkstra's "A discipline of pro

gramming" [36] has been very influential. A more elementary book in the same vein 
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is Backhouse's "Program construction and verification" [12J. A recent book which is 

recommended is Cohen's "Programming in the 1990's" [32J. A good book with many 

exercises is Alagic and Arbib's "The design of well-structured and correct programs" [5J. 

An elementary treatment of Hoare logic with a lot of informative discussion can be found 

in Gordon's recent book [42J. Alternatives to this book's treatment, concentrating more 

on semantic issues than the other references, can be found in de Bakker's "Mathemat

ical theory of program correctness" [13J and Loeckx and Sieber's "The foundations of 

program verification" [58J. 
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