
3 Some principles of induction 

Proofs of properties of programs often rely on the application of a proof method, or really 

a family of proof methods, called induction. The most commonly used forms of induction 

are mathematical induction and structural induction. These are both special cases of a 

powerful proof method called well-founded induction. 

3.1 Mathematical induction 

The natural numbers are built-up by starting from 0 and repeatedly adjoining successors. 

The natural numbers consist of no more than those elements which are obtained in this 

way. There is a corresponding proof principle called mathematical induction. 

Let P(n) be a a property of the natural numbers n = 0,1,···. The principle of 

mathematical induction says that in order to show P(n) holds for all natural numbers n 

it is sufficient to show 

• P(O) is true 

• If P(m) is true then so is P(m + 1) for any natural number m. 

We can state it more succinctly, using some logical notation, as 

(P(O) & (Vm E w. P(m) =} P(m + 1)) =} Vn E w. P(n). 

The principle of mathematical induction is intuitively clear: If we know P(O) and we 

have a method of showing P(m + 1) from the assumption P(m) then from P(O) we 

know P(l), and applying the method again, P(2), and then P(3), and so on. The 

assertion P(m) is called the induction hypothesis, P(O) the basis of the induction and 

(Vm E w. P(m) =} P(m + 1)) the induction step. 

Mathematical induction shares a feature with all other methods of proof by induction, 

that the first most obvious choice of induction hypothesis may not work in a proof. 

Imagine it is required to prove that a property P holds of all the natural numbers. 

Certainly it is sensible to try to prove this with P(m) as induction hypothesis. But quite 

often proving the induction step Vm E w. (P(m) =} P(m+ 1)) is impossible. The rub can 

come in proving P(m + 1) from the assumption P(m) because the assumption P(m) is 

not strong enough. The way to tackle this is to strengthen the induction hypothesis to a 

property pl(m) which implies P(m). There is an art in finding pl(m) however, because 

in proving the induction step, although we have a stronger assumption pi (m), it is at 

the cost of having more to prove in pl(m + 1) which may be unnecessarily difficult, or 

impossible. 

In showing a property Q(m) holds inductively of all numbers m, it might be that the 

property's truth at m + 1 depends not just on its truth at the predecessor m but on 
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its truth at other numbers preceding m as well. It is sensible to strengthen Q(m) to an 

induction hypothesis P(m) standing for Vk < m. Q(k). Taking P(m) to be this property 

in the statement of ordinary mathematical induction we obtain 

Vk < O. Q(k) 

for the basis, and 

Vm E w.((Vk < m. Q(k)) '* (Vk < m + 1. Q(k))) 

for the induction step. However, the basis is vacuously true-there are no natural num

bers strictly below 0, and the step is equivalent to 

Vm E w.(Vk < m. Q(k)) '* Q(m). 

We have obtained course-oj-values induction as a special form of mathematical induction: 

(Vm E w.(Vk < m. Q(k)) '* Q(m)) '* Vn E w. Q(n). 

Exercise 3.1 Prove by mathematical induction that the following property P holds for 

all natural numbers: 

P(n) {==:} defE~=1(2i - 1) = n2 . 

(The notation E~=kSi abbreviates Sk + Sk+l + ... + Sl when k, I are integers with k < I.) 
o 

Exercise 3.2 A string is a sequence of symbols. A string ala2· .. an with n positions 

occupied by symbols is said to have length n. A string can be empty in which case it is 

said to have length O. Two strings sand t can be concatenated to form the string st. 

Use mathematical induction to show there is no string u which satisfies au = ub for two 

distinct symbols a and b. 0 

3.2 Structural induction 

We would like a technique to prove "obvious" facts like 

(a, a) --> m & (a, a) --> m' '* m = m' 

for all arithmetic expressions a, states a and numbers m, m'. It says the evaluation of 

arithmetic expressions in IMP is deterministic. The standard tool is the principle of 

structural induction. We state it for arithmetic expressions but of course it applies more 

generally to all the syntactic sets of our language IMP. 

Let P(a) be a property of arithmetic expressions a. To show P(a) holds for all arith

metic expressions a it is sufficient to show: 
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• For all numerals m it is the case that P( m) holds. 

• For all locations X it is the case that P(X) holds. 

• For all arithmetic expressions ao and aI, if P(ao) and P(al) hold then so does 

P(ao + al). 

• For all arithmetic expressions ao and aI, if P( ao) and P( al) hold then so does 

P(ao - al). 

• For all arithmetic expressions ao and aI, if P(ao) and P(ad hold then so does 

P(ao x al). 

The assertion P(a) is called the induction hypothesis. The principle says that in order to 

show the induction hypothesis is true of all arithmetic expressions it suffices to show that 

it is true of atomic expressions and is preserved by all the methods of forming arithmetic 

expressions. Again this principle is intuitively obvious as arithmetic expressions are 

precisely those built-up according to the cases above. It can be stated more compactly 

using logical notation: 

(Vm E N. P(m)) & (VX E Loc.P(X)) & 

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao + ad) & 

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao - ad) & 

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao x ad) 

==> 

Va E Aexp. P(a). 

In fact, as is clear, the conditions above not only imply Va E Aexp. P(a) but also are 

equivalent to it. 

Sometimes a degenerate form of structural induction is sufficient. An argument by 

cases on the structure of expressions will do when a property is true of all expressions 

simply by virtue of the different forms expressions can take, without having to use the 

fact that the property holds for sub expressions. An argument by cases on arithmetic 

expressions uses the fact that if 

(Vm E N. P(m))& 

(VX E Loc.P(X)) & 

(Vao, al E Aexp. P(ao + al)) & 

(Vao, al E Aexp. P(ao - ad) & 

(Vao, al E Aexp. P(ao x ad) 
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then Va E Aexp. P(a). 

As an example of how to do proofs by structural induction we prove that the evaluation 

of arithmetic expression is deterministic. 

Proposition 3.3 For all arithmetic expressions a, states 0' and numbers m, m' 

(a,a) -> m & (a,a) -> m' =} m = m'. 

Proof: We proceed by structural induction on arithmetic expressions a using the induc

tion hypothesis P(a) where 

P(a) iffVa,m,m'. ((a,a) -> m & (a,a) -> m' =} m = m'). 

For brevity we shall write (a,O') -> m, m' for (a, a) -> m and (a, a) -> m'. Using 

structural induction the proof splits into cases according to the structure of a: 

a == n: If (a, 0') -> m, m' then there is only one rule for the evaluation of numbers so 

m=m'=n. 

a == ao + al: If (a, a) -> m, m' then considering the form of the single rule for the 

evaluation of sums there must be mo, ml so 

(ao, a) -> mo and (aI, a) -> ml with m = mo + ml 

as well as m~, m~ so 

(ao, a) -> m~ and (aI, a) -> m~ with m' = m~ + m~ 

By the induction hypothesis applied to ao and al we obtain mo = m~ and ml = m~. 

Thus m = mo + ml = m~ + m~ = m'. 

The remaining cases follow in a similar way. We can conclude, by the principle of 

structural induction, that P(a) holds for all a E Aexp. 0 

One can prove the evaluation of expressions always terminates by structural induction, 

and corresponding facts about boolean expressions. 

Exercise 3.4 Prove by structural induction that the evaluation of arithmetic expressions 

always terminates, i. e. , for all arithmetic expression a and states a there is some m such 

that (a, a) -> m. 0 

Exercise 3.5 Using these facts about arithmetic expressions, by structural induction, 

prove the evaluation of boolean expressions is firstly deterministic, and secondly total. 

o 

Exercise 3.6 What goes wrong when you try to prove the execution of commands is 

deterministic by using structural induction on commands? (Later, in Section 3.4, we 

shall give a proof using "structural induction" on derivations.) 0 
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3.3 Well-founded induction 

Mathematical and structural induction are special cases of a general and powerful proof 

principle called well-founded induction. In essence structural induction works because 

breaking down an expression into sub expressions can not go on forever, eventually it must 

lead to atomic expressions which can not be broken down any further. 1£ a property fails 

to hold of any expression then it must fail on some minimal expression which when it is 

broken down yields subexpressions, all of which satisfy the property. This observation 

justifies the principle of structural induction: to show a property holds of all expressions 

it is sufficient to show that a property holds of an arbitrary expression if it holds of all 

its subexpressions. Similarly with the natural numbers, if a property fails to hold of all 

natural numbers then there has to be a smallest natural number at which it fails. The 

essential feature shared by both the subexpression relation and the predecessor relation 

on natural numbers is that do not give rise to infinite descending chains. This is the 

feature required of a relation if it is to support well-founded induction. 

Definition: A well-founded relation is a binary relation --< on a set A such that there 

are no infinite descending chains· .. --< ai --< ... --< al --< ao. When a --< b we say a is a 

predecessor of b. 

Note a well-founded relation is necessarily irreftexive i.e. , for no a do we have a --< a, 

as otherwise there would be the infinite decending chain· .. --< a --< ... --< a --< a. We shall 

generally write :::5 for the reflexive closure of the relation --<, i. e. 

a :::5 b ~ a = b or a --< b. 

Sometimes one sees an alternative definition of well-founded relation, in terms of min

imal elements. 

Proposition 3.7 Let --< be a binary relation on a set A. The relation --< is well-founded 

iff any nonempty subset Q of A has a minimal element, i. e. an element m such that 

m E Q & Vb --< m. b .;. Q. 

Proof: 

"if": Suppose every nonempty subset of A has a minimal element. If··· --< a i --< 

. .. --< al --< ao were an infinite descending chain then the set Q = {a iii E w} would 

be nonempty without a minimal element, a contradiction. Hence --< is well-founded. 

"only if": To see this, suppose Q is a nonempty subset of A. Construct a chain of 

elements as follows. Take ao to be any element of Q. Inductively, assume a chain of 
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elements an -< ... -< ao has been constructed inside Q. Either there is some b -< an such 

that bE Q or there is not. If not stop the construction. Otherwise take an+l = b. As -< 
is well-founded the chain· .. -< ai -< ... -< al -< ao cannot be infinite. Hence it is finite, 

of the form an -< ... -< ao with Vb -< an. b ~ Q. Take the required minimal element m to 

be an. 0 

Exercise 3.8 Let -< be a well-founded relation on a set B. Prove 

1. its transitive closure -<+ is also well-founded, 

2. its reflexive, transitive closure -< * is a partial order. 

o 

The principle of well-founded induction. 

Let -< be a well founded relation on a set A. Let P be a property. Then Va E A. Pea) 

iff 

Va E A. ([Vb -< a. PCb)] =? Pea)). 

The principle says that to prove a property holds of all elements of a well-founded set it 

suffices to show that if the property holds of all predecessors of an arbitrary element a 

then the property holds of a. 

We now prove the principle. The proof rests on the observation that any nonempty 

subset Q of a set A with a well-founded relation -< has a minimal element. Clearly if 

Pea) holds for all elements of A then Va E A. ([Vb -< a. PCb)] =? Pea)). To show the 

converse, we assume Va E A. ([Vb -< a. PCb)] =? Pea)) and produce a contradiction by 

supposing ,pea) for some a E A. Then, as we have observed, there must be a minimal 

element m of the set {a E A I ,Pea)}. But then ,P(m) and yet Vb -< m. PCb), which 

contradicts the assumption. 

In mathematics this principle is sometimes called Noetherian induction after the al

gebraist Emmy Noether. Unfortunately, in some computer science texts (e.g. [59]) it is 

misleadingly called "structural induction" . 

Example: If we take the relation -< to be the successor relation 

n-<miffm=n+l 

on the non-negative integers the principle of well-founded induction specialises to math

ematical induction. 0 

Example: If we take -< to be the "strictly less than" relation < on the non-negative 

integers, the principle specialises to course-of-values induction. 0 
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Example: If we take -< to be the relation between expressions such that a -< b holds iff 

a is an immediate subexpression of b we obtain the principle of structural induction as a 

special case of well-founded induction. 0 

Proposition 3.7 provides an alternative to proofs by well-founded induction. Suppose 

A is a well-founded set. Instead of using well-founded induction to show every element 

of A satisfies a property P, we can consider the subset of A ~or which the property P 

fails, i.e. the subset F of counterexamples. By Proposition 3.7, to show F is 0 it is 

sufficient to show that F cannot have a minimal element. This is done by obtaining a 

contradiction from the assumption that there is a minimal element in F. (See the proof 

of Proposition 3.12 for an example of this approach.) Whether to use this approach or 

the principle of well-founded induction is largely a matter of taste, though sometimes, 

depending on the problem, one approach can be more direct than the other. 

Exercise 3.9 For suitable well-founded relation on strings, use the "no counterexample" 

approach described above to show there is no string u which satisfies au = ub for two 

distinct symbols a and b. Compare your proof with another by well-founded induction 

(and with the proof by mathematical induction asked for in Section 3.1). 0 

Proofs can often depend on a judicious choice of well-founded relation. In Chapter 10 

we shall give some useful ways of constructing well-founded relations. 

As an example of how the operational semantics supports proofs we show that Euclid's 

algorithm for the gcd (greatest common divisor) of two non-negative numbers terminates. 

Though such proofs are often less clumsy when based on a denotational semantics. (Later, 

Exercise 6.16 will show its correctness.) Euclid's algorithm for the greatest common 

divisor of two positive integers can be written in IMP as: 

Euclid:::::: while -,(M = N) do 

ifM~N 

thenN:=N-M 

else M :=M-N 

Theorem 3.10 For all states a 

a(M) ;:::: 1 & a(N) ;:::: 1 '* 3a'. (Euclid, a) -> a'. 

Proof: We wish to show the property 

P(a) <===} 3a'.(Euclid,a) -> a'. 
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holds for all states CT in S = {u E I; I CT(M) ~ 1 & CT(N) ~ I}. 

We do this by well-founded induction on the relation -< on S where 

CT' -< CT iff (CT'(M) ~ CT(M) & CT'(N) ~ CJ(N)) & 

(CT'(M) i= CT(M) or CT'(N) i= CT(N)) 

for states CT', CT in S. Clearly -< is well-founded as the values in M and N cannot be 

decreased indefinitely and remain positive. 

Let CT E S. Suppose \:ICT' -< CT. P(CT'). Abbreviate CT(M) = m and CT(N) = n. 

If m = n then (-,(M = N), CT) ~ false. Using its derivation we construct the derivation 

(-,(M = N), CT) ~ false 

(Euclid, CT) ~ CT 

using the rule for while-loops which applies when the boolean condition evaluates to false. 

In the case where m = n, (Euclid, CT) ~ CT. 

Otherwise m i= n. In this case (-,(M = N), CT) ~ true. From the rules for the 

execution of commands we derive 

where 

(if M ~ N then N := N - Meise M := M - N, CT) ~ CT" 

CT" = {CT[n - miN) 
CT[m-nIM) 

ifm~ n 

ifn<m. 

In either case CT" -< CT. Hence P( CT") so (Euclid, CT") ~ CT' for some CT'. Thus applying the 

other rule for while-loops we obtain 

(-,(M = N), CT) ~ true 

(if M ~ N then N := N - Meise M := M - N, CT)~CT" (Euclid, CTIf)~CT' 

(Euclid, CT) ~ CT' 

a derivation of (Euclid, CT) ~ CT'. Therefore P(CT). 

By well-founded induction we conclude VCT E S. P(CT), as required. o 

Well-founded induction is the most important principle in proving the termination 

of programs. Uncertainties about termination arise because of loops or recursions in a 

program. If it can be shown that execution of a loop or recursion in a program decreases 

the value in a well-founded set then it must eventually terminate. 
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3.4 Induction on derivations 

Structural induction alone is often inadequate to prove properties of operational seman

tics. Often it is useful to do induction on the structure of derivations. Putting this on a 

firm basis involves formalising some of the ideas met in the last chapter. 

Possible derivations are determined by means of rules. Instances of rules have the form 

--- or 
x x 

where the former is an axiom with an empty set of premises and a conclusion x, while the 

latter has {Xl, ... ,Xn } as its set of premises and x as its conclusion. The rules specify 

how to construct derivations, and through these define a set. The set defined by the 

rules consists precisely of those elements for which there is a derivation. A derivation of 

an element x takes the form of a tree which is either an instance of an axiom 

x 

or of the form 

x 

which includes derivations of x I, ... ,Xn , the premises of a rule instance with conclusion 

X. In such a derivation we think of ~, ... , ~ as sub derivations of the larger derivation 
Xl Xn 

of x. 

Rule instances are got from rules by substituting actual terms or values for metavari

abIes in them. All the rules we are interested in are finitary in that their premises are 

finite. Consequently, all rule instances have a finite, possibly empty set of premises and a 

conclusion. We start a formalisation of derivations from the idea of a set of rule instances. 

A set of rule instances R consists of elements which are pairs (X/y) where X is a finite 

set and y is an element. Such a pair (X/y) is called a rule instance with premises X 

and conclusion y. 

We are more used to seeing rule instances (X/y) as 

·f X rio d Xl, ... ,Xn ·f X { } 
--- 1 = 'I), an as 1 = Xl,···, Xn . 

y y 

Assume a set of rule instances R. An R-derivation of y is either a rule instance (0/y) or 

a pair ({d1 ,···, dn}/y) where ({Xl)···) xn}/y) is a rule instance and d l is an R-derivation 
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of Xl, ... , dn is an R-derivation of X n . We write d If-R Y to mean d is an R-derivation of 

y. Thus 

(0/y) If- R Y if (0/y) E R, and 

({d l ,···, dn}/y) If-R y if ({Xl,···, Xn}/Y) E R & d l If-R Xl & & dn If-R X n · 

We say y is derived from R if there is an R-derivation of y, i.e. d If- R Y for some 

derivation d. We write If- R Y to mean y is derived from R. When the rules are understood 

we shall write just d If- y and If- y. 

In operational semantics the premises and conclusions are tuples. There, 

If- (c, a) -> a', 

meaning (c, a) -> a' is derivable from the operational semantics of commands, is cus

tomarily written as just (c, a) -> a'. It is understood that (c, a) -> a' includes, as part 

of its meaning, that it is derivable. We shall only write If- (c, a) -> a' when we wish to 

emphasise that there is a derivation. 

Let d, d' be derivations. Say d' is an immediate subderivation of d, written d' -<1 d, iff 

d has the form (D/y) with d' E D. Write -< for the transitive closure of -<1, i.e. -<=-<t. 
We say d' is a proper sub derivation of d iff d' -< d. 

Because derivations are finite, both relations of being an immediate subderivation -< I 
and that of being a proper sub derivation are well-founded. This fact can be used to show 

the execution of commands is deterministic. 

Theorem 3.11 Let c be a command and aD a state. If (c, aD) -> al and (c, aD) -> a, 

then a = a1, for all states a, a1. 

Proof: The proof proceeds by well-founded induction on the proper subderivation rela

tion -< between derivations for the execution of commands. The property we shall show 

holds of all such derivations d is the following: 

P(d) {::::::} '<Ie E Com,aO,a,a1, E~. d If- (c,ao) -> a & (c,ao) -> a1 ~ a = al· 

By the principle of well-founded induction, it suffices to show '<Id' -< d. P(d') implies 

P(d). 

Let d be a derivation from the operational semantics of commands. Assume 

'<Id' -< d. P(d'). Suppose 

d If- (c, aD) -> a and If- (c, aD) -> a1. 

Then d1 If- (c, aD) -> al for some d1 · 
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Now we show by cases on the structure of c that a = al. 

C == skip: In this case 

d = d1 = -----
(skip, aD) --> aD 

c == X := a: Both derivations have a similar form: 

(a, aD) --> m 
d=--------

(X := a, aD) --> aD [m/ Xl 

(a, aD) --> ml 
d1 = ----------

(X :=a, aD) --> ao[mI/ Xl 

37 

where a = ao[m/Xl and al = ao[mI/Xl. As the evaluation of arithmetic expressions is 

deterministic m = ml, so a = al· 

(co, ao) --> a' (Cl' a') --> a 
d = ----------

(CO; Cl, aD) --> a 

(co,ao) --> a~ (cl,aD --> al 
d1 = ------------

(co; Cl, ao) --> al 

Let dO be the sub derivation 

and d l the sub derivation 

(Cl' a') --> a 

in d. Then dO -< d and d l -< d, so P(dO) and P(d1 ). It follows that a' = a~, and a = al 

(why?). 

c == if b then Co else Cl: The rule for conditionals which applies in this case is deter

mined by how the boolean b evaluates. By the exercises of Section 3.2, its evaluation is 

deterministic so either (b, ao) --> true or (b, ao) --> false, but not both. 

When (b, ao) --> true we have: 

d = (b, ao) --> true (co,ao) --> a 

(if b then Co else Cl, ao) --> a 

(b, ao) --> true (eo, ao) --> al 
d1 = -----------

(if b then Co else Cl, ao) --> al 
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Let d' be the subderivation of (co, aD) ----+ a in d. Then d' -< d. Hence P(d'). Thus 0'= 0'1. 

When (b, aD) ----+ false the argument is similar. 

c == while b do c: The rule for while-loops which applies is again determined by how b 

evaluates. Either (b, aD) ----+ true or (b, a) --> false, but not both. 

When (b, aD) --> false we have: 

(b, aD) --> false 
d = --------

(while b do c, aD) --> aD 

so certainly a = aD = 0'1. 

When (b, aD) --> true we have: 

(b,ao) --> false 
d1 = ---------

(while b do c, aD) --> aD 

(b, aD) ----+ true (c, aD) ----+ a' (while b do c, a') --> a 
d= ---------------------

(while b do c, aD) --> a 

(b, aD) --> true (c, aD) --> a~ (while b do c, a~) --> 0'1 

d1 = ------------------------
(while b do c, aD) --> 0'1 

Let d' be the sub derivation of (c, aD) --> a' and d" the subderivation of (while b do c, a') --> 

a in d. Then d' -< d and d" -< d so P(d') and P(d"). It follows that a' = ai, and subse

quently that 0'=0'1. 

In all cases of c we have shown d If- (c, aD) --> a and (c, aD) --> 0'1 implies a = 0'1. 

By the principle of well-founded induction we conclude that P(d) holds for all deriva

tions d for the execution of commands. This is equivalent to 

'ric E Com, aD, a, aI, E ~. (c, aD) ----+ a & (c, aD) --> 0'1 =? a = aI, 

which proves the theorem. o 

As was remarked, Proposition 3.7 provides an alternative to proofs by well-founded 

induction. Induction on derivations is a special kind of well-founded induction used to 

prove a property holds of all derivations. Instead, we can attempt to produce a contra

diction from the assumption that there is a minimal derivation for which the property is 

false. The approach is illustrated below: 
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Proposition 3.12 For all states a, ai, 

(while true do skip, a) f> a ' . 

Proof: Abbreviate w == while true do skip. Suppose (w, a) ----- a l for some states a, a' . 

Then there is a minimal derivation d such that 3a, a l E L:. d II- (w, a) ----- a' . Only one 

rule can be the final rule of d, making d of the form: 

(true, a) ----- true (c, a) ----- a" (while true do c, a") ----- a l 

d=~----------------------------------~----
(while true do c, a) ----- a' 

But this contains a proper subderivation d' II- (w, a) ----- ai, contradicting the minimality 

of d. 0 

3.5 Definitions by induction 

Techniques like structural induction are often used to define operations on the set defined. 

Integers and arithmetic expressions share a common property, that of being built-up in 

a unique way. An integer is either zero or the successor of a unique integer, while an 

arithmetic expression is either atomic or a sum, or product etc. of a unique pair of 

expressions. It is by virtue of their being built up in a unique way that we can can make 

definitions by induction on integers and expressions. For example to define the length 

of an expression it is natural to define it in terms of the lengths of its components. For 

arithmetic expressions we can define 

lengthen) = length(X) = 1, 

length(ao + at) = 1 + length(ao) + length(ar), 

For future reference we define locL(c), the set of those locations which appear on the left 

of an assignment in a command. For a command c, the function loc£Cc) is defined by 

structural induction by taking 

locL(skip) = 0, 

loc£CCoi Cl) = locL(co) U locdcl), 

loc£Cwhile b do c) = loc£Cc). 

loc£CX := a) = {X}, 

locdif b then Co else cr) = locdco) U locdcr), 

In a similar way one defines operations on the natural numbers by mathematical induc

tion and operations defined on sets given by rules. In fact the proof of Proposition 3.7, 
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that every nonempty subset of a well-founded set has a minimal element, contains an 

implicit use of definition by induction on the natural numbers to construct a chain with 

a minimal element in the nonempty set. 

Both definition by structural induction and definition by mathematical induction are 

special cases of definition by well-founded induction, also called well-founded recursion. 

To understand this name, notice that both definition by induction and structural in

duction allow a form of recursive definition. For example, the length of an arithmetic 

expression could have been defined in this manner: 

length(a) ~ { ~ength(ao) + length(a,) 

if a == n, a number 

if a == (ao + ad, 

How the length function acts on a particular argument, like (ao +al) is specified in terms 

of how the length function acts on other arguments, like ao and al. In this sense the 

definition of the length function is defined recursively in terms of itself. However this 

recursion is done in such a way that the value on a particular argument is only specified 

in terms of strictly smaller arguments. In a similar way we are entitled to define functions 

on an arbitrary well-founded set. The general principle is more difficult to understand, 

resting as it does on some relatively sophisticated constructions on sets, and for this 

reason its full treatment is postponed to Section lOA. (Although the material won't be 

needed until then, the curious or impatient reader might care to glance ahead. Despite 

its late appearance that section does not depend on any additional concepts.) 

Exercise 3.13 Give definitions by structural induction of loc( a), loc( b) and loc R (c), the 

sets of locations which appear in arithmetic expressions a, boolean expressions b and the 

right-hand sides of assignments in commands c. D 

3.6 Further reading 

The techniques and ideas discussed in this chapter are well-known, basic techniques 

within mathematical logic. As operational semantics follows the lines of natural deduc

tion, it is not surprising that it shares basic techniques with proof theory, as presented 

in [84] for example-derivations are really a simple kind of proof. For a fairly advanced, 

though accessible, account of proof theory with a computer science slant see [51, 40], 

which contains much more on notations for proofs (and so derivations). Further expla

nation and uses of well-founded induction can be found in [59] and [21], where it is called 

"structural induction", in [58] and [73]), and here, especially in Chapter 10. 
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