Automated Theorem Proving: DPLL and Simplex
One-Slide Summary

- An **automated theorem prover** is an algorithm that determines whether a mathematical or logical proposition is **valid** (**satisfiable**).

- A **satisfying** or **feasible assignment** maps variables to values that satisfy given constraints. A theorem prover typically produces a proof or a satisfying assignment (e.g., a counter-example backtrace).

- The **DPLL** algorithm uses efficient heuristics (involving “pure” or “unit” variables) to solve **Boolean Satisfiability** (SAT) quickly in practice.

- The **Simplex** algorithm uses efficient heuristics (involving visiting feasible corners) to solve **Linear Programming** (LP) quickly in practice.
Why Bother?

• I am loathe to teach you anything that I think is a waste of your time.

• The use of “constraint solvers” or “SMT solvers” or “automated theorem provers” is becoming endemic in PL, SE and Security research, among others.

• Many high-level analyses and transformations call Chaff, Z3 or Simplify (etc.) as a black box single step.
Recent Examples

• “VeriCon uses first-order logic to specify admissible network topologies and desired network-wide invariants, and then implements classical Floyd-Hoare-Dijkstra **deductive verification using Z3.**”
 - VeriCon: Towards Verifying Controller Programs in Software-Defined Networks, PLDI 2014

• “However, the search strategy is very different: our synthesizer fills in the holes using component-based synthesis (as opposed to using SAT/SMT solvers).”
 - Test-Driven Synthesis, PLDI 2014

• “If the terms l, m, and r were of type nat, this **theorem is solved automatically** using Isabelle/HOL's built-in **auto** tactic.”
 - Don't Sweat the Small Stuff: Formal Verification of C Code Without the Pain, PLDI 2014
Desired Examples

• **SLAM**
 - Given “new = old” and “new++”, can we conclude “new = old”?

 - \((\text{new}_0 = \text{old}_0) \land (\text{new}_1 = \text{new}_0 + 1) \land (\text{old}_1 = \text{old}_0) \Rightarrow (\text{new}_1 = \text{old}_1)\)

• **Division By Zero**
 - IMP: “print \(x/((x*x)+1)\)”

 - \((n_1 = (x * x) + 1) \Rightarrow (n_1 \neq 0)\)
Incomplete

• Unfortunately, we can't have nice things.

• **Theorem (Godel, 1931).** No consistent system of axioms whose theorems can be listed by an algorithm is capable of proving all truths about relations of the natural numbers.

• But we can profitably restrict attention to *some* relations about numbers.
Desired Examples

- **SLAM**
 - Given “new = old” and “new++”, can we conclude “new = old”?
 - \((new_0 = old_0) \land (new_1 = new_0 + 1) \land (old_1 = old_0) \implies (new_1 = old_1)\)

- **Division By Zero**
 - IMP: “print x/((x*x)+1)”
 - \((n_1 = (x \times x) + 1) \implies (n_1 \neq 0)\)

To make progress, we will treat “pure logic” and “pure math” separately.
Overall Plan

- Satisfiability
- Simple SAT Solving
- Practical Heuristics
- DPLL algorithm for SAT
- Linear programming
- Graphical Interpretation
- Simplex algorithm

Logic

Math
Boolean Satisfiability

• Start by considering a simpler problem: propositions involving only boolean variables

\[\text{bexp} := \ x \]

| \(\text{bexp} \land \text{bexp} \) |
| \(\text{bexp} \lor \text{bexp} \) |
| \(\neg \text{bexp} \) |
| \(\text{bexp} \Rightarrow \text{bexp} \) |
| true | false |

• Given a bexp, return a satisfying assignment or indicate that it cannot be satisfied
Satisfying Assignment

• A **satisfying assignment** maps boolean variables to boolean values.

• Suppose $\sigma(x) = \text{true}$ and $\sigma(y) = \text{false}$

• $\sigma \models x$ \hspace{1cm} // $\models = \text{“models” or “makes}$

• $\sigma \models x \lor y$ \hspace{1cm} // $\text{true” or “satisfies”}$

• $\sigma \models y \Rightarrow \neg x$

• $\sigma \not\models x \Rightarrow (x \Rightarrow y)$

• $\sigma \not\models \neg x \lor y$
Cook-Levin Theorem

- **Theorem (Cook-Levin).** The boolean satisfiability problem is NP-complete.

- In '71, Cook published “The complexity of theorem proving procedures”. Karp followed up in '72 with “Reducibility among combinatorial problems”.
 - Cook and Karp received Turing Awards.

- SAT is in NP: verify the satisfying assignment

- SAT is NP-Hard: we can build a boolean expression that is satisfiable iff a given nondeterministic Turing machine accepts its given input in polynomial time
Conjunctive Normal Form

• Let's make it easier (but still NP-Complete)

• A literal is “variable” or “negated variable”

 \[x \quad \neg y \]

• A clause is a disjunction of literals

 \[(x \lor y \lor \neg z) \quad (\neg x)\]

• Conjunctive normal form (CNF) is a conjunction of clauses

 \[(x \lor y \lor \neg z) \land (\neg x \lor \neg y) \land (z)\]

• Must satisfy all clauses at once

 - “global” constraints!
SAT Solving Algorithms

\[\exists \sigma. \; \sigma \models (x \lor y \lor \neg z) \land (\neg x \lor \neg y) \land (z) \]

- So how do we solve it?

- Ex: \(\sigma(x) = \sigma(z) = \text{true}, \sigma(y) = \text{false} \)

- Expected running time?
Analogy: Human Visual Search
“Find The Red Vertical Bar”
Human Visual Search
“Find The Red Vertical Bar”
Some Visual Features Admit O(1) Detection
Strangers On A Train

- https://www.youtube.com/watch?v=_tVFwhoeQVM
Think Fast: Partial Answer?

\((-a \lor -b \lor -c \lor d \lor e \lor -f \lor g \lor -h \lor -i)\)
\(\land (-a \lor b \lor -c \lor d \lor -e \lor f \lor -g \lor h \lor -i)\)
\(\land (a \lor -b \lor -c \lor -d \lor e \lor -f \lor -g \lor -h \lor i)\)
\(\land (-b)\)
\(\land (a \lor -b \lor c \lor -d \lor e \lor -f \lor -g \lor -h \lor i)\)
\(\land (\neg a \lor b \lor \neg c \lor d \lor \neg e \lor f \lor \neg g \lor h \lor \neg i)\)

• If this instance is satisfiable, what must part of the satisfying assignment be?
Think Fast: Partial Answer?

\[(\neg a \lor \neg b \lor \neg c \lor d \lor e \lor \neg f \lor g \lor \neg h \lor \neg i) \]
\[\land (\neg a \lor b \lor \neg c \lor d \lor \neg e \lor f \lor \neg g \lor h \lor \neg i) \]
\[\land (a \lor \neg b \lor \neg c \lor \neg d \lor e \lor \neg f \lor \neg g \lor \neg h \lor i) \]
\[\land (\neg b) \]
\[\land (a \lor \neg b \lor c \lor \neg d \lor e \lor \neg f \lor \neg g \lor \neg h \lor i) \]
\[\land (\neg a \lor b \lor \neg c \lor d \lor \neg e \lor f \lor \neg g \lor h \lor \neg i) \]

- If this instance is satisfiable, what must part of the satisfying assignment be? \(b = \text{false} \)
Need For Speed 2

(¬a ∨ c ∨ ¬d ∨ e ∨ f ∨ ¬g ∨ ¬h ∨ ¬i)
∧ (¬a ∨ b ∨ ¬c ∨ d ∨ ¬e ∨ f ∨ g ∨ h ∨ i)
∧ (¬a ∨ ¬b ∨ c ∨ e ∨ f ∨ g ∨ ¬h ∨ i)
∧ (¬a ∨ b ∨ c ∨ d ∨ e ∨ ¬f ∨ ¬g ∨ h ∨ ¬i)
∧ (b ∨ ¬c ∨ ¬d ∨ e ∨ ¬f ∨ g ∨ h ∨ ¬i)
∧ (¬a ∨ b ∨ c ∨ d ∨ ¬g ∨ ¬h ∨ ¬i)

• If this instance is satisfiable, what must part of the satisfying assignment be?
Need For Speed 2

\((\neg a \lor c \lor \neg d \lor e \lor f \lor \neg g \lor \neg h \lor \neg i)\)
\(\land (\neg a \lor b \lor \neg c \lor d \lor \neg e \lor f \lor g \lor h \lor i)\)
\(\land (\neg a \lor \neg b \lor c \lor e \lor f \lor g \lor \neg h \lor i)\)
\(\land (\neg a \lor b \lor c \lor d \lor e \lor \neg f \lor \neg g \lor h \lor \neg i)\)
\(\land (b \lor \neg c \lor \neg d \lor e \lor \neg f \lor g \lor h \lor \neg i)\)
\(\land (\neg a \lor b \lor c \lor d \lor \neg g \lor \neg h \lor \neg i)\)

- If this instance is satisfiable, what must part of the satisfying assignment be? \(a = \text{false}\)
Unit and Pure

• A **unit clause** contains only a single literal.
 - Ex: \((x) \land (\neg y)\)
 - Can only be satisfied by making that literal true.
 - Thus, there is no choice: just do it!

• A **pure variable** is either “always \(\neg\) negated” or “never \(\neg\) negated”.
 - Ex: \((\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y) \land z\)
 - Can only be satisfied by making that literal true.
 - Thus, there is no choice: just do it!
Unit Propagation

- If X is a literal in a unit clause, add X to that satisfying assignment and replace X with “true” in the input, then simplify:
 1. \((\neg x \lor y \lor \neg z) \land (\neg x \lor \neg z) \land (z)\)
 2. identify “z” as a unit clause
 3. \(\sigma += \text{“z = true”}\)
Unit Propagation

- If X is a literal in a unit clause, add X to that satisfying assignment and replace X with “true” in the input, then simplify:
 1. \((\neg x \lor y \lor \neg z) \land (\neg x \lor \neg z) \land (z)\)
 2. identify “z” as a unit clause
 3. \(\sigma += \text{“z = true”}\)
 4. \((\neg x \lor y \lor \neg \text{true}) \land (\neg x \lor \neg \text{true}) \land \text{(true)}\)
Unit Propagation

• If X is a literal in a unit clause, add X to that satisfying assignment and replace X with “true” in the input, then simplify:

1. \((\neg x \lor y \lor \neg z) \land (\neg x \lor \neg z) \land (z)\)
2. identify “z” as a unit clause
3. \(\sigma += \text{"z = true"}\)
4. \((\neg x \lor y \lor \neg \text{true}) \land (\neg x \lor \neg \text{true}) \land (\text{true})\)
5. \((\neg x \lor y) \land (\neg x)\)

• Profit! Let's keep going …
Unit Propagation FTW

5. \((-x \lor y) \land (-x)\)

6. Identify “-x” as a unit clause

7. \(\sigma += \text{"-x = true"} \)

8. \((true \lor y) \land (true)\)

9. done!

\(\{z, \neg x\} \models (-x \lor y \lor \neg z) \land (-x \lor \neg z) \land (z)\)
Pure Variable Elimination

- If V is a variable that is always used with one polarity, add it to the satisfying assignment and replace V with “true”, then simplify.
 1. \((\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z)\)
 2. identify \("\neg y"\) as a pure literal
Pure Variable Elimination

- If V is a variable that is always used with one polarity, add it to the satisfying assignment and replace V with “true”, then simplify.

1. \((\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \)
2. Identify “\(\neg y \)” as a pure literal
3. \((\neg x \lor \text{true} \lor \neg z) \land (x \lor \text{true} \lor z) \)
4. Done.
DPLL

• The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a complete decision procedure for CNF SAT based on:
 - Identify and propagate unit clauses
 - Identify and propagate pure literals
 - If all else fails, exhaustive backtracking search

• It builds up a partial satisfying assignment over time.

DP '60: “A Computing Procedure for Quantification Theory”
DLL '62: “A Machine Program for Theorem Proving”
DPLL Algorithm

let rec dpll (c : CNF) (σ : model) : model option =

 if σ ⊨ c then (* polytime *)
 return Some(σ) (* we win! *)
 else if () in c then (* empty clause *)
 return None (* unsat *)

let u = unit_clauses_of c in
let c, σ = fold unit_propagate (c, σ) u in
let p = pure_literals_of c in
let c, σ = fold pure_literal_elim (c, σ) p in
let x = choose ((literals_of c) - (literals_of σ)) in
return (dpll (c ∧ x) σ) or (dpll (c ∧ ¬x) σ)
DPLL Example

\((x \lor \neg z) \land (\neg x \lor \neg y \lor z) \land (w) \land (w \lor y)\)

- Unit clauses: \((w)\)

\((x \lor \neg z) \land (\neg x \lor \neg y \lor z)\)

- Pure literals: \(\neg y\)

\((x \lor \neg z)\)

- Choose unassigned: \(x\) (recursive call)

\((x \lor \neg z) \land (x)\)

- Unit clauses: \((x)\)

- Done! \(\sigma = \{w, \neg y, x\}\)
SAT Conclusion

- DPLL is commonly used by award-winning SAT solvers such as Chaff and MiniSAT
- Not explained here: how you “choose” an unassigned literal for the recursive call
 - This “branching literal” is the subject of many papers on heuristics
- Very recent: specialize a MiniSAT solver to a particular problem class

Q: Computer Science

- This American mathematician and scientist developed the simplex algorithm for solving linear programming problems. In 1939 he arrived late to a graduate stats class at UC Berkeley where Professor Neyman had written two famously unsolved problems on the board. The student thought the problems “seemed a little harder than usual” but a few days later handed in complete solutions, believing them to be homework problems overdue. This real-life story inspired the introductory scene in *Good Will Hunting*.
Linear Programming

• Example Goal:
 - Find X such that $X > 5 \land X < 10 \land 2X = 16$

• Let $x_1 \ldots x_n$ be real-valued variables

• A satisfying assignment (or feasible solution) is a mapping from variables to reals satisfying all available constraints

• Given a set of linear constraints and a linear objective function to maximize, Linear Programming (LP) finds a feasible solution that maximizes the objective function.
Linear Programming Instance

- Maximize \(c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \)

- Subject to \(a_{11} x_1 + a_{12} x_2 + \ldots \leq b_1 \)
 \(a_{21} x_1 + a_{22} x_2 + \ldots \leq b_2 \)
 \(a_{n1} x_1 + a_{n2} x_2 + \ldots \leq b_n \)

 \(x_1 \geq 0, \ldots, x_n \geq 0 \)

- Don't “need” the objective function
- Don't “need” \(x_1 \geq 0 \)
2D Running Example

- Maximize \(4x + 3y \)
- Subject to \(2x + 3y \leq 6 \) \hspace{1cm} (1)
 \(2y \leq 5 \) \hspace{1cm} (2)
 \(2x + 1y \leq 4 \) \hspace{1cm} (3)
 \(x \geq 0, y \geq 0 \)

- Feasible: (1,1) or (0,0)
- Infeasible: (1,-1) or (1,2)
Key Insight

• Each linear constraint (e.g., $2x+3y \leq 6$) corresponds to a half-plane
 - A feasible half-plane and an infeasible one
Key Insight

• Each linear constraint (e.g., \(2y \leq 5\)) corresponds to a half-plane
 - A feasible half-plane and an infeasible one
Key Insight

Each linear constraint (e.g., $2x + 3y \leq 6$) corresponds to a half-plane.
Feasible Region

- The region that is on the "correct" side of all of the lines is the **feasible region**
- If non-empty, it is always a **convex** polygon
 - Convex, for our purposes: if A and B are points in a convex set, then the points on the line segment between A and B are also in that convex set
- Optimality: "Maximize \(4x + 3y \)"
- For any \(c \), \(4x+3y=c \) is a line with the same slope
- **Corner points** of the feasible region must maximize
 - Why? Linear objective function + convex polygon
Objective Function

• Maximize $4x + 3y$
Objective Function

- Maximize $4x + 3y$
Objective Function

• Maximize $4x + 3y$

Optimal Corner Point (1.5, 1)
It's the feasible point that maximizes the objective function!
Analogy: Rolling Pin, Pizza Dough
Analogy: Rolling Pin, Pizza Dough
Analogy: Rolling Pin, Pizza Dough
Any Convex Pizza and Any Linear Rolling Pin Approach
Any Convex Pizza and Any Linear Rolling Pin Approach
Linear Programming Solver

• Three Step Process
 - Identify the coordinates of all feasible corners
 - Evaluate the objective function at each one
 - Return one that maximizes the objective function

• This totally works! We're done.

• The trick: how can we find all of the coordinates of the corners *without* drawing the picture of the graph?
Finding Corner Points

- A **corner point** (**extreme point**) lies at the intersection of constraints.
- Recall our running example:
- Subject to \[2x + 3y \leq 6\] \((1)\)
 \[2y \leq 5\] \((2)\)
 \[2x + y \leq 4\] \((3)\)
 \[x \geq 0, y \geq 0\]
- Take just \((1)\) and \((3)\) as **defining equations**
Visually

- $2x + 3y \leq 6$ and $2x + 1y \leq 4$
 - Hard to see with the whole graph ...
Visually

- $2x + 3y \leq 6$ and $2x + 1y \leq 4$
 - But easy if we only look at those two!
Mathematically

- $2x + 3y \leq 6$
- $2x + 1y \leq 4$
- Recall linear algebra: **Gaussian Elimination**
 - Subtract the second row from the first
 - $0x + 2y \leq 2$
 - Yields “$y = 1$”
- Substitute “$y = 1$” back in
- $2x + 3 \leq 6$
 - Yields “$x = 1.5$”
Infeasible Corners

- $2x + 3y \leq 6$ and $2y \leq 5$
Infeasible Corners

- \(2x + 3y \leq 6\) and \(2y \leq 5\)
 - \((-0.75, 2.5)\) solves the equations but it does not satisfy our “\(x \geq 0\)” constraint: infeasible!
Solving Linear Programming

- Identify the coordinates of all corners
 - Consider all pairs of constraints, solve each pair
 - Filter to retain points satisfying all constraints
- Evaluate the objective function at each point
- Return the point that maximizes

- With 5 equations, the number of pairs is “6 choose 2” = \(5!/(2!3!) = 10\).
 - Only 4 of those 10 are feasible.
Feasible Corners

- In our running example, there are four feasible corners

\[
\begin{align*}
2x + 3y & \leq 6 \\
2y & \leq 5 \\
2x + y & \leq 4
\end{align*}
\]
Road Trip!

• Suppose we start in one feasible corner (0,0)
 - And we know our objective function $4x + 3y$
 - Do we move to corner (0,2) or (2,0) next, or should we stay here?
Road Trip!

- We're now in (2,0)
 - And we know our objective function $4x + 3y$
 - Do we move to corner (1.5,1) or stay here?
Road Trip!

- We're now in (1.5,1)
 - We're done! We have considered all of our neighbors and we're the best.
Analogy: Don't Sink!
Reach Highest Point Greedily
Not A Counter-Example
Why Not?
Simplex Insight

• The **Simplex** algorithm encodes this “gradient ascent” insight: if there are many corners, we may not even need to enumerate or visit them all.

• Instead, just walk from feasible corner to adjacent feasible corner, maximizing the objective function every time.
 - It's linear and convex: you can't be “tricked” into a local maximum that's not also global.

• In a high-dimensional case, this is a huge win because there are many corners.
Simplex Algorithm

- **George Dantzig** published the Simplex algorithm in 1947.
 - John von Neumann theory prize, US National Medal of Science, “one of the top 10 algorithms of the 20th century”, etc.

- **Phase 1: find any feasible corner**
 - Ex: solve two constraints until you find one

- **Phase 2: walk to best adjacent corner**
 - Ex: “pivot” row operations between the “leaving” variable and the “entering” variable

- Repeat until no adjacent corner is better
Simplex Running Time

• Despite the “gradient ascent heuristic”, the official worst-case complexity of Simplex is Exponential time
 - Open question: is there a strongly polytime algorithm for linear programming?

• Simplex is quite efficient in practice.
 - In a formal sense, “most” LP instances can be solved by Simplex in polytime. “Hard” instances are “not dense” in the set of all instances (akin to: the Integers are “not dense” in the Reals).

• 0-1 Integer Linear Programming is NP-Hard.
Next Time

- DPLL(T) combines DPLL + Simplex into one grand unified theorem prover
Homework

- HW2 Due for Next Time
- Reading for Monday