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Automated Theorem Proving:
DPLL and Simplex
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One-Slide Summary
• An automated theorem prover is an algorithm that 

determines whether a mathematical or logical 
proposition is valid (satisfiable). 

• A satisfying or feasible assignment maps variables to 
values that satisfy given constraints. A theorem prover 
typically produces a proof or a satisfying assignment 
(e.g., a counter-example backtrace).

• The DPLL algorithm uses efficient heuristics (involving 
“pure” or “unit” variables) to solve Boolean 
Satisfiability (SAT) quickly in practice. 

• The Simplex algorithm uses efficient heuristics 
(involving visiting feasible corners) to solve Linear 
Programming (LP) quickly in practice. 
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Why Bother?

• I am loathe to teach you anything that I 
think is a waste of your time.

• The use of “constraint solvers” or “SMT 
solvers” or “automated theorem provers” 
is becoming endemic in PL, SE and 
Security research, among others. 

• Many high-level analyses and 
transformations call Chaff, Z3 or Simplify 
(etc.) as a black box single step. 
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Recent Examples
• “VeriCon uses first-order logic to specify admissible network 

topologies and desired network-wide invariants, and then 
implements classical Floyd-Hoare-Dijkstra deductive verification 
using Z3.”

– VeriCon: Towards Verifying Controller Programs in Software-Defined 
Networks, PLDI 2014

• “However, the search strategy is very different: our synthesizer 
fills in the holes using component-based synthesis (as opposed to 
using SAT/SMT solvers).”

– Test-Driven Synthesis, PLDI 2014

• “If the terms l, m, and r were of type nat, this theorem is solved 
automatically using Isabelle/HOL's built-in auto tactic.”

– Don't Sweat the Small Stuff: Formal Verification of C Code 
Without the Pain, PLDI 2014
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Desired Examples

• SLAM
– Given “new = old” and “new++”, can we conclude 

“new = old”?

– (new
0
 = old

0
) ^ (new

1
 = new

0
 + 1) ^                 

(old
1
 = old

0
) ) (new

1
 = old

1
) 

• Division By Zero
– IMP: “print x/((x*x)+1)” 

– (n
1
 = (x * x) + 1) ) (n

1
 ≠ 0) 
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Incomplete

• Unfortunately, we can't have nice things.

• Theorem (Godel, 1931). No consistent 
system of axioms whose theorems can be 
listed by an algorithm is capable of proving all 
truths about relations of the natural numbers.

• But we can profitably restrict attention to 
some relations about numbers.
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Desired Examples

• SLAM
– Given “new = old” and “new++”, can we conclude 

“new = old”?

– (new
0
 = old

0
) ^ (new

1
 = new

0
 + 1) ^                 

(old
1
 = old

0
) ) (new

1
 = old

1
) 

• Division By Zero
– IMP: “print x/((x*x)+1)” 

– (n
1
 = (x * x) + 1) ) (n

1
 ≠ 0) 

To make progress,To make progress,
we will treat “pure logic”we will treat “pure logic”

and “pure math”and “pure math”
separately.separately.
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Overall Plan

• Satisfiability

• Simple SAT Solving
• Practical Heuristics
• DPLL algorithm for SAT

• Linear programming
• Graphical Interpretation
• Simplex algorithm 

Logic

Math
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Boolean Satisfiability
• Start by considering a simpler problem: 

propositions involving only boolean variables
bexp := x

 | bexp ^ bexp

 | bexp _ bexp

 | : bexp

 | bexp ) bexp 

 | true | false 

• Given a bexp, return a satisfying assignment 
or indicate that it cannot be satisfied
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Satisfying Assignment

• A satisfying assignment maps boolean 
variables to boolean values. 

• Suppose σ(x) = true and σ(y) = false

• σ ² x // ² is “models” or “makes

• σ ² x _ y // true” or “satisfies”

• σ ² y ) :x 

• σ ² x ) (x ) y)

• σ ² :x _ y
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Cook-Levin Theorem
• Theorem (Cook-Levin). The boolean 

satisfiability problem is NP-complete.
• In '71, Cook published “The complexity of 

theorem proving procedures”. Karp followed 
up in '72 with “Reducibility among 
combinatorial problems”. 
– Cook and Karp received Turing Awards.

• SAT is in NP: verify the satisfying assignment

• SAT is NP-Hard: we can build a boolean expression that 
is satisfiable iff a given nondeterministic Turing machine 
accepts its given input in polynomial time
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Conjunctive Normal Form
• Let's make it easier (but still NP-Complete)
• A literal is “variable” or “negated variable”

x :y

• A clause is a disjunction of literals
(x _ y _ :z) (:x)

• Conjunctive normal form (CNF) is a 
conjunction of clauses

(x _ y _ :z)  ^  (:x _ :y)  ^  (z)

• Must satisfy all clauses at once
– “global” constraints!
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SAT Solving Algorithms

9σ. σ ² (x _ y _ :z)  ^  (:x _ :y)  ^  (z)

• So how do we solve it?

• Ex: σ(x) = σ(z) = true, σ(y) = false

• Expected running time?
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Analogy: Human Visual Search
“Find The Red Vertical Bar”
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Human Visual Search
“Find The Red Vertical Bar”
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Some Visual Features 
Admit O(1) Detection
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Strangers On A Train

• https://www.youtube.com/watch?v=_tVFwhoeQVM 

https://www.youtube.com/watch?v=_tVFwhoeQVM
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Think Fast: Partial Answer?

   (:a _ :b _ :c _ d _ e _ :f _ g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

^ (a _ :b _ :c _ :d _ e _ :f _ :g _ :h _ i)

^ (:b) 

^ (a _ :b _ c _ :d _ e _ :f _ :g _ :h _ i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

• If this instance is satisfiable, what must part 
of the satisfying assignment be? 



#19

Think Fast: Partial Answer?

   (:a _ :b _ :c _ d _ e _ :f _ g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

^ (a _ :b _ :c _ :d _ e _ :f _ :g _ :h _ i)

^ (:b) 

^ (a _ :b _ c _ :d _ e _ :f _ :g _ :h _ i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

• If this instance is satisfiable, what must part 
of the satisfying assignment be? b = false
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Need For Speed 2

   (:a _ c _ :d _ e _ f _ :g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ g _ h _ i)

^ (:a _ :b _ c _ e _ f _ g _ :h _ i)

^ (:a _ b _ c _ d _ e _ :f _ :g _ h _ :i)

^          (b _ :c _ :d _ e _ :f _ g _ h _ :i)

^ (:a _ b _ c _ d _ :g _ :h _ :i)

• If this instance is satisfiable, what must part 
of the satisfying assignment be? 
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Need For Speed 2

   (:a _ c _ :d _ e _ f _ :g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ g _ h _ i)

^ (:a _ :b _ c _ e _ f _ g _ :h _ i)

^ (:a _ b _ c _ d _ e _ :f _ :g _ h _ :i)

^          (b _ :c _ :d _ e _ :f _ g _ h _ :i)

^ (:a _ b _ c _ d _ :g _ :h _ :i)

• If this instance is satisfiable, what must part 
of the satisfying assignment be? a = false
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Unit and Pure

• A unit clause contains only a single literal.
– Ex: (x) (:y)

– Can only be satisfied by making that literal true.

– Thus, there is no choice: just do it!

• A pure variable is either “always : negated” 
or “never : negated”.
– Ex: (:x _ y _ :z)  ^  (:x _ :y)  ^  (z)

– Can only be satisfied by making that literal true.

– Thus, there is no choice: just do it!
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Unit Propagation

• If X is a literal in a unit clause, add X to that 
satisfying assignment and replace X with 
“true” in the input, then simplify: 
1. (:x _ y _ :z)  ^  (:x _ :z)  ^  (z)

2. identify “z” as a unit clause
3. σ += “z = true”
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Unit Propagation

• If X is a literal in a unit clause, add X to that 
satisfying assignment and replace X with 
“true” in the input, then simplify: 
1. (:x _ y _ :z)  ^  (:x _ :z)  ^  (z)

2. identify “z” as a unit clause
3. σ += “z = true”
4. (:x _ y _ :true)  ^  (:x _ :true)  ^  (true)
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Unit Propagation

• If X is a literal in a unit clause, add X to that 
satisfying assignment and replace X with 
“true” in the input, then simplify: 
1. (:x _ y _ :z)  ^  (:x _ :z)  ^  (z)

2. identify “z” as a unit clause
3. σ += “z = true”
4. (:x _ y _ :true)  ^  (:x _ :true)  ^  (true)

5. (:x _ y)             ^  (:x)

• Profit! Let's keep going ...
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Unit Propagation FTW

5. (:x _ y)             ^  (:x)

6. Identify “:x” as a unit clause

7. σ += “:x = true”

8. (true _ y)             ^  (true)

9. done!

{z,:x} ² (:x _ y _ :z)  ^  (:x or :z)  ^  (z)
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Pure Variable Elimination

• If V is a variable that is always used with one 
polarity, add it to the satisfying assignment 
and replace V with “true”, then simplify.
1. (:x _ :y _ :z)  ^  (x _ :y _ z) 

2. identify “:y” as a pure literal
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Pure Variable Elimination

• If V is a variable that is always used with one 
polarity, add it to the satisfying assignment 
and replace V with “true”, then simplify.
1. (:x _ :y _ :z)  ^  (x _ :y _ z) 

2. identify “:y” as a pure literal

3. (:x _ true _ :z)  ^  (x _ true _ z) 

4. Done. 
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DPLL

• The Davis-Putnam-Logemann-Loveland 
(DPLL) algorithm is a complete decision 
procedure for CNF SAT based on:
– Identify and propagate unit clauses

– Identify and propagate pure literals

– If all else fails, exhaustive backtracking search

• It builds up a partial satisfying assignment 
over time. 
DP '60: “A Computing Procedure for Quantification Theory”

DLL '62: “A Machine Program for Theorem Proving”
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DPLL Algorithm
let rec dpll (c : CNF) (σ : model) : model option = 

  if σ ² c then (* polytime *)

    return Some(σ) (* we win! *) 

  else if ( ) in c then (* empty clause *)

    return None (* unsat *)

  let u = unit_clauses_of c in   

  let c, σ = fold unit_propagate (c, σ) u in 

  let p = pure_literals_of c in 

  let c, σ = fold pure_literal_elim (c, σ) p in 

  let x = choose ((literals_of c) – (literals_of σ)) in

  return (dpll (c ^ x) σ) or (dpll (c ^ :x) σ) 



#31

DPLL Example

(x _ :z) ^ (:x _ :y _ z) ^ (w) ^ (w _ y) 

• Unit clauses: (w)
(x _ :z) ^ (:x _ :y _ z)

• Pure literals: :y

(x _ :z)

• Choose unassigned: x (recursive call)
(x _ :z) ^ (x) 

• Unit clauses: (x)
• Done! σ={w, :y, x}
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SAT Conclusion
• DPLL is commonly used by award-winning SAT 

solvers such as Chaff and MiniSAT
• Not explained here: how you “choose” an 

unassigned literal for the recursive call
– This “branching literal” is the subject of many 

papers on heuristics

• Very recent: specialize a MiniSAT solver to a 
particular problem class 

Justyna Petke, Mark Harman, William B. Langdon, Westley Weimer: 
Using Genetic Improvement & Code Transplants to Specialise a C++ 
Program to a Problem Class. European Conference on Genetic 
Programming (EuroGP) 2014 (silver human competitive award)
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Japanese Literature

• This 11th-century Japanese work is often 
regarded as the world's first novel. It was 
written by Murasaki Shikibu, a Heian 
noblewoman. A psychological and historical 
work, it details the life and romantic 
adventures of a “shining” prince. It features 
over 400 characters and a strong internal 
consistency (e.g., they all age at the same 
time and follow feudal and family 
relationships). 
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Q: Computer Science

• This American mathematician and scientist 
developed the simplex algorithm for solving linear 
programming problems. In 1939 he arrived late to 
a graduate stats class at UC Berkeley where 
Professor Neyman had written two famously 
unsolved problems on the board. The student 
thought the problems “seemed a little harder than 
usual” but a few days later handed in complete 
solutions, believing them to be homework 
problems overdue. This real-life story inspired the 
introductory scene in Good Will Hunting.
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Linear Programming

• Example Goal:
– Find X such that X > 5 ^ X < 10 ^ 2X = 16

• Let x
1
 ... x

n
 be real-valued variables

• A satisfying assignment (or feasible solution) 
is a mapping from variables to reals satisfying 
all available constraints

• Given a set of linear constraints and a linear 
objective function to maximize, Linear 
Programming (LP) finds a feasibile solution 
that maximizes the objective function.
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Linear Programming Instance

• Maximize c
1
x

1
 + c

2
x

2
 + ... + c

n
x

n

• Subject to a
11

x
1
 + a

12
x

2
 + ... ≤ b

1

 a
21

x
1
 + a

22
x

2
 + ... ≤ b

2

 a
n1

x
1
 + a

n2
x

2
 + ... ≤ b

n

 x
1
 ≥ 0, ..., x

n
 ≥ 0 

• Don't “need” the objective function

• Don't “need” x
1
 ≥ 0
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2D Running Example

• Maximize 4x + 3y
• Subject to  2x +3y ≤ 6 (1)

   2y ≤ 5 (2)
  2x +1y ≤ 4 (3)
 x ≥ 0, y ≥ 0

• Feasible: (1,1) or (0,0)
• Infeasible: (1,-1) or (1,2) 
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Key Insight

• Each linear constraint (e.g., 2x+3y ≤ 6) 
corresponds to a half-plane
– A feasible half-plane and an infeasible one

x

y

0 1 2 3

1

2

3

(feasible)
2x+3y≤6
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Key Insight

• Each linear constraint (e.g., 2y ≤ 5) 
corresponds to a half-plane
– A feasible half-plane and an infeasible one

x

y

0 1 2 3

1

2

3

(feasible)

2y≤5

2x+3y≤6
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Key Insight

• Each linear constraint (e.g., 2x+3y ≤ 6) 
corresponds to a half-plane

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4
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Feasible Region

• The region that is on the “correct” side of all of the 
lines is the feasible region

• If non-empty, it is always a convex polygon

– Convex, for our purposes: if A and B are points in a 
convex set, then the points on the line segment 
between A and B are also in that convex set

• Optimality: “Maximize 4x + 3y”

• For any c, 4x+3y=c is a line with the same slope

• Corner points of the feasible region must maximize

– Why? Linear objective function + convex polygon
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Objective Function

• Maximize 4x+3y

x

y

0 1 2 3

1

2

3

(feasible) 4x+3y=12
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Objective Function

• Maximize 4x+3y

x

y

0 1 2 3

1

2

3

(feasible) 4x+3y=12

4x+3y=10
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Objective Function

• Maximize 4x+3y

x

y

0 1 2 3

1

2

3

(feasible) 4x+3y=12

4x+3y=10

4x+3y=9

Optimal Corner Point (1.5, 1)
It's the feasible point that
maximizes the objective function!
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Analogy: Rolling Pin, Pizza Dough
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Analogy: Rolling Pin, Pizza Dough
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Analogy: Rolling Pin, Pizza Dough
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Any Convex Pizza and
Any Linear Rolling Pin Approach
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Any Convex Pizza and
Any Linear Rolling Pin Approach
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Linear Programming Solver

• Three Step Process
– Identify the coordinates of all feasible corners

– Evaluate the objective function at each one

– Return one that maximizes the objective function

• This totally works! We're done. 

• The trick: how can we find all of the 
coordinates of the corners without drawing 
the picture of the graph? 
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Finding Corner Points

• A corner point (extreme point) lies at the 
intersection of constraints.

• Recall our running example: 
• Subject to  2x +3y ≤ 6 (1)

   2y ≤ 5 (2)
  2x +1y ≤ 4 (3)
 x ≥ 0, y ≥ 0

• Take just (1) and (3) as defining equations
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Visually

• 2x +3y ≤ 6   and   2x +1y ≤ 4
– Hard to see with the whole graph ...

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4
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Visually

• 2x +3y ≤ 6   and   2x +1y ≤ 4
– But easy if we only look at those two!

2x+3y≤6

2x+y≤4
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Mathematically

• 2x +3y ≤ 6
• 2x +1y ≤ 4
• Recall linear algebra: Gaussian Elimination

– Subtract the second row from the first

• 0x +2y ≤ 2
– Yields “y = 1”

• Substitute “y=1” back in
• 2x + 3 ≤ 6

– Yields “x = 1.5” 
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Infeasible Corners

• 2x +3y ≤ 6   and   2y ≤ 5

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4
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Infeasible Corners

• 2x +3y ≤ 6   and   2y ≤ 5
– (-0.75,2.5) solves the equations but it does not 

satisfy our “x ≥ 0” constraint: infeasible!

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5
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Solving Linear Programming

• Identify the coordinates of all corners
– Consider all pairs of constraints, solve each pair

– Filter to retain points satisfying all constraints

• Evaluate the objective function at each point
• Return the point that maximizes

• With 5 equations, the number of pairs is “6 
choose 2” = 5!/(2!3!) = 10. 
– Only 4 of those 10 are feasible.
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Feasible Corners

• In our running example, there are four 
feasible corners

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4
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Road Trip!
• Suppose we start in one feasible corner (0,0)

– And we know our objective function 4x+3y

– Do we move to corner (0,2) or (2,0) next, or          
                       should we stay here?

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4
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Road Trip!
• We're now in (2,0) 

– And we know our objective function 4x+3y

– Do we move to corner (1.5,1) or stay here?

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4
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Road Trip!
• We're now in (1.5,1) 

– We're done! We have considered all of our 
neighbors and we're the best. 

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4
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Analogy: Don't Sink!



#63

Reach Highest Point Greedily
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Not A Counter-Example
Why Not?
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Simplex Insight
• The Simplex algorithm encodes this “gradient 

ascent” insight: if there are many corners, we 
may not even need to enumerate or visit 
them all. 

• Instead, just walk from feasible corner to 
adjacent feasible corner, maximizing the 
objective function every time.
– It's linear and convex: you can't be “tricked” into 

a local maximum that's not also global.

• In a high-dimensional case, this is a huge win 
because there are many corners. 
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Simplex Algorithm

• George Dantzig published the Simplex 
algorithm in 1947. 
– John von Neumann theory prize, US National Medal of Science, 

“one of the top 10 algorithms of the 20th century”, etc.

• Phase 1: find any feasible corner
– Ex: solve two constraints until you find one

• Phase 2: walk to best adjacent corner
– Ex: “pivot” row operations between the “leaving” 

variable and the “entering” variable

• Repeat until no adjacent corner is better
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Simplex Running Time
(special thanks to Yi Tang)

• Linear programming (via the interior-point method, 
ellipsoid algorithm) can be solved in worst-case 
polynomial-time.

– n variables encoded in L input bits: O(n6L) time

– Open question: is there a strongly polytime algorithm 
for linear programming over the reals?

• Simplex is quite efficient in practice.

– In a formal sense, “most” LP instances can be solved 
by Simplex in polytime. “Hard” instances are “not 
dense” in the set of all instances (akin to: the 
Integers are “not dense” in the Reals).

• 0-1 Integer Linear Programming is NP-Hard. 
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Next Time

• DPLL(T) combines DPLL + Simplex into one 
grand unified theorem prover
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Homework

• HW2 Due Soon
• Reading for next time
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