
#1

Automated Theorem Proving:
DPLL and Simplex

#2

One-Slide Summary
• An automated theorem prover is an algorithm that

determines whether a mathematical or logical
proposition is valid (satisfiable).

• A satisfying or feasible assignment maps variables to
values that satisfy given constraints. A theorem prover
typically produces a proof or a satisfying assignment
(e.g., a counter-example backtrace).

• The DPLL algorithm uses efficient heuristics (involving
“pure” or “unit” variables) to solve Boolean
Satisfiability (SAT) quickly in practice.

• The Simplex algorithm uses efficient heuristics
(involving visiting feasible corners) to solve Linear
Programming (LP) quickly in practice.

#3

Why Bother?

• I am loathe to teach you anything that I
think is a waste of your time.

• The use of “constraint solvers” or “SMT
solvers” or “automated theorem provers”
is becoming endemic in PL, SE and
Security research, among others.

• Many high-level analyses and
transformations call Chaff, Z3 or Simplify
(etc.) as a black box single step.

#4

Recent Examples
• “VeriCon uses first-order logic to specify admissible network

topologies and desired network-wide invariants, and then
implements classical Floyd-Hoare-Dijkstra deductive verification
using Z3.”

– VeriCon: Towards Verifying Controller Programs in Software-Defined
Networks, PLDI 2014

• “However, the search strategy is very different: our synthesizer
fills in the holes using component-based synthesis (as opposed to
using SAT/SMT solvers).”

– Test-Driven Synthesis, PLDI 2014

• “If the terms l, m, and r were of type nat, this theorem is solved
automatically using Isabelle/HOL's built-in auto tactic.”

– Don't Sweat the Small Stuff: Formal Verification of C Code
Without the Pain, PLDI 2014

#5

Desired Examples

• SLAM
– Given “new = old” and “new++”, can we conclude

“new = old”?

– (new
0
 = old

0
) ^ (new

1
 = new

0
 + 1) ^

(old
1
 = old

0
)) (new

1
 = old

1
)

• Division By Zero
– IMP: “print x/((x*x)+1)”

– (n
1
 = (x * x) + 1)) (n

1
 ≠ 0)

#6

Incomplete

• Unfortunately, we can't have nice things.

• Theorem (Godel, 1931). No consistent
system of axioms whose theorems can be
listed by an algorithm is capable of proving all
truths about relations of the natural numbers.

• But we can profitably restrict attention to
some relations about numbers.

#7

Desired Examples

• SLAM
– Given “new = old” and “new++”, can we conclude

“new = old”?

– (new
0
 = old

0
) ^ (new

1
 = new

0
 + 1) ^

(old
1
 = old

0
)) (new

1
 = old

1
)

• Division By Zero
– IMP: “print x/((x*x)+1)”

– (n
1
 = (x * x) + 1)) (n

1
 ≠ 0)

To make progress,To make progress,
we will treat “pure logic”we will treat “pure logic”

and “pure math”and “pure math”
separately.separately.

#8

Overall Plan

• Satisfiability

• Simple SAT Solving
• Practical Heuristics
• DPLL algorithm for SAT

• Linear programming
• Graphical Interpretation
• Simplex algorithm

Logic

Math

#9

Boolean Satisfiability
• Start by considering a simpler problem:

propositions involving only boolean variables
bexp := x

 | bexp ^ bexp

 | bexp _ bexp

 | : bexp

 | bexp) bexp

 | true | false

• Given a bexp, return a satisfying assignment
or indicate that it cannot be satisfied

#10

Satisfying Assignment

• A satisfying assignment maps boolean
variables to boolean values.

• Suppose σ(x) = true and σ(y) = false

• σ ² x // ² is “models” or “makes

• σ ² x _ y // true” or “satisfies”

• σ ² y) :x

• σ ² x) (x) y)

• σ ² :x _ y

#11

Cook-Levin Theorem
• Theorem (Cook-Levin). The boolean

satisfiability problem is NP-complete.
• In '71, Cook published “The complexity of

theorem proving procedures”. Karp followed
up in '72 with “Reducibility among
combinatorial problems”.
– Cook and Karp received Turing Awards.

• SAT is in NP: verify the satisfying assignment

• SAT is NP-Hard: we can build a boolean expression that
is satisfiable iff a given nondeterministic Turing machine
accepts its given input in polynomial time

#12

Conjunctive Normal Form
• Let's make it easier (but still NP-Complete)
• A literal is “variable” or “negated variable”

x :y

• A clause is a disjunction of literals
(x _ y _ :z) (:x)

• Conjunctive normal form (CNF) is a
conjunction of clauses

(x _ y _ :z) ^ (:x _ :y) ^ (z)

• Must satisfy all clauses at once
– “global” constraints!

#13

SAT Solving Algorithms

9σ. σ ² (x _ y _ :z) ^ (:x _ :y) ^ (z)

• So how do we solve it?

• Ex: σ(x) = σ(z) = true, σ(y) = false

• Expected running time?

#14

Analogy: Human Visual Search
“Find The Red Vertical Bar”

#15

Human Visual Search
“Find The Red Vertical Bar”

#16

Some Visual Features
Admit O(1) Detection

#17

Strangers On A Train

• https://www.youtube.com/watch?v=_tVFwhoeQVM

https://www.youtube.com/watch?v=_tVFwhoeQVM

#18

Think Fast: Partial Answer?

 (:a _ :b _ :c _ d _ e _ :f _ g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

^ (a _ :b _ :c _ :d _ e _ :f _ :g _ :h _ i)

^ (:b)

^ (a _ :b _ c _ :d _ e _ :f _ :g _ :h _ i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

• If this instance is satisfiable, what must part
of the satisfying assignment be?

#19

Think Fast: Partial Answer?

 (:a _ :b _ :c _ d _ e _ :f _ g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

^ (a _ :b _ :c _ :d _ e _ :f _ :g _ :h _ i)

^ (:b)

^ (a _ :b _ c _ :d _ e _ :f _ :g _ :h _ i)

^ (:a _ b _ :c _ d _ :e _ f _ :g _ h _ :i)

• If this instance is satisfiable, what must part
of the satisfying assignment be? b = false

#20

Need For Speed 2

 (:a _ c _ :d _ e _ f _ :g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ g _ h _ i)

^ (:a _ :b _ c _ e _ f _ g _ :h _ i)

^ (:a _ b _ c _ d _ e _ :f _ :g _ h _ :i)

^ (b _ :c _ :d _ e _ :f _ g _ h _ :i)

^ (:a _ b _ c _ d _ :g _ :h _ :i)

• If this instance is satisfiable, what must part
of the satisfying assignment be?

#21

Need For Speed 2

 (:a _ c _ :d _ e _ f _ :g _ :h _ :i)

^ (:a _ b _ :c _ d _ :e _ f _ g _ h _ i)

^ (:a _ :b _ c _ e _ f _ g _ :h _ i)

^ (:a _ b _ c _ d _ e _ :f _ :g _ h _ :i)

^ (b _ :c _ :d _ e _ :f _ g _ h _ :i)

^ (:a _ b _ c _ d _ :g _ :h _ :i)

• If this instance is satisfiable, what must part
of the satisfying assignment be? a = false

#22

Unit and Pure

• A unit clause contains only a single literal.
– Ex: (x) (:y)

– Can only be satisfied by making that literal true.

– Thus, there is no choice: just do it!

• A pure variable is either “always : negated”
or “never : negated”.
– Ex: (:x _ y _ :z) ^ (:x _ :y) ^ (z)

– Can only be satisfied by making that literal true.

– Thus, there is no choice: just do it!

#23

Unit Propagation

• If X is a literal in a unit clause, add X to that
satisfying assignment and replace X with
“true” in the input, then simplify:
1. (:x _ y _ :z) ^ (:x _ :z) ^ (z)

2. identify “z” as a unit clause
3. σ += “z = true”

#24

Unit Propagation

• If X is a literal in a unit clause, add X to that
satisfying assignment and replace X with
“true” in the input, then simplify:
1. (:x _ y _ :z) ^ (:x _ :z) ^ (z)

2. identify “z” as a unit clause
3. σ += “z = true”
4. (:x _ y _ :true) ^ (:x _ :true) ^ (true)

#25

Unit Propagation

• If X is a literal in a unit clause, add X to that
satisfying assignment and replace X with
“true” in the input, then simplify:
1. (:x _ y _ :z) ^ (:x _ :z) ^ (z)

2. identify “z” as a unit clause
3. σ += “z = true”
4. (:x _ y _ :true) ^ (:x _ :true) ^ (true)

5. (:x _ y) ^ (:x)

• Profit! Let's keep going ...

#26

Unit Propagation FTW

5. (:x _ y) ^ (:x)

6. Identify “:x” as a unit clause

7. σ += “:x = true”

8. (true _ y) ^ (true)

9. done!

{z,:x} ² (:x _ y _ :z) ^ (:x or :z) ^ (z)

#27

Pure Variable Elimination

• If V is a variable that is always used with one
polarity, add it to the satisfying assignment
and replace V with “true”, then simplify.
1. (:x _ :y _ :z) ^ (x _ :y _ z)

2. identify “:y” as a pure literal

#28

Pure Variable Elimination

• If V is a variable that is always used with one
polarity, add it to the satisfying assignment
and replace V with “true”, then simplify.
1. (:x _ :y _ :z) ^ (x _ :y _ z)

2. identify “:y” as a pure literal

3. (:x _ true _ :z) ^ (x _ true _ z)

4. Done.

#29

DPLL

• The Davis-Putnam-Logemann-Loveland
(DPLL) algorithm is a complete decision
procedure for CNF SAT based on:
– Identify and propagate unit clauses

– Identify and propagate pure literals

– If all else fails, exhaustive backtracking search

• It builds up a partial satisfying assignment
over time.
DP '60: “A Computing Procedure for Quantification Theory”

DLL '62: “A Machine Program for Theorem Proving”

#30

DPLL Algorithm
let rec dpll (c : CNF) (σ : model) : model option =

 if σ ² c then (* polytime *)

 return Some(σ) (* we win! *)

 else if () in c then (* empty clause *)

 return None (* unsat *)

 let u = unit_clauses_of c in

 let c, σ = fold unit_propagate (c, σ) u in

 let p = pure_literals_of c in

 let c, σ = fold pure_literal_elim (c, σ) p in

 let x = choose ((literals_of c) – (literals_of σ)) in

 return (dpll (c ^ x) σ) or (dpll (c ^ :x) σ)

#31

DPLL Example

(x _ :z) ^ (:x _ :y _ z) ^ (w) ^ (w _ y)

• Unit clauses: (w)
(x _ :z) ^ (:x _ :y _ z)

• Pure literals: :y

(x _ :z)

• Choose unassigned: x (recursive call)
(x _ :z) ^ (x)

• Unit clauses: (x)
• Done! σ={w, :y, x}

#32

SAT Conclusion
• DPLL is commonly used by award-winning SAT

solvers such as Chaff and MiniSAT
• Not explained here: how you “choose” an

unassigned literal for the recursive call
– This “branching literal” is the subject of many

papers on heuristics

• Very recent: specialize a MiniSAT solver to a
particular problem class

Justyna Petke, Mark Harman, William B. Langdon, Westley Weimer:
Using Genetic Improvement & Code Transplants to Specialise a C++
Program to a Problem Class. European Conference on Genetic
Programming (EuroGP) 2014 (silver human competitive award)

#33

Japanese Literature

• This 11th-century Japanese work is often
regarded as the world's first novel. It was
written by Murasaki Shikibu, a Heian
noblewoman. A psychological and historical
work, it details the life and romantic
adventures of a “shining” prince. It features
over 400 characters and a strong internal
consistency (e.g., they all age at the same
time and follow feudal and family
relationships).

#34

Q: Computer Science

• This American mathematician and scientist
developed the simplex algorithm for solving linear
programming problems. In 1939 he arrived late to
a graduate stats class at UC Berkeley where
Professor Neyman had written two famously
unsolved problems on the board. The student
thought the problems “seemed a little harder than
usual” but a few days later handed in complete
solutions, believing them to be homework
problems overdue. This real-life story inspired the
introductory scene in Good Will Hunting.

#35

Linear Programming

• Example Goal:
– Find X such that X > 5 ^ X < 10 ^ 2X = 16

• Let x
1
 ... x

n
 be real-valued variables

• A satisfying assignment (or feasible solution)
is a mapping from variables to reals satisfying
all available constraints

• Given a set of linear constraints and a linear
objective function to maximize, Linear
Programming (LP) finds a feasibile solution
that maximizes the objective function.

#36

Linear Programming Instance

• Maximize c
1
x

1
 + c

2
x

2
 + ... + c

n
x

n

• Subject to a
11

x
1
 + a

12
x

2
 + ... ≤ b

1

 a
21

x
1
 + a

22
x

2
 + ... ≤ b

2

 a
n1

x
1
 + a

n2
x

2
 + ... ≤ b

n

 x
1
 ≥ 0, ..., x

n
 ≥ 0

• Don't “need” the objective function

• Don't “need” x
1
 ≥ 0

#37

2D Running Example

• Maximize 4x + 3y
• Subject to 2x +3y ≤ 6 (1)

 2y ≤ 5 (2)
 2x +1y ≤ 4 (3)
 x ≥ 0, y ≥ 0

• Feasible: (1,1) or (0,0)
• Infeasible: (1,-1) or (1,2)

#38

Key Insight

• Each linear constraint (e.g., 2x+3y ≤ 6)
corresponds to a half-plane
– A feasible half-plane and an infeasible one

x

y

0 1 2 3

1

2

3

(feasible)
2x+3y≤6

#39

Key Insight

• Each linear constraint (e.g., 2y ≤ 5)
corresponds to a half-plane
– A feasible half-plane and an infeasible one

x

y

0 1 2 3

1

2

3

(feasible)

2y≤5

2x+3y≤6

#40

Key Insight

• Each linear constraint (e.g., 2x+3y ≤ 6)
corresponds to a half-plane

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4

#41

Feasible Region

• The region that is on the “correct” side of all of the
lines is the feasible region

• If non-empty, it is always a convex polygon

– Convex, for our purposes: if A and B are points in a
convex set, then the points on the line segment
between A and B are also in that convex set

• Optimality: “Maximize 4x + 3y”

• For any c, 4x+3y=c is a line with the same slope

• Corner points of the feasible region must maximize

– Why? Linear objective function + convex polygon

#42

Objective Function

• Maximize 4x+3y

x

y

0 1 2 3

1

2

3

(feasible) 4x+3y=12

#43

Objective Function

• Maximize 4x+3y

x

y

0 1 2 3

1

2

3

(feasible) 4x+3y=12

4x+3y=10

#44

Objective Function

• Maximize 4x+3y

x

y

0 1 2 3

1

2

3

(feasible) 4x+3y=12

4x+3y=10

4x+3y=9

Optimal Corner Point (1.5, 1)
It's the feasible point that
maximizes the objective function!

#45

Analogy: Rolling Pin, Pizza Dough

#46

Analogy: Rolling Pin, Pizza Dough

#47

Analogy: Rolling Pin, Pizza Dough

#48

Any Convex Pizza and
Any Linear Rolling Pin Approach

#49

Any Convex Pizza and
Any Linear Rolling Pin Approach

#50

Linear Programming Solver

• Three Step Process
– Identify the coordinates of all feasible corners

– Evaluate the objective function at each one

– Return one that maximizes the objective function

• This totally works! We're done.

• The trick: how can we find all of the
coordinates of the corners without drawing
the picture of the graph?

#51

Finding Corner Points

• A corner point (extreme point) lies at the
intersection of constraints.

• Recall our running example:
• Subject to 2x +3y ≤ 6 (1)

 2y ≤ 5 (2)
 2x +1y ≤ 4 (3)
 x ≥ 0, y ≥ 0

• Take just (1) and (3) as defining equations

#52

Visually

• 2x +3y ≤ 6 and 2x +1y ≤ 4
– Hard to see with the whole graph ...

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4

#53

Visually

• 2x +3y ≤ 6 and 2x +1y ≤ 4
– But easy if we only look at those two!

2x+3y≤6

2x+y≤4

#54

Mathematically

• 2x +3y ≤ 6
• 2x +1y ≤ 4
• Recall linear algebra: Gaussian Elimination

– Subtract the second row from the first

• 0x +2y ≤ 2
– Yields “y = 1”

• Substitute “y=1” back in
• 2x + 3 ≤ 6

– Yields “x = 1.5”

#55

Infeasible Corners

• 2x +3y ≤ 6 and 2y ≤ 5

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4

#56

Infeasible Corners

• 2x +3y ≤ 6 and 2y ≤ 5
– (-0.75,2.5) solves the equations but it does not

satisfy our “x ≥ 0” constraint: infeasible!

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

#57

Solving Linear Programming

• Identify the coordinates of all corners
– Consider all pairs of constraints, solve each pair

– Filter to retain points satisfying all constraints

• Evaluate the objective function at each point
• Return the point that maximizes

• With 5 equations, the number of pairs is “6
choose 2” = 5!/(2!3!) = 10.
– Only 4 of those 10 are feasible.

#58

Feasible Corners

• In our running example, there are four
feasible corners

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4

#59

Road Trip!
• Suppose we start in one feasible corner (0,0)

– And we know our objective function 4x+3y

– Do we move to corner (0,2) or (2,0) next, or
 should we stay here?

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4

#60

Road Trip!
• We're now in (2,0)

– And we know our objective function 4x+3y

– Do we move to corner (1.5,1) or stay here?

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4

#61

Road Trip!
• We're now in (1.5,1)

– We're done! We have considered all of our
neighbors and we're the best.

x

y

0 1 2 3

1

2

3

2x+3y≤6
(feasible)

2y≤5

2x+y≤4

#62

Analogy: Don't Sink!

#63

Reach Highest Point Greedily

#64

Not A Counter-Example
Why Not?

#65

Simplex Insight
• The Simplex algorithm encodes this “gradient

ascent” insight: if there are many corners, we
may not even need to enumerate or visit
them all.

• Instead, just walk from feasible corner to
adjacent feasible corner, maximizing the
objective function every time.
– It's linear and convex: you can't be “tricked” into

a local maximum that's not also global.

• In a high-dimensional case, this is a huge win
because there are many corners.

#66

Simplex Algorithm

• George Dantzig published the Simplex
algorithm in 1947.
– John von Neumann theory prize, US National Medal of Science,

“one of the top 10 algorithms of the 20th century”, etc.

• Phase 1: find any feasible corner
– Ex: solve two constraints until you find one

• Phase 2: walk to best adjacent corner
– Ex: “pivot” row operations between the “leaving”

variable and the “entering” variable

• Repeat until no adjacent corner is better

#67

Simplex Running Time
(special thanks to Yi Tang)

• Linear programming (via the interior-point method,
ellipsoid algorithm) can be solved in worst-case
polynomial-time.

– n variables encoded in L input bits: O(n6L) time

– Open question: is there a strongly polytime algorithm
for linear programming over the reals?

• Simplex is quite efficient in practice.

– In a formal sense, “most” LP instances can be solved
by Simplex in polytime. “Hard” instances are “not
dense” in the set of all instances (akin to: the
Integers are “not dense” in the Reals).

• 0-1 Integer Linear Programming is NP-Hard.

#68

Next Time

• DPLL(T) combines DPLL + Simplex into one
grand unified theorem prover

#69

Homework

• HW2 Due Soon
• Reading for next time

	Proof Techniques for Operational Semantics
	Slide 2
	Why Bother?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

