Automated Theorem Proving: DPLL and Simplex

One-Slide Summary

- An automated theorem prover is an algorithm that determines whether a mathematical or logical proposition is valid (satisfiable).
- A satisfying or feasible assignment maps variables to values that satisfy given constraints. A theorem prover typically produces a proof or a satisfying assignment (e.g., a counter-example backtrace).
- The DPLL algorithm uses efficient heuristics (involving "pure" or "unit" variables) to solve Boolean Satisfiability (SAT) quickly in practice.
- The Simplex algorithm uses efficient heuristics (involving visiting feasible corners) to solve Linear Programming (LP) quickly in practice.

Why Bother?

- I am loathe to teach you anything that I think is a waste of your time.
- The use of "constraint solvers" or "SMT solvers" or "automated theorem provers" is becoming endemic in PL, SE and Security research, among others.
- Many high-level analyses and transformations call Chaff, Z3 or Simplify (etc.) as a black box single step.

Recent Examples

- "VeriCon uses first-order logic to specify admissible network topologies and desired network-wide invariants, and then implements classical Floyd-Hoare-Dijkstra deductive verification using Z3."
- VeriCon: Towards Verifying Controller Programs in Software-Defined Networks, PLDI 2014
- "However, the search strategy is very different: our synthesizer fills in the holes using component-based synthesis (as opposed to using SAT/SMT solvers)."
- Test-Driven Synthesis, PLDI 2014
- "If the terms l, m, and r were of type nat, this theorem is solved automatically using Isabelle/HOL's built-in auto tactic."
- Don't Sweat the Small Stuff: Formal Verification of C Code Without the Pain, PLDI 2014

Desired Examples

- SLAM
- Given "new = old" and "new++", can we conclude "new = old"?
$-\left(\right.$ new $_{0}=$ old $\left._{0}\right) \wedge\left(\right.$ new $_{1}=$ new $\left._{0}+1\right) \wedge$
$\left(\right.$ old $_{1}=$ old $\left._{0}\right) \Rightarrow\left(\right.$ new $_{1}=$ old $\left._{1}\right)$
- Division By Zero
- IMP: "print x/((x*x)+1)"
$-\left(n_{1}=\left(x^{*} x\right)+1\right) \Rightarrow\left(n_{1} \neq 0\right)$

Incomplete

- Unfortunately, we can't have nice things.
- Theorem (Godel, 1931). No consistent system of axioms whose theorems can be listed by an algorithm is capable of proving all truths about relations of the natural numbers.
- But we can profitably restrict attention to some relations about numbers.

Deciradreal fo make progress, we will treat "pure logic"
 and "pure sfatis"
 - Given "new - separately.

- SLAM

```
"new = old"?
```

$-\left(\right.$ new $_{0}=$ old $\left._{0}\right) \wedge\left(\right.$ new $_{1}=$ new $\left._{0}+1\right) \wedge$
$\left(\right.$ old $_{1}=$ old $\left._{0}\right) \Rightarrow\left(\right.$ new $_{1}=$ old $\left._{1}\right)$

- Division By Zero
- IMP: "print x/((x*x)+1)"
$-\left(n_{1}=\left(x^{*} x\right)+1\right) \Rightarrow\left(n_{1} \neq 0\right)$

Overall Plan

- Satisfiability
- Simple SAT Solving
- Practical Heuristics
- DPLL algorithm for SAT
- Linear programming
- Graphical Interpretation

Math

- Simplex algorithm

Boolean Satisfiability

- Start by considering a simpler problem: propositions involving only boolean variables

```
bexp:= x
I bexp \(\wedge\) bexp
bexp \(\vee\) bexp
\(\neg\) bexp
| bexp \(\Rightarrow\) bexp
। true \| false
```

- Given a bexp, return a satisfying assignment or indicate that it cannot be satisfied

Satisfying Assignment

- A satisfying assignment maps boolean variables to boolean values.
- Suppose $\sigma(x)=$ true and $\sigma(y)=$ false
- $\sigma \vDash \mathrm{k}$ // \vDash is "models" or "makes
- $\sigma \vDash x \vee y$ // true" or "satisfies"
- $\sigma \vDash y \Rightarrow \neg x$
- $\sigma \not \vDash x \Rightarrow(x \Rightarrow y)$
- $\sigma \not \vDash \neg x \vee y$

Cook-Levin Theorem

- Theorem (Cook-Levin). The boolean satisfiability problem is NP-complete.
- In '71, Cook published "The complexity of theorem proving procedures". Karp followed up in ' 72 with "Reducibility among combinatorial problems".
- Cook and Karp received Turing Awards.
- SAT is in NP: verify the satisfying assignment
- SAT is NP-Hard: we can build a boolean expression that is satisfiable iff a given nondeterministic Turing machine accepts its given input in polynomial time

Conjunctive Normal Form

- Let's make it easier (but still NP-Complete)
- A literal is "variable" or "negated variable" x \neg
- A clause is a disjunction of literals $(x \vee y \vee \neg z) \quad(\neg x)$
- Conjunctive normal form (CNF) is a conjunction of clauses

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y) \wedge(z)
$$

- Must satisfy all clauses at once
- "global" constraints!

SAT Solving Algorithms

$$
\exists \sigma . \sigma \vDash(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y) \wedge(z)
$$

- So how do we solve it?
- Ex: $\sigma(x)=\sigma(z)=$ true, $\sigma(y)=$ false
- Expected running time?

Analogy: Human Visual Search "Find The Red Vertical Bar"
I

I I I I

 I | | I I I I
Human Visual Search "Find The Red Vertical Bar"

Some Visual Features Admit O(1) Detection

Strangers On A Train

- https://www.youtube.com/watch?v=_tVFwhoeQVM

Think Fast: Partial Answer?

$$
\begin{aligned}
&(\neg a \vee \neg b \vee \neg c \vee d \vee e \vee \neg f \vee g \vee \neg h \vee \neg i) \\
& \wedge(\neg a \vee b \vee \neg c \vee d \vee \neg e \vee f \vee \neg g \vee h \vee \neg i) \\
& \wedge(a \vee \neg b \vee \neg c \vee \neg d \vee e \\
& \wedge(\neg b) \\
& \wedge(a \vee \neg b \vee c \vee \neg d \vee e \neg \neg \vee \neg f \vee i) \\
& \wedge(\neg a \vee b \vee \neg c \vee d \vee \neg e \vee f \vee \neg g \vee \neg h \vee i) \\
&- \text { If this instance is satisfiable, what must part } \\
& \text { of the satisfying assignment be? }
\end{aligned}
$$

Think Fast: Partial Answer?

$$
\begin{aligned}
&(\neg a \vee \neg b \vee \neg c \vee d \vee e \vee \neg f \vee g \vee \neg h \vee \neg i) \\
& \wedge(\neg a \vee b \vee \neg c \vee d \vee \neg e \vee f \vee \neg g \vee h \vee \neg i) \\
& \wedge(a \vee \neg b \vee \neg c \vee \neg d \vee e \\
& \wedge(\neg b) \\
& \wedge(a \vee \neg b \vee c \vee \neg d \vee e \neg g \vee \neg h \vee i) \\
& \wedge(\neg a \vee b \vee \neg c \vee d \vee \neg e \vee f \vee \neg \neg g \vee \neg h \vee i) \\
&- \text { If this instance is satisfiable, what must part } \\
& \text { of the satisfying assignment be? } b=\text { false }
\end{aligned}
$$

Need For Speed 2

$$
\begin{aligned}
& (\neg a \vee c \vee \neg d \vee e \vee f \vee \neg g \vee \neg h \vee \neg i) \\
\wedge & (\neg a \vee b \vee \neg c \vee d \vee \neg e \vee f \vee g \vee h \vee i) \\
\wedge & (\neg a \vee \neg b \vee c \vee e \vee f \vee g \vee \neg h \vee i) \\
\wedge & (\neg a \vee b \vee c \vee d \vee e \vee \neg f \vee \neg g \vee h \vee \neg i) \\
\wedge & (b \vee \neg c \vee \neg d \vee e \vee \neg f \vee g \vee h \vee \neg i) \\
\wedge & (\neg a \vee b \vee c \vee d \vee \neg g \vee \neg h \vee \neg i)
\end{aligned}
$$

- If this instance is satisfiable, what must part of the satisfying assignment be?

Need For Speed 2

$$
\begin{aligned}
& (\neg a \vee c \vee \neg d \vee e \vee f \vee \neg g \vee \neg h \vee \neg i) \\
\wedge & (\neg a \vee b \vee \neg c \vee d \vee \neg e \vee f \vee g \vee h \vee i) \\
\wedge & (\neg a \vee \neg b \vee c \vee e \vee f \vee g \vee \neg h \vee i) \\
\wedge & (\neg a \vee b \vee c \vee d \vee e \vee \neg f \vee \neg g \vee h \vee \neg i) \\
\wedge & (b \vee \neg c \vee \neg d \vee e \vee \neg f \vee g \vee h \vee \neg i) \\
\wedge & (\neg a \vee b \vee c \vee d \vee \neg g \vee \neg h \vee \neg i)
\end{aligned}
$$

- If this instance is satisfiable, what must part of the satisfying assignment be? a = false

Unit and Pure

- A unit clause contains only a single literal.
- Ex: (x) ($\neg \mathrm{y})$
- Can only be satisfied by making that literal true.
- Thus, there is no choice: just do it!
- A pure variable is either "always \neg negated" or "never \neg negated".
- Ex: ($\neg \mathrm{x} \vee \mathrm{y} \vee \neg \mathrm{z}) \wedge(\neg \mathrm{x} \vee \neg \mathrm{y}) \wedge(\mathrm{z})$
- Can only be satisfied by making that literal true.
- Thus, there is no choice: just do it!

Unit Propagation

- If X is a literal in a unit clause, add X to that satisfying assignment and replace X with "true" in the input, then simplify:

1. $(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg z) \wedge(z)$
2. identify " z " as a unit clause
3. $\sigma+=$ " $z=$ true"

Unit Propagation

- If X is a literal in a unit clause, add X to that satisfying assignment and replace X with "true" in the input, then simplify:

1. $(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg z) \wedge(z)$
2. identify " z " as a unit clause
3. $\sigma+=$ " $z=$ true"
4. $(\neg x \vee y \vee \neg$ true $) \wedge(\neg x \vee \neg$ true) \wedge (true)

Unit Propagation

- If X is a literal in a unit clause, add X to that satisfying assignment and replace X with "true" in the input, then simplify:

1. $(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg z) \wedge(z)$
2. identify " z " as a unit clause
3. $\sigma+=$ " $z=$ true"
4. $(\neg x \vee y \vee \neg$ true $) \wedge(\neg x \vee \neg$ true) \wedge (true)
5. $(\neg x \vee y) \quad \wedge(\neg x)$

- Profit! Let's keep going ...

Unit Propagation FTW

5. ($\neg x \vee y)$
$\wedge(\neg x)$
6. Identify " $\neg \mathrm{x}$ " as a unit clause
7. $\sigma+=" \neg x=$ true"
8. (true $\vee y) \wedge$ (true)
9. done!
$\{z, \neg x\} \vDash(\neg x \vee y \vee \neg z) \wedge(\neg x$ or $\neg z) \wedge(z)$

Pure Variable Elimination

- If V is a variable that is always used with one polarity, add it to the satisfying assignment and replace V with "true", then simplify.

1. $(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)$
2. identify " $\neg \mathrm{y}$ " as a pure literal

Pure Variable Elimination

- If V is a variable that is always used with one polarity, add it to the satisfying assignment and replace V with "true", then simplify.

1. $(\neg x \vee \neg y \vee \neg z) \wedge(x \vee \neg y \vee z)$
2. identify " $\neg \mathrm{y}$ " as a pure literal
3. $(\neg x \vee$ true $\vee \neg z) \wedge(x \vee$ true $\vee z)$
4. Done.

DPLL

- The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a complete decision procedure for CNF SAT based on:
- Identify and propagate unit clauses
- Identify and propagate pure literals
- If all else fails, exhaustive backtracking search
- It builds up a partial satisfying assignment over time.
DP '60: "A Computing Procedure for Quantification Theory"
DLL '62: "A Machine Program for Theorem Proving"

DPLL Algorithm

let rec dpll (c : CNF) (σ : model) : model option =
if $\sigma \vDash c$ then
return Some(σ)
else if () in c then
return None
(* polytime *) (* we win! *) (* empty clause *)
(* unsat *)
let $u=$ unit_clauses_of c in
let $c, \sigma=$ fold unit_propagate $(c, \sigma) u$ in let $p=$ pure_literals_of c in
let $c, \sigma=$ fold pure_literal_elim (c, σ) p in let $x=$ choose $(($ literals_of $c)$ - (literals_of $\sigma))$ in return $(\mathrm{dpll}(\mathrm{c} \wedge x) \sigma)$ or $(\mathrm{dpll}(c \wedge \neg x) \sigma)$

DPLL Example

$(x \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(w) \wedge(w \vee y)$

- Unit clauses: (w)
$(x \vee \neg z) \wedge(\neg x \vee \neg y \vee z)$
- Pure literals: $\neg \mathrm{y}$
($\mathrm{X} \vee \neg \mathrm{Z}$)
- Choose unassigned: x
(recursive call)
$(x \vee \neg z) \wedge(x)$
- Unit clauses: (x)
- Done! $\sigma=\{w, \neg y, x\}$

SAT Conclusion

- DPLL is commonly used by award-winning SAT solvers such as Chaff and MiniSAT
- Not explained here: how you "choose" an unassigned literal for the recursive call
- This "branching literal" is the subject of many papers on heuristics
- Very recent: specialize a MiniSAT solver to a particular problem class

Justyna Petke, Mark Harman, William B. Langdon, Westley Weimer:
Using Genetic Improvement \& Code Transplants to Specialise a C++
Program to a Problem Class. European Conference on Genetic Programming (EuroGP) 2014 (silver human competitive award)

Japanese Literature

- This $11^{\text {th }}$-century Japanese work is often regarded as the world's first novel. It was written by Murasaki Shikibu, a Heian noblewoman. A psychological and historical work, it details the life and romantic adventures of a "shining" prince. It features over 400 characters and a strong internal consistency (e.g., they all age at the same time and follow feudal and family relationships).

Q: Computer Science

- This American mathematician and scientist developed the simplex algorithm for solving linear programming problems. In 1939 he arrived late to a graduate stats class at UC Berkeley where Professor Neyman had written two famously unsolved problems on the board. The student thought the problems "seemed a little harder than usual" but a few days later handed in complete solutions, believing them to be homework problems overdue. This real-life story inspired the introductory scene in Good Will Hunting.

Linear Programming

- Example Goal:
- Find X such that $X>5 \wedge x<10 \wedge 2 X=16$
- Let $x_{1} \ldots x_{n}$ be real-valued variables
- A satisfying assignment (or feasible solution) is a mapping from variables to reals satisfying all available constraints
- Given a set of linear constraints and a linear objective function to maximize, Linear Programming (LP) finds a feasibile solution that maximizes the objective function.

Linear Programming Instance

- Maximize

$$
C_{1} X_{1}+C_{2} X_{2}+\ldots+C_{n} X_{n}
$$

- Subject to

$$
\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2}+\ldots & \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots & \leq b_{2} \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots & \leq b_{n} \\
x_{1} \geq 0, \ldots, x_{n} \geq 0 &
\end{array}
$$

- Don't "need" the objective function
- Don't "need" $x_{1} \geq 0$

2D Running Example

- Maximize $4 x+3 y$
- Subject to $2 x+3 y \leq 6$
$2 x+1 y \leq 4$
- Feasible: $(1,1)$ or $(0,0)$
- Infeasible: $(1,-1)$ or $(1,2)$

Key Insight

- Each linear constraint (e.g., $2 x+3 y \leq 6$) corresponds to a half-plane
- A feasible half-plane and an infeasible one

Key Insight

- Each linear constraint (e.g., $2 \mathrm{y} \leq 5$) corresponds to a half-plane
- A feasible half-plane and an infeasible one

Key Insight

Feasible Region

- The region that is on the "correct" side of all of the lines is the feasible region
- If non-empty, it is always a convex polygon
- Convex, for our purposes: if A and B are points in a convex set, then the points on the line segment between A and B are also in that convex set
- Optimality: "Maximize $4 x+3 y "$
- For any c, $4 x+3 y=c$ is a line with the same slope
- Corner points of the feasible region must maximize
- Why? Linear objective function + convex polygon

Objective Function

- Maximize $4 x+3 y$

Objective Function

- Maximize $4 x+3 y$

Objective Function

- Maximize $4 x+3 y$

Analogy: Rolling Pin, Pizza Dough

Analogy: Rolling Pin, Pizza Dough

Analogy: Rolling Pin, Pizza Dough

Any Convex Pizza and Any Linear Rolling Pin Approach

Any Convex Pizza and Any Linear Rolling Pin Approach

Linear Programming Solver

- Three Step Process
- Identify the coordinates of all feasible corners
- Evaluate the objective function at each one
- Return one that maximizes the objective function
- This totally works! We're done.
- The trick: how can we find all of the coordinates of the corners without drawing the picture of the graph?

Finding Corner Points

- A corner point (extreme point) lies at the intersection of constraints.
- Recall our running example:
- Subject to $2 x+3 y \leq 6$
$2 x+1 y \leq 4$
(3)

$$
x \geq 0, y \geq 0
$$

- Take just (1) and (3) as defining equations

Visually

- $2 x+3 y \leq 6$ and $2 x+1 y \leq 4$
- Hard to see with the whole graph ...

Visually

- $2 x+3 y \leq 6$ and $2 x+1 y \leq 4$
- But easy if we only look at those two!

Mathematically

- $2 x+3 y \leq 6$
- $2 x+1 y \leq 4$
- Recall linear algebra: Gaussian Elimination
- Subtract the second row from the first
- $0 x+2 y \leq 2$
- Yields " $y=1$ "
- Substitute " $y=1$ " back in
- $2 x+3 \leq 6$
- Yields "x = 1.5"

Infeasible Corners

- $2 x+3 y \leq 6$ and $2 y \leq 5$

Infeasible Corners

- $2 x+3 y \leq 6$ and $2 y \leq 5$
- $(-0.75,2.5)$ solves the equations but it does not satisfy our " $x \geq 0$ " constraint: infeasible!

Solving Linear Programming

- Identify the coordinates of all corners
- Consider all pairs of constraints, solve each pair
- Filter to retain points satisfying all constraints
- Evaluate the objective function at each point
- Return the point that maximizes
- With 5 equations, the number of pairs is " 6 choose 2 " $=5!/(2!3!)=10$.
- Only 4 of those 10 are feasible.

Feasible Corners

- In our running example, there are four feasible corners

Road Trip!

- Suppose we start in one feasible corner $(0,0)$
- And we know our objective function $4 x+3 y$
- Do we move to corner $(0,2)$ or $(2,0)$ next, or

Road Trip!

- We're now in $(2,0)$
- And we know our objective function $4 x+3 y$
- Do we move to corner $(1.5,1)$ or stay here?

Road Trip!

- We're now in $(1.5,1)$
- We're done! We have considered all of our neighbors and we're the best.

Analogy: Don't Sink!

Reach Highest Point Greedily

Not A Counter-Example Why Not?

Simplex Insight

- The Simplex algorithm encodes this "gradient ascent" insight: if there are many corners, we may not even need to enumerate or visit them all.
- Instead, just walk from feasible corner to adjacent feasible corner, maximizing the objective function every time.
- It's linear and convex: you can't be "tricked" into a local maximum that's not also global.
- In a high-dimensional case, this is a huge win because there are many corners.

Simplex Algorithm

- George Dantzig published the Simplex algorithm in 1947.
- John von Neumann theory prize, US National Medal of Science, "one of the top 10 algorithms of the $20^{\text {th }}$ century", etc.
- Phase 1: find any feasible corner
- Ex: solve two constraints until you find one
- Phase 2: walk to best adjacent corner
- Ex: "pivot" row operations between the "leaving" variable and the "entering" variable
- Repeat until no adjacent corner is better

Simplex Running Time
 (special thanks to Yi Tang)

- Linear programming (via the interior-point method, ellipsoid algorithm) can be solved in worst-case polynomial-time.
- n variables encoded in L input bits: $O\left(n^{6} L\right)$ time
- Open question: is there a strongly polytime algorithm for linear programming over the reals?
- Simplex is quite efficient in practice.
- In a formal sense, "most" LP instances can be solved by Simplex in polytime. "Hard" instances are "not dense" in the set of all instances (akin to: the Integers are "not dense" in the Reals).
- 0-1 Integer Linear Programming is NP-Hard.

Next Time

- DPLL(T) combines DPLL + Simplex into one grand unified theorem prover

Homework

- HW2 Due Soon
- Reading for next time

